3,851 research outputs found

    Affect Recognition in Ads with Application to Computational Advertising

    Get PDF
    Advertisements (ads) often include strongly emotional content to leave a lasting impression on the viewer. This work (i) compiles an affective ad dataset capable of evoking coherent emotions across users, as determined from the affective opinions of five experts and 14 annotators; (ii) explores the efficacy of convolutional neural network (CNN) features for encoding emotions, and observes that CNN features outperform low-level audio-visual emotion descriptors upon extensive experimentation; and (iii) demonstrates how enhanced affect prediction facilitates computational advertising, and leads to better viewing experience while watching an online video stream embedded with ads based on a study involving 17 users. We model ad emotions based on subjective human opinions as well as objective multimodal features, and show how effectively modeling ad emotions can positively impact a real-life application.Comment: Accepted at the ACM International Conference on Multimedia (ACM MM) 201

    LRMM: Learning to Recommend with Missing Modalities

    Full text link
    Multimodal learning has shown promising performance in content-based recommendation due to the auxiliary user and item information of multiple modalities such as text and images. However, the problem of incomplete and missing modality is rarely explored and most existing methods fail in learning a recommendation model with missing or corrupted modalities. In this paper, we propose LRMM, a novel framework that mitigates not only the problem of missing modalities but also more generally the cold-start problem of recommender systems. We propose modality dropout (m-drop) and a multimodal sequential autoencoder (m-auto) to learn multimodal representations for complementing and imputing missing modalities. Extensive experiments on real-world Amazon data show that LRMM achieves state-of-the-art performance on rating prediction tasks. More importantly, LRMM is more robust to previous methods in alleviating data-sparsity and the cold-start problem.Comment: 11 pages, EMNLP 201

    Audio-Visual Sentiment Analysis for Learning Emotional Arcs in Movies

    Full text link
    Stories can have tremendous power -- not only useful for entertainment, they can activate our interests and mobilize our actions. The degree to which a story resonates with its audience may be in part reflected in the emotional journey it takes the audience upon. In this paper, we use machine learning methods to construct emotional arcs in movies, calculate families of arcs, and demonstrate the ability for certain arcs to predict audience engagement. The system is applied to Hollywood films and high quality shorts found on the web. We begin by using deep convolutional neural networks for audio and visual sentiment analysis. These models are trained on both new and existing large-scale datasets, after which they can be used to compute separate audio and visual emotional arcs. We then crowdsource annotations for 30-second video clips extracted from highs and lows in the arcs in order to assess the micro-level precision of the system, with precision measured in terms of agreement in polarity between the system's predictions and annotators' ratings. These annotations are also used to combine the audio and visual predictions. Next, we look at macro-level characterizations of movies by investigating whether there exist `universal shapes' of emotional arcs. In particular, we develop a clustering approach to discover distinct classes of emotional arcs. Finally, we show on a sample corpus of short web videos that certain emotional arcs are statistically significant predictors of the number of comments a video receives. These results suggest that the emotional arcs learned by our approach successfully represent macroscopic aspects of a video story that drive audience engagement. Such machine understanding could be used to predict audience reactions to video stories, ultimately improving our ability as storytellers to communicate with each other.Comment: Data Mining (ICDM), 2017 IEEE 17th International Conference o

    Joint Deep Modeling of Users and Items Using Reviews for Recommendation

    Full text link
    A large amount of information exists in reviews written by users. This source of information has been ignored by most of the current recommender systems while it can potentially alleviate the sparsity problem and improve the quality of recommendations. In this paper, we present a deep model to learn item properties and user behaviors jointly from review text. The proposed model, named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel neural networks coupled in the last layers. One of the networks focuses on learning user behaviors exploiting reviews written by the user, and the other one learns item properties from the reviews written for the item. A shared layer is introduced on the top to couple these two networks together. The shared layer enables latent factors learned for users and items to interact with each other in a manner similar to factorization machine techniques. Experimental results demonstrate that DeepCoNN significantly outperforms all baseline recommender systems on a variety of datasets.Comment: WSDM 201
    • …
    corecore