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Abstract- In this article, we present a method to identify a grouping of sensor nodes that show similar 

movement patterns in an ad-hoc manner. The motivation behind the ad-hoc grouping is to allow a 

system to monitor complex and concrete situations of people and/or devices such as “who is/are 

utilizing what object(s)” and “what objects are carried together” without any supervision of human 

before and at the time of interaction. An agglomerative hierarchical clustering algorithm was applied to 

a data stream to find the group members as a set of clusters within a certain height. A threshold was 

also determined in an unsupervised way based on simple statistics obtained from the previous clustering 

results. An off-line analysis was conducted on data collected in realistic situations. Although grouping 

two of the same but unrelated activities proved to be difficult, the proposed algorithm performed well in 

other relaxed cases such as walking with a bag vs. pushing a platform hand truck. Furthermore, we 

confirmed the effectiveness of clustering-based grouping in comparison with simple distance-based 

grouping.  
 

Index terms: Smart Objects, Agglomerative Hierarchical Clustering, Grouping, Accelerometer. 
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I. INTRODUCTION 

 

Our daily lives and environments are full of computational devices and large amounts of 

information due to technological advances. We can obtain information anytime at any place. 

However, at the same time, it takes effort to acquire useful information. Offering appropriate 

information in particular situations is a major research topic in ubiquitous/pervasive computing 

environments, so that users can make correct decisions in a user-friendlier system. This is known 

as context-awareness [7]. Any information that is relevant to an application can be a context. A 

context can be obtained not only from a single entity such as person, place, and object 

[1][2][10][21], but also from an attribute of a group, and grouping can complement a missing 

piece of information in each entity [11]. For example, suppose that a camera and a train ticket are 

in a bag. It is likely that the bag belongs to someone who is traveling by train, although each 

object just provides a partial piece of information. The carrier of the bag can further be identified 

if both the bag and the person’s wearable objects, e.g., clothes and accessories, are grouped. In 

this case, the bag can provide a personalized service: if the bag senses that an unauthorized 

person is carrying it, it can issue an alert to its owner. Additionally, the person can be suggested 

to take a camera with her if she does not have one in the bag based on the custom that she usually 

takes camera with her when she travels. These examples are realized by observing the 

coexistence of objects. For example, a radio frequency identification (RFID) receiver worn by a 

person or embedded into a bag can be used to detect RFID-tagged objects [5, 19]. However, the 

similarity of the movement pattern would provide more reliable information than mere 

coexistence.  

In this article, we present a method to identify a group of sensor nodes that move together in an 

ad-hoc manner. An agglomerative hierarchical clustering [8] is applied to the data stream in an 

unsupervised manner to specify the candidates for group members. Then, in the dendrogram of 

the clustering result, a branch that contains a key “leaf” is cut off at a particular level of threshold. 

Here, the threshold is determined based on the statistics obtained from the previous clustering 

results. Thus, no parameter needs to be specified for a certain object or a usage scenario. Such ad-

hoc and real-time grouping is important so that the user can focus on his/her main task. The rest 
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of this article is organized as follows. In Section II, related work is examined. Section III and 

Section IV present the proposed algorithm and the evaluation, respectively. Finally, we conclude 

the article in Section V. 

 

II. RELATED WORK 

 

In the last decade, due to the advancement of microelectromechanical systems (MEMS) and 

wireless communication technologies, accelerometer-based grouping has become popular 

[3][4][12][13][15][17][18][22][24]. A correlation coefficient, which is a metric of the proximity 

of signal patterns in the time domain, is often used in associating (or grouping) one or more 

sensor nodes [3][4][12][17][22]. Although the correlation coefficient is lightweight, it is sensitive 

to the delay between signals. If the delay is due to a communication delay, the timestamps by 

synchronized local clocks on the node sides allow correction. However, as pointed out in [12] and 

[17], the placement of sensor nodes on structurally loose frames leads to another delay. For 

example, a delay could occur between a sensor-augmented toothbrush and a wrist-worn sensor 

because of the wrist joint. Also, boxes stacked on a platform on a hand truck could have 

propagation delays of the driving force. So, an approach based on the correlation coefficient 

seems more suitable for explicit shaking in one’s hand [3] and utilization under the condition 

where objects are put on the same rigid frame. 

A coherence function, the measurement of the extent to which two signals are linearly related at 

each frequency, has also been used to determine if two devices are carried by the same person 

[15] and to realize device-to-device authentication [18] based on the shared movement pattern. 

Since the coherence function deals with the frequency domain, the delay can be ignored. 

However, it initially requires a periodic movement of objects like those on a person’s body who 

is walking or objects shaken in one’s hand. 

RFID technology can also make a group of coexistent objects. A person might wear a glove with 

a receiver such as that in [19]. This is very simple but there is a tradeoff in the range of tag 

detection. The short-range detection realized by a passive tag reduces the chance of detection of 

an incorrect object that is not used but just exists in the range. But it also has the advantages of 

low cost and maintenance-free tags. However, the long detection range realized by an active tag 

system makes the grouping complex. If there are more than two people wearing tag readers in 
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close vicinity, it is difficult to identify who is the true carrier since all the readers might detect the 

same tags. Similar to this approach, radio signal strength can measure the proximity of two 

devices [5]. The signal strength is easily affected by the orientation of the body and the placement 

of devices. Efstratiou et al. used packet loss to approximate the distance between two entities [9]. 

In their application, an accelerometer is attached to a drill and the user is identified as a person 

who is within 2 meters of the drill. They successfully leveraged the business rule that no person 

except the user comes close to the drill. However, the assumption might need to be reconsidered 

when the rule changes. 

The approach of Perianu et al. [16][17] enables the formation of a group of sensor nodes based on 

similar movement patterns by a static threshold in a distributed manner. Here, the similarity is 

represented by a correlation coefficient. In [16], an algorithm to determine the threshold was 

introduced. In this algorithm, two distributions of correlation coefficients are required: one for 

correct pairs and the other for incorrect pairs. The distributions depend on the definitions of the 

pairs; however, we consider “incorrect pair” to be difficult to define. For example, suppose that a 

situation is defined as “carried by a person”; then, the complement set is “not carried by the 

person.” This can be “carried by another person who is following the person” (very similar 

movement), “carried on a platform hand truck,” or “merely left on a desk” (no correlation at all). 

Application requirements should be carefully analyzed to avoid oversights. Rocha et al. proposes 

a framework called “semantic clustering”, in which a cluster of sensor nodes is formed based on 

semantic correlation [20]. A fuzzy inference system calculates the similarity of a situation 

observed sensor nodes, in which a domain expert is assumed to supply a set of fuzzy IF-THEN 

rules. The challenge in our approach is to form a group without such definitions. A group needs 

to be formed in a self-organized manner. The similarity of features between a reference node and 

the other neighboring nodes are evaluated based on a threshold that reflects the characteristics of 

the group in recent time steps. 

 

 

III. DESIGNING THE AD-HOC GROUPING ALGOTITHM 

 

a. Assumptions 

The assumptions in designing the algorithm are as follows. 
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AS1. Wireless accelerometer nodes are attached on objects and/or people. 

AS2.  The sensor nodes communicate with each other using a broadcast channel whose range is 

approximately 1 meter. Therefore, communication delay, packet loss and multi-hopping are 

not taken into account. 

AS3.  The number of members in a group is unknown. 

AS4.  A node called the Group Leader (GL) is a special node that is attached to an object. It 

initiates the grouping process for nodes that reside within the communication range 

(neighboring nodes). The GL is also capable of detecting a change of its state, such as 

“started moving.” 

AS5.  A person carries at least one node on his/her body whose ID is not known by the GL, 

though. 

AS6.  Nodes that reside in the vicinity of the GL do not always belong to the same group as the 

GL, but coincidentally reside near the GL. 

 

A typical scene is illustrated in Figure 1 (a), where three nodes form a group (indicated as the 

ellipse); the GL (shown in red) is attached to the bag, a normal node embedded on a mobile 

phone is in a chest pocket, and the other normal node embedded on an umbrella is in the bag. The 

fifth assumption (AS5) indicates that the GL and a node on a person’s body should move together 

to some extent, since someone must be engaged in the activity when an object is utilized or 

carried. For the sixth assumption (AS6), a person who is not carrying the abovementioned bag 

may be walking close to the carrier (within the transmission range of the GL on the bag) (Figure 

1 (b)). This means that a set of neighboring nodes of the GL consists of either of the following: 1) 

only the group members, or 2) a combination of members and non-members. Note that we 

exclude a node carried by the nearby person from the group formed by the GL on the bag because 

the node on the second person has no direct relationship with the GL. Moreover, we handle the 

situation where more than two people carry one container (Figure 1 (c)). In this case, a direct 

relationship exists between the box and the two people. 
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Figure 1. Typical Scenes 

 
 
b. Requirements 

Based on the assumptions, the requirements for the algorithm are as follows. 

RQ1. The similarity measurement should consider that the movements of the nodes are not 

always highly correlated. 

RQ2. The grouping decision should be made in an unsupervised manner based on the local data. 

The first requirement comes from our observations and the cases assumed in AS1 and AS5. The 

three nodes that appear in Figure 1 (a) might have propagation delays of the driving force. So, the 

signals might also have a delay or lose their “micro-similarity.” Therefore, a measurement that 

can capture a macroscopic characteristic is needed. In a complex and realistic application setting, 

it is difficult to collect a dataset and find the parameters that completely cover the characteristics 

of the group and the non-group. So, the grouping decision should be made in an unsupervised 

manner using datasets obtained for a specific number of time steps, which is the second 

requirement. 

 

c. Grouping Based on an Agglomerative Hierarchical Clustering 

Figure 2 shows the flow of a grouping that consists of windowing, feature calculation, clustering, 

branch cutting, and threshold updating. As can be seen in the top right side of the figure, 

grouping is conducted for each processing window. Then, a feature vector that meets the first 

requirement is calculated. Here, we specify two features that characterize the similarity of the 

movement of nodes for a period of time: standard deviation and mean-crossing number. The 
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mean-crossing number is obtained by counting the number of crossings over a mean value in a 

time window, which represents the frequency-domain characteristic in a lightweight manner. A 

correlation coefficient has not been selected since, as described in Section II, it is sensitive to the 

delay between signals and the deformation of a signal. We also tested other features in the time 

domain (e.g., mean and inter-quartile range) as well as the frequency domain (e.g., frequency 

range power and frequency entropy [14]); however, the combination of the standard deviation 

and mean-crossing number performed best. 

 

 
Figure 2. Flow of a grouping 

 

For the second requirement, we applied an unsupervised clustering technique, in which the group 

of interest is represented as a cluster. In addition to the group of interest, another group may exist 

that is formed by non-member nodes. The number of such groups is not known in advance. So, 

we cannot simply apply a method that assumes the number of classes is known, such as 

discriminant analysis and k-means clustering (refer to [8] for an example). We decided to apply 

Agglomerative Hierarchical Clustering (AHC) (e.g., [8]) to the data stream. As its name suggests, 

AHC generates a hierarchical cluster tree. The leaf nodes in the cluster hierarchy are the sensor 

nodes. They are singleton clusters from which all higher clusters are built. The Euclidean 

distance is used as a dissimilarity measurement for clustering. A particular linkage algorithm 

generates the tree, and a dissimilarity matrix is given as input. We selected Ward’s method [25] 
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from the various types of linkage algorithms. The method chooses the successive clustering steps 

to minimize the increase in the error sum of squares after fusing two clusters into a single cluster. 

The distributions of the features of all the cluster members are taken into account. We consider 

this algorithm to be robust in the case that a feature vector is not actually a member of the group 

of interest but happens to be near the GL, and the feature vectors of the true members are 

gathered at a different area in the feature space. If only the distances between the GL and each 

node were considered, the grouping would fail to reject the non-member node. 

The result of AHC is usually represented by a dendrogram. The dendrogram expression provides 

a hierarchical view of the relationship of the nodes. In the middle-right side of Figure 2, an 

example of a dendrogram is shown, in which 10 sensor nodes exist as the neighboring nodes of id 

1 (GL), and id 6 and 10 are the closest pair since the dissimilarity is the smallest (0.0023). To 

identify the group members in this case, the tree is “cut” with a specific threshold. Multiple 

branches can be cut, among which the one containing the GL is finally selected as the group of 

interest, since our goal is to form a group that contains the GL, not all the groups that are found in 

the neighboring nodes. In Figure 2, the set of nodes {1,6,10} is a group defined by th2, and 

{1,6,9,10} forms another group defined by th3. In the first case, the other neighboring nodes are 

classified into the non-member group. 

Note that if there is no branch that contains the GL below the threshold, the GL is combined with 

the nearest sub-branch so that the new branch can be regarded as a group. Suppose that the tree is 

cut with th1, the sub-branch {1,6,10} is obtained by {1} and {6,10}. This is explained by AS5, 

which states that at least one node (on the person’s body) moves together with the GL. So, it is 

natural to combine the separated nodes. However, if th4 is applied, all the neighboring nodes are 

classified into the same group. 

The threshold is determined based on the statistics obtained from the previous clustering results 

to meet the second requirement (RQ2). Here, the threshold at the i-th time step is defined as 

follows: 

 

𝑡ℎ# = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐻#+, + 𝛼 ∙ 𝑠𝑑 𝐻#+,      (𝛼 ≥ 0)     (1) 

𝐻#+, = ℎ#+5, ℎ#+57,, ℎ#+5 …	ℎ#+,                             (2) 

ℎ: = ℎ𝑒𝑖𝑔ℎ𝑡(𝐺𝐿)                                                        (3) 
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Figure 3. The deviation of the dissimilarity measurement (height), assuming that nodes 1 to 4 

belong to the same group as the GL. In an ideal case, all members of a group have the same 

dissimilarity measurements, whereas, in a realistic case, the measurements vary (Δh) due to the 

delay and deformation of the waveform. 

 

The first and second terms on the right side of Equation (1) are the average and the standard 

deviation of the recent L samples of the dissimilarity measurement, respectively. The 

measurement is represented as the height of the branch that contains the GL as a leaf (Equation 

(3)). We call the addition to the standard deviation a margin-scaling factor, where α > 0. An ideal 

group has no or very small deviation in the height of the branch (Figure 3 left), but in a realistic 

environment, variance occurs due to the delay and deformation of the waveform (Figure 3 right). 

Thus, the deviation of the dissimilarity measurement is added to relax the cutting threshold, 

which means going up the dendrogram and accepting more distant nodes. If th2 is used as a 

threshold, then h1 is obtained as the height of the GL. Once the height is obtained by Equation (2), 

Equation (1) updates the threshold for the next time step. Thus, the grouping is realized in an ad-

hoc and unsupervised manner. 

 

IV. EXPERIMENTS 

 

In this Section, we show a preliminary evaluation of the grouping performance, the capability 

that the algorithm finds the correct grouped nodes among others and eliminates non-related nodes. 

a. Experimental Situations of Correct and Confused Grouping 

We specified a situation of grouping for the evaluation, where a person is carrying a bag with 

three items: a mobile phone, a key, and a purse. Here, the GL is attached to the bag. Two wireless 

accelerometer nodes are attached on his right wrist and belt. The three items are also augmented 

with the same type of sensor nodes (see Figure 4 (a)). These six nodes form a group. The status 
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of the grouping prompts an application that notifies an alert to the person with the wrist-worn 

sensor when the bag detects the absence of a required object, such as a key. 

 

 
Figure 4. Experimental situations of correct and confused grouping 

 

Three situations were considered as confusing ones for the “correct” group defined above. These 

cases occur if the nodes are just within the range of communication of the GL (see the description 

of AS6 in Section III.a). The three cases shown in Figure 4 are as follows: (b) six nodes are in a 

person’s bag, (c) a person is pushing a platform hand truck on which two boxes are stacked, and 

(d) six nodes are held firmly and shaken. The combinations (a) and (b) are confusing since the 

activities are the same and thus the features might be very similar. The combinations (a) and (c) 

are more relaxed, and finally (d) is selected to see the performance of the algorithm between 

completely different activities.  

 

b. Data Collection and Processing 

We programmed a SunSPOT [23] node so that it can acquire three-axis accelerometer readings 

from an onboard sensor, ST Microsystems LIS3L02AQ, and then we calculated and transmitted 

the two features at 20 Hz to a data collection PC via an IEEE 802.15.4 compliant radio 

transceiver. The features are calculated against the magnitude of the acceleration vector 
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(Equation (4)), because 1) the amount of data transmitted is reduced to 1/3, and 2) the system’s 

interest is not in the orientation of the force. All the experiments in this section ran in MATLAB 

using real sensor data collected by the nodes fed to the algorithm in an off-line manner. Data 

were collected for 40 to 60 seconds (800 to 1200 samples) for each situation. 

 

𝐴# = 𝑎@A + 𝑎BA + 𝑎CA	 

The data packets were sent asynchronously from multiple nodes, and timestamps were added on 

the receiver PC side. After storing all the data in a database, the range of data for all coexistent 

nodes was extracted based on the timestamp. Ideally, the maximum time difference in two nodes 

was less than one sampling interval, 50 [msec], since we assumed no communication delay and 

no packet loss. The size of the window for calculating the features was 200 (=10 sec) based on a 

preliminary observation. This means the delay was 0.5% of the window size. We assumed that 

this caused no major problems. To simulate a confused situation where other nodes exist near the 

truly grouped nodes, one of the other three datasets, either (b), (c), or (d) in Figure 4, was 

combined with dataset (a). The proposed algorithm attempts to identify the five nodes that belong 

to the same group as the GL of case (a). For example, the case of (a) with (b) assumed that two 

people were walking side by side, as shown in Figure 1 (b). 

We utilized a sliding window with the overlapping of 199 samples (due to sliding windows for 

every sample.). Before calculating the features, a second-order Butterworth low-pass digital filter 

[6] was applied to eliminate noise, in which the cut-off frequency was set to 6 [Hz] based on prior 

observations in the frequency domain. Furthermore, the margin-scaling factor was heuristically 

set to 5 in the experiment to generate a large difference between the accuracy and the aFPR 

(defined in the next section). The effect of the margin scale factor is examined in Section IV.d.ii. 

 

c. Grouping Performance Metrics and Visualization 

We calculated three association performance metrics: accuracy, average true positive ratio 

(aTPR), and average false positive ratio (aFPR). The accuracy, defined in Equation (5), 

represents the capability of identifying entire nodes. If the accuracy is 1.0, the algorithm always 

identifies all the members of the group. However, even if the accuracy is low, e.g., 0.1, this result 

does not directly imply that the algorithm is not working as expected. The aTPR also needs to be 
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considered, since it is the capability of the algorithm to correctly identify on average the number 

of member nodes (Equation (6)). The performance is considered good if the aTPR is close to 1.0. 

The aFPR, which indicates the average number of false positive nodes among all the windows 

(Equation (7)), needs to be close to zero. Here, false positive indicates the situation in which a 

node that is not a member of the group of interest is classified as a member. The basic 

characteristics of the ratios (aTPR and aFPR) and the grouping capabilities are summarized in 

Table 1. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑔𝑟𝑜𝑢𝑝𝑒𝑑	𝑛𝑜𝑑𝑒𝑠
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑤𝑖𝑛𝑑𝑜𝑤𝑠	(= 𝑁P)

																																																														(5) 

𝑎𝑇𝑃𝑅 =
1
𝑁P

𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑒𝑚𝑏𝑒𝑟	𝑛𝑜𝑑𝑒𝑠	𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑎𝑠	𝑚𝑒𝑚𝑏𝑒𝑟	(= 𝑁VW,:)
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑚𝑒𝑚𝑏𝑒𝑟	𝑛𝑜𝑑𝑒𝑠	(= 𝑁X)

														(6)
Z[

:\,

 

𝑎𝐹𝑃𝑅 =
1
𝑁P

𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑛	𝑚𝑒𝑚𝑏𝑒𝑟	𝑛𝑜𝑑𝑒𝑠	𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑎𝑠	𝑚𝑒𝑚𝑏𝑒𝑟	(= 𝑁 W,:)
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑛	𝑚𝑒𝑚𝑏𝑒𝑟	𝑛𝑜𝑑𝑒𝑠	(= 𝑁_X)

					(7)
Z[

:\,

 

 

Table 1. The basic characteristics of the ratios and the grouping capabilities. 
aTPR aFPR Characteristics 

Low High Clustering failed. 

High Low Both clustering and thresholding performed well. 

High High The threshold was too high to exclude unrelated cones 

Low Low The threshold was too low to include necessary ones. 

 

The result is visualized using 2D images for each combined situation (Figure 5), in which the 

accuracy, the aTPR, and the aFPR are represented. The color level represents the ratio, which 

varies smoothly from black (0.0) through shades of red, orange, and yellow, to white (1.0). The 

numbers of the member and non-member nodes varied in the off-line analysis. The vertical and 

horizontal sides of the images indicate the number of group members (Nm in Equation (6)) and 

that of non-members (Nnm in Equation (7)), respectively. By multiplying the number of the 

vertical side of an aTPR image minus 1, the expected number of true positives is obtained. The 

reason for the subtraction of 1 is to exclude the GL itself. Meanwhile, the expected number of 

false positives was calculated in the same manner by multiplying the horizontal number in an 
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aFPR image. The number zero on the horizontal sides of the accuracy and the aTPR images 

assume that the neighboring nodes fully consist of the member nodes and there is no confusing 

node. This is the extreme condition that can be realized by the optimized communication range 

between the GL and the member nodes. Furthermore, since we assumed that there are at least two 

nodes in a group (see AS5), the vertical sides of the images begin with 2. For example, a pixel of 

the accuracy image referred to as (3, 3) represents the ratio for the case of “3-out-of-6”, in which 

the GL node is included among the three member nodes. These images allow us to view all the 

variations of the combined situations, including the number of true cases and the number of false 

cases. 

 

d. Discussion 

d.i Overall Performance of Grouping 

As shown in the top row of Figure 5, the combined situation with (b) is difficult to discriminate. 

The almost black area in the accuracy image indicates that it does not identify all the members. 

Actually, the accuracy ranges from 0 to 0.005 in this area. Meanwhile, the aTPRs are not as bad 

as imagined from the accuracy. In Figure 5, the expected number of true positives at the pixel 

marked as “A” is 2.4 (=(6-1)× 0.48). This indicates that 2.4 out of 5 true member nodes excluding 

the GL itself are correctly identified when a total of 10 nodes exist near the GL. This is not bad 

result considering the similarity of the situations of (a) and (b). However, the aFPRs are higher 

(i.e., brighter) than the other cases. This indicates that a non-member node is likely to be 

confused as a true member. In the case of position “B” in Figure 5, the value is 4.0 (≈ 6×0.66 ), 

which means four nodes were mistakenly identified as group members on average from six non-

member nodes. From the results in Table 1, we conclude that the clustering did not perform well. 

This is because the activities of (a) and (b) are the same, and therefore the features are similar. To 

meet the second requirement RQ2, we utilized common features, i.e., standard deviation and 

mean-crossing number, for any object grouping as described in Section III-c. However, there 

should be a certain set of features that can express slight difference between nodes attached to 

different persons engaged in the same activity. So, if RQ2 can be relaxed so that the features can 

be tuned to an object to which the GL is attached, the clustering performance is improved. At the 

same time, we can consider a hierarchy of groups, where the large group of “walking side by side” 
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contains sub-groups of “objects carried by a person.” The algorithm of such a high-level grouping 

is future work. 

 
Figure 5. Resultant Images: Accuracy, aTPR and aFPR are represented with 2D images for each 

combined situation. The vertical and the horizontal sides of an image indicate the number of 

group members and that of non-members, respectively. The darker the color or level a pixel 

becomes, the closer the ratio is to zero. Here, the margin-scaling factor (α) is 5.0. 

 

The combined situation with (c) is at an intermediate level. The worst accuracy is 0.14 in the 6-

out-of-12 case (marked “C” in Figure 5). However, it is much better than the probability ((12-1)C(6-

1) = 0.004) when the true five members (excluding the GL) are randomly selected from 11 (= 5 + 

6) nodes.  Figure 6 shows the details of the two situations. The first and second graphs are the 

waveforms of situations (a) and (c), respectively. The third graph indicates the temporal change 

of aTPR and aFPR, and the bottom graph is the variation of the threshold with time. The aFPR is 

very small (i.e., almost 0) and is stable. However, the aTPR looks unstable. As shown in Table 1, 

we consider the cluster of the group was relatively well formed and the non-member nodes are 
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far from the cluster, but the threshold is not high enough to contain all the member nodes in the 

cluster. If the threshold is set higher, such missing nodes will appear in the group of interest. 

Finally, the images of the case with (d) in Figure 5 show the best performance in the three 

situations: high accuracies, high aTPRs, and low aFPRs. Especially, the aFPRs are remarkably 

low. The aFPRs range from 0.0011 (six non-member nodes marked “E”) to 0.0765 (one non-

member node marked “D”), and thus a non-related node is almost not classified as a member of 

the group of interest. This is because the two activities are quite different from each other. 

 
Figure 6. Waveforms of situations (a) and (c), and the temporal changes of aTPR, aFPR, and the 

thresholds 

 

d.ii Margin and Performance 

Figure 7 shows the characteristics of the ratios, including the accuracy, the aTPRs, and the aFPRs, 

against various margin-scaling factors. The horizontal position represents the margin-scaling 

factor α. The values were obtained by averaging all the combinations of the number of the true 

cases and those of the false cases, which means one value is obtained from one image in Figure 5. 

The left graph of Figure 7 looks different from the other two: the accuracy is saturated at 0.14 
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without any peak, aTPR is relatively low, and aFPR is much higher. This means that the 

overlapping of situations (a) and (b) was too large to separate by only increasing the threshold. 

However, the other two cases show similar patterns; that is, accuracy peaks occur. A peak is 

considered as an upper bound of the accuracy for a particular combination of situations. The 

accuracy drastically increases up to the peak as the threshold (or the margin-scaling factor) 

becomes high, and the number of the non-members remains low. Once the threshold exceeds the 

peak, the non-member nodes are likely to be contained, and the chance of identifying the entire 

member is decreased; that is, the accuracy is low. Note that the zero value of α on the horizontal 

axis indicates that no margin is adopted. By comparing the ratios at α = 0 with α = peak (or the 

saturated value in case 1, (a) + (b)), we can confirm the effectiveness of the margin that 

contributes to the increase of the accuracy. In future work, we need to investigate an optimal 

thresholding algorithm that finds the peak accuracy. 

 

 
Figure 7. The characteristics of the ratios against various margin-scaling factors for the three 

combinations of situations. 

 

d.iii Effectiveness of AHC-based Grouping 

We applied AHC to obtain the overall distance information among neighboring nodes before 

branch cutting with a certain threshold. We also consider another approach that seems more 

straightforward. Here, the distances between the GL and all the other neighboring nodes are 

calculated, and a threshold is applied to identify the nodes within a specific range. Figure 8 

illustrates this approach. Node 3 exists within certain distance (thi) to the GL, and therefore it is 

identified as a member. Such a threshold is defined in a similar manner to that in Equation (1); 
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however, one exception is that the height in Equation (3) is replaced with the minimum distance 

to the GL at each time step (Equation (8)), since according to the fifth assumption (AS5), at least 

one node should belong to the same group as the GL. We also tested another linkage algorithm 

for AHC, called single linkage [8]. The single linkage (the nearest neighbor) algorithm uses the 

smallest distance between objects in the two clusters, and so it is simpler than Ward’s method. 

 

 
Figure 8. Grouping based on the distance between the GL and neighboring nodes. 

 

ℎ:a = min
#∈_f#ghijk#_g	_jlfm

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝐺𝐿# 																				(8) 

 

Figure 9 compares the performance between the AHC and the distance-based grouping in 

situation (a) + (c). The graphs for the aTPRs show almost the same shapes, but the AHC-based 

grouping provides better accuracy and better aFPR than the distance-based one. The peaks of 

accuracy obtained from the AHC-based approaches are higher than the distance-based one, that is, 

D < AS < AW. Regarding the difference between the peak of the accuracy and the peak of the 

corresponding aFPR (marked AW, AS, D and AW', AS', D'), an approach is considered superior 

if the difference, AS − AS', is large, so that the accuracy is high and the aFPR is low. The 

performance metrics in Figure 9 are 0.48, 0.41, and 0.33 for AHC-Ward, AHC-single linkage and 

distance-based grouping, respectively. This suggests that the AHC-based linkage algorithms 

work better than the simple distance-based approaches. We consider that this is because the 

distributions of features of all the cluster members are taken into account in the AHC. 

Moreover, we consider that Ward’s method is superior in terms of robustness against changes of 

the margin-scaling factor. In Figure 9, the accuracy of Ward’s method decreases moderately 

while the aFPR increases gradually after passing the peaks. However, the changes for the single 
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linkage method appear drastically with the sudden dropping of accuracy and the increasing aFPR. 

This indicates that the Ward-based approach does not terribly degrade the grouping performance 

even if the thresholding algorithm fails to determine an optimal value. 

 

 

 
Figure 9. Comparison of AHC and distance-based grouping with various thresholds in situation 

(a) + (c). Note that AHC-based grouping is further divided into two methods: Ward’s method and 

the single linkage method. The annotations with apostrophes indicate the peaks for the aFPRs, 

and those without apostrophes correspond to the peaks for the accuracy. 

 

V. CONCLUSION 

 

In this article, we presented a method to identify multiple sensor nodes that have similar 

movement patterns in an ad-hoc manner. Ward’s method and Agglomerative Hierarchical 

Clustering (AHC) were applied at every time step. The utilization of these two methods was 

intended to find the true group members while taking into account the spatial distribution of the 

feature vectors. This is considered to be robust in the case in which a feature vector of a non-

member happens to be near the GL, and the feature vectors of the true members are gathering is 

at a different area in the feature space. With clustering, the unrelated node is likely to be in a 

different cluster that is far from the clusters of the group of interest. Moreover, the utilization of a 

standard set of two time-series features, namely, the standard deviation and the mean-crossing 
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number, makes the grouping of sensor nodes that move in a loosely correlated manner robust 

compared with a correlation coefficient-based grouping. 

We conducted an off-line analysis to evaluate the basic performance of the proposed grouping. In 

this analysis, a person who has an attached node on the right wrist is carrying a bag of items with 

attached sensor nodes. Three other situations were combined as false cases existing within the 

communication range of the GL. Although the grouping in a combined situation of the same but 

unrelated activities proved to be difficult, the algorithm performed well in the other relaxed cases. 

We also confirmed the effectiveness of the clustering-based approach, especially Ward’s method-

based clustering, in comparison with a simple distance-based grouping and the shortest linkage 

clustering. As future work, the algorithm will be tested in a more dynamic and heterogeneous 

environment to observe the generality. 
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