3 research outputs found

    Multi-attribute auctions with different types of attributes: Enacting properties in multi-attribute auctions

    Get PDF
    International audienceMulti-attribute auctions allow agents to sell and purchase goods and services taking into account more attributes besides the price (e.g. service time, tolerances, qualities, etc.). In this paper we analyze attributes involved during the auction process and propose to classify them between verifiable attributes, unverifiable attributes and auctioneer provided attributes. According to this classification we present VMA2, a new Vickrey-based reverse multi-attribute auction mechanism which, taking into account the different types of attributes involved in the auction, allows the auction customization in order to suit the auctioneer needs. On the one hand, the use of auctioneer provided attributes enables the inclusion of different auction concepts such as social welfare, trust or robustness whilst, on the other hand, the use of verifiable attributes guarantee truthful bidding. The paper exemplifies the behaviour of VMA2 describing how an egalitarian allocation can be achieved. The mechanism is then tested in a simulated manufacturing environment and compared with other existing auction allocation methods

    A Practical Guide to Multi-Objective Reinforcement Learning and Planning

    Get PDF
    Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems

    A practical guide to multi-objective reinforcement learning and planning

    Get PDF
    Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems. © 2022, The Author(s)
    corecore