15 research outputs found

    Movement-based Group Awareness with Wireless Sensor Networks

    Get PDF
    We propose a method through which dynamic sensor nodes determine that they move together, by communicating and correlating their movement information. We describe two possible solutions, one using inexpensive tilt switches, and another one using low-cost MEMS accelerometers. We implement a fast, incremental correlation algorithm, with an execution time of 6ms, which can run on resource constrained devices. The tests with the implementation on real sensor nodes show that the method is reliable and distinguishes between joint and separate movements. In addition, we analyze the scalability from four different perspectives: communication, energy, memory and execution speed. The solution using tilt switches proves to be simpler, cheaper and more energy efficient, while the accelerometer-based solution is more reliable, more robust to sensor alignment problems and, potentially, more accurate by using extended features, such as speed and distance

    Online Movement Correlation of Wireless Sensor Nodes

    Get PDF
    Sensor nodes can autonomously form ad-hoc groups based on their common context. We propose a solution for grouping sensor nodes attached on the same vehicles on wheels. The nodes periodically receive the movement data from their neighbours and calculate the correlation coefficients over a time history. A high correlation coefficient implies that the nodes are moving together. We demonstrate the algorithm using two types of movement sensors: tilt switches and MEMS accelerometers. We place the nodes on two wirelessly controlled toy cars, and we observe in real-time the group membership via the LED colours of the nodes. In addition, a graphical user interface running on the base station shows the movement signals over a recent time history, the latest sampled data, the correlation between each two nodes and the group membership

    Wave Monitoring with Wireless Sensor Networks

    Get PDF
    Real-time collection of wave information is required for short and long term investigations of natural coastal processes. Current wave monitoring techniques use only point-measurements, which are practical where the bathymetry is relatively uniform. We propose a wave monitoring method that is suitable for places with varying bathymetry, such as coral reefs. Our solution uses a densely deployed wireless sensor network, which allows for a high spatial resolution and 3D monitoring and analysis of the waves. The wireless sensor nodes are equipped with low-cost, low-power, MEMS-based inertial sensing. We report on lab experiments with a Ferris wheel contraption, which is a technique used in practice to evaluate and calibrate the state-of-the-art wave monitoring solutions.\u

    Tandem: A Context-Aware Method for Spontaneous Clustering of Dynamic Wireless Sensor Nodes

    Get PDF
    Wireless sensor nodes attached to everyday objects and worn by people are able to collaborate and actively assist users in their activities. We propose a method through which wireless sensor nodes organize spontaneously into clusters based on a common context. Provided that the confidence of sharing a common context varies in time, the algorithm takes into account a window-based history of believes. We approximate the behaviour of the algorithm using a Markov chain model and we analyse theoretically the cluster stability. We compare the theoretical approximation with simulations, by making use of experimental results reported from field tests. We show the tradeoff between the time history necessary to achieve a certain stability and the responsiveness of the clustering algorithm

    Group affiliation detection using model divergence for wearable devices

    Full text link
    corecore