8 research outputs found

    Movement Fluidity Analysis Based on Performance and Perception

    Get PDF
    In this work we present a framework and an experimental approach to investigate human body movement qualities (i.e., the expressive components of non-verbal communication) in HCI. We first define a candidate movement quality conceptually, with the involvement of experts in the field (e.g., dancers, choreographers). Next, we collect a dataset of performances and we evaluate the perception of the chosen quality. Finally, we propose a computational model to detect the presence of the quality in a movement segment and we compare the outcomes of the model with the evaluation results. In the proposed on-going work, we apply this approach to a specific quality of movement: Fluidity. The proposed methods and models may have several applications, e.g., in emotion detection from full-body movement, interactive training of motor skills, rehabilitation

    The dancer in the eye: Towards a multi-layered computational framework of qualities in movement

    Get PDF
    This paper presents a conceptual framework for the analysis of expressive qualities of movement. Our perspective is to model an observer of a dance performance. The conceptual framework is made of four layers, ranging from the physical signals that sensors capture to the qualities that movement communicate (e.g., in terms of emotions). The framework aims to provide a conceptual background the development of computational systems can build upon, with a particular reference to systems analyzing a vocabulary of expressive movement qualities, and translating them to other sensory channels, such as the auditory modality. Such systems enable their users to "listen to a choreography" or to "feel a ballet", in a new kind of cross-modal mediated experience

    Using the Audio Respiration Signal for Multimodal Discrimination of Expressive Movement Qualities

    Get PDF
    In this paper we propose a multimodal approach to distinguish between movements displaying three different expressive qualities: fluid, fragmented, and impulsive movements. Our approach is based on the Event Synchronization algorithm, which is applied to compute the amount of synchronization between two low-level features extracted from multimodal data. In more details, we use the energy of the audio respiration signal captured by a standard microphone placed near to the mouth, and the whole body kinetic energy estimated from motion capture data. The method was evaluated on 90 movement segments performed by 5 dancers. Results show that fragmented movements display higher average synchronization than fluid and impulsive movements

    Analysis of movement quality in full-body physical activities

    Get PDF
    Full-body human movement is characterized by fine-grain expressive qualities that humans are easily capable of exhibiting and recognizing in others' movement. In sports (e.g., martial arts) and performing arts (e.g., dance), the same sequence of movements can be performed in a wide range of ways characterized by different qualities, often in terms of subtle (spatial and temporal) perturbations of the movement. Even a non-expert observer can distinguish between a top-level and average performance by a dancer or martial artist. The difference is not in the performed movements-the same in both cases-but in the \u201cquality\u201d of their performance. In this article, we present a computational framework aimed at an automated approximate measure of movement quality in full-body physical activities. Starting from motion capture data, the framework computes low-level (e.g., a limb velocity) and high-level (e.g., synchronization between different limbs) movement features. Then, this vector of features is integrated to compute a value aimed at providing a quantitative assessment of movement quality approximating the evaluation that an external expert observer would give of the same sequence of movements. Next, a system representing a concrete implementation of the framework is proposed. Karate is adopted as a testbed. We selected two different katas (i.e., detailed choreographies of movements in karate) characterized by different overall attitudes and expressions (aggressiveness, meditation), and we asked seven athletes, having various levels of experience and age, to perform them. Motion capture data were collected from the performances and were analyzed with the system. The results of the automated analysis were compared with the scores given by 14 karate experts who rated the same performances. Results show that the movement-quality scores computed by the system and the ratings given by the human observers are highly correlated (Pearson's correlations r = 0.84, p = 0.001 and r = 0.75, p = 0.005)

    Development and validation of an art-inspired multimodal interactive technology system for a multi-component intervention for older people: a pilot study

    Get PDF
    IntroductionThe World Health Organization (WHO) acknowledges the presence of a significant body of research on the positive effects of the arts on health, considering a variety of factors including physical well-being, quality of life, and social and community impact. The model that underlies cultural welfare puts the performing arts, visual arts, and cultural heritage at the service of people personal and societal well-being. The potential connections between movements of the body and artistic content have been extensively studied over time, considering movement as a non-verbal language with a universal character.MethodsThis pilot study presents the results of the validation of an innovative multimodal system, the DanzArTe-Emotional Wellbeing Technology, designed to support active and participative experience of older people providing physical and cognitive activation through a full-body physical interaction with a traditional visual work of art of religious subject. DanzArTe supports a replicable treatment protocol for multidimensional frailty, administered through a low cost and scalable technological platform capable of generating real-time visual and auditory feedback (interactive sonification) from the automated analysis of individual as well as joint movement expressive qualities. The study involved 45 participants, 23 of whom participated in the DanzArTe program and 22 who were included in the control group.ResultsThe two groups were similar in terms of age (p = 0.465) and gender (p = 0.683). The results showed that the DanzArTe program had a positive impact on participants' self-perceived psychological health and well-being (Mean Psychological General Well-Being Index—Short T1 = 19.6 ± 4.3 Vs. T2 = 20.8 ± 4.9; p = 0.029). The same trend was not observed in the control group (p = 0.389).DiscussionThe findings suggest that such programs may have a significant impact particularly on the mental and social well-being of older adults and could be a valuable tool for promoting healthy aging and improving quality of life

    Automated Analysis of Synchronization in Human Full-body Expressive Movement

    Get PDF
    The research presented in this thesis is focused on the creation of computational models for the study of human full-body movement in order to investigate human behavior and non-verbal communication. In particular, the research concerns the analysis of synchronization of expressive movements and gestures. Synchronization can be computed both on a single user (intra-personal), e.g., to measure the degree of coordination between the joints\u2019 velocities of a dancer, and on multiple users (inter-personal), e.g., to detect the level of coordination between multiple users in a group. The thesis, through a set of experiments and results, contributes to the investigation of both intra-personal and inter-personal synchronization applied to support the study of movement expressivity, and improve the state-of-art of the available methods by presenting a new algorithm to perform the analysis of synchronization

    Using movement sonification to alter body perception and promote physical activity in physically inactive people

    Get PDF
    Mención Internacional en el título de doctorWorldwide, one out of four adults are not physically active enough. Supporting people to be physically active through technology remains thus an important challenge in the field of Human-Computer Interaction (HCI). Some technologies have tried to tackle this challenge of increasing physical activity (PA) by using sensing devices for monitoring the amount and quality of PA and providing motivational feedback on it. However, such technologies provide very limited support to physically inactive users: while users are aware of their physical inactivity level, they are frequently incapable of acting on these problems by themselves. Among the reasons for it are negative perceptions about one’s body (e.g., feelings of body tiredness or weakness in self-esteem) which may act as psychological barriers to PA. This research project aims to address this limitation by employing an approach that, through movement sonification (i.e., real-time auditory feedback on body movement), exploits bottom-up multisensory mechanisms related to BPs to ultimately support PA. This thesis presents the design, development, and evaluation of SoniShoes and SoniBand, two wearable technological devices with a gesture-sound palette that allows for a range of body movement sonifications aimed to alter BPs. These prototypes aim at changing BPs, and in turn emotional state and movement behavior, to address psychological barriers related to the perception of one’s body, and ultimately impact positively on people’s adherence to PA. First, this work proposes to organize knowledge through a taxonomy of the barriers to PA related to body perception (BP), which follows a process of four steps to inform the design of the movement-sound palette: (1) Identification, (2) Extraction and clustering of attributes, (3) Definition of instructions or considerations, and (4) Strategies. The first two steps allowed the identification and grouping of barriers to PA that are related to BPs, with inputs from a literature review, a survey, and a focus group with HCI experts. The third and fourth steps allowed defining the body features and dimensions to act upon, to finally propose movement sonification strategies that have the potential to tackle the barriers. Second, several movement-sound mappings, based on metaphors, are presented. Movements were selected from exercises included in guidelines for becoming more physically active (e.g., walking). The mappings of these movements into sounds were implemented in SoniShoes and SoniBand prototypes. They were evaluated through an iterative process, starting with an exploratory study that tested for the first time the potential of the proposed mappings to change BPs. In this first study, participants were asked to think aloud about their experiences using the first prototype of SoniShoes (from MagicShoes project), by describing their body sensations and sound characteristics during the exercise. Results suggested the potential of movement sonification to alter BP through movement sonification and informed the design of the subsequent studies and prototypes. This exploratory study was followed by quantitative and qualitative studies aimed to understand how to design movement sonifications and wearable devices integrating them to facilitate PA by tackling barriers related to BP. The quantitative studies were controlled laboratory studies, in which different versions of SoniShoes and SoniBand prototypes were evaluated, and which results led to further iterations of the prototypes. The results of these quantitative evaluations revealed movement-sound mappings that can lead to changes in feelings about the body (e.g., feeling lighter or less tired), feelings about the movement (e.g., having more movement control over the movement), and emotional feelings (e.g., having more comfort, motivation to complete the exercise, or feeling happier) during PA. Results also showed effects of sound on movement behavior, such as effects in movement deceleration/acceleration and stance time, and proprioceptive awareness. Furthermore, two qualitative studies were carried out, which involved using the SoniBand prototype for several days and in two different contexts of use, laboratory and home. The aim of these studies was two-fold. First, elucidating the effects that particular metaphorical sonifications’ qualities and characteristics have on people’s perception of their own body and their PA. Second, understanding how the observed effects may be specific to physically inactive (vs. active) populations. The results revealed specific connections between properties of the movement sonifications (e.g., gradual or frequency changes) on the one hand, and particular body feelings (e.g., feeling strong) and aspects of PA (e.g., repetitions) on the other hand, but effects seem to vary according to the PA-level of the populations. Finally, the findings, contributions, and principles for the design of movement sonifications and wearable technology to promote PA through acting upon BP are discussed, finishing by considering implications for potential interventions and applications supporting PA, as well as opportunities opened for future research.En todo el mundo, uno de cada cuatro adultos no es lo suficientemente activo físicamente. Por ello, ayudar a las personas a ser físicamente activas a través de la tecnología sigue siendo un reto importante en el campo de “Human-Computer Interaction” (HCI). Algunas tecnologías han tratado de abordar el reto de aumentar la actividad física (PA) mediante el uso de dispositivos de detección para controlar la cantidad y la calidad de la PA y proporcionar retroalimentación motivacional al respecto. Sin embargo, estas tecnologías proporcionan una ayuda muy limitada a los usuarios físicamente inactivos: aunque los usuarios son conscientes de su nivel de inactividad física, a menudo son incapaces de actuar por sí mismos sobre estos problemas. Entre las razones están las percepciones negativas sobre el propio cuerpo (por ejemplo, la sensación de cansancio corporal o el no sentirse capaces) que pueden actuar como barreras psicológicas para la PA. Este proyecto de investigación pretende abordar esta limitación empleando un enfoque que, a través de la sonificación del movimiento (es decir, la retroalimentación auditiva en tiempo real sobre el movimiento del cuerpo), explota los mecanismos “bottom-up” multisensoriales relacionados con las percepciones del cuerpo (BPs) para apoyar la PA. Esta tesis presenta el diseño, el desarrollo y la evaluación de “SoniShoes” y “SoniBand”, dos dispositivos tecnológicos vestibles con una paleta de gestos y sonidos que permiten una serie de sonificaciones del movimiento corporal destinadas a modificar las BPs. Estos prototipos tienen como objetivo cambiar las BPs, y a su vez el estado emocional y el comportamiento de movimiento, para abordar las barreras psicológicas relacionadas con la BP, y en última instancia impactar positivamente en la adherencia de las personas a la PA. En primer lugar, este trabajo propone organizar el conocimiento a través de una taxonomía de las barreras a la PA relacionadas con la BP, que sigue un proceso de cuatro pasos para informar el diseño de la paleta de movimiento-sonido: (1) Identificación, (2) Extracción y agrupación de atributos, (3) Definición de instrucciones o consideraciones, y (4) Estrategias. Los dos primeros pasos permitieron identificar y agrupar las barreras a la PA relacionadas con los BP, con aportaciones de una revisión bibliográfica, una encuesta y un grupo de discusión con expertos en HCI. El tercero y cuarto paso permitió definir las características y dimensiones corporales sobre las que actuar, para finalmente proponer estrategias de sonificación del movimiento que tienen el potencial de abordar las barreras. En segundo lugar, se presentan varios mapeos de movimiento-sonido, basados en metáforas. Los movimientos se seleccionaron a partir de ejercicios incluidos en las guías para ser más activos físicamente (por ejemplo, caminar). Los mapeos de estos movimientos en sonidos se implementaron en los prototipos “SoniShoes” y “SoniBand”. Se evaluaron a través de un proceso iterativo, comenzando con un estudio exploratorio que probó por primera vez el potencial de los mapeos propuestos para cambiar los BP. En este primer estudio, se pidió a los participantes que pensaran en voz alta sobre sus experiencias utilizando el primer prototipo de “SoniShoes” (llamado “MagicShoes”), describiendo sus sensaciones corporales y las características del sonido durante el ejercicio. Los resultados mostraron el potencial de la sonificación del movimiento para alterar la BP a través de la sonificación del movimiento e informaron el diseño de los estudios y prototipos posteriores. A este estudio exploratorio le siguieron estudios cuantitativos y cualitativos destinados a comprender cómo diseñar sonificaciones del movimiento y dispositivos vestibles que las integren para facilitar la PA abordando las barreras relacionadas con la BP. Los estudios cuantitativos fueron estudios de laboratorio controlados, en los que se evaluaron diferentes versiones de los prototipos “SoniShoes” y “SoniBand”, y cuyos resultados condujeron a nuevas iteraciones de los prototipos. Los resultados de estas evaluaciones cuantitativas mostraron que existen mapeos de movimiento-sonido que pueden provocar cambios en las sensaciones sobre el cuerpo (por ejemplo, sentirse más ligero o menos cansado), en las sensaciones sobre el movimiento (por ejemplo, tener más control sobre el movimiento) y en las sensaciones emocionales (por ejemplo, tener más comodidad, motivación para completar el ejercicio o sentirse más feliz) durante la PA. Los resultados también mostraron los efectos del sonido en el comportamiento del movimiento, como los efectos en la desaceleración/aceleración del movimiento y el tiempo de postura, y la conciencia propioceptiva. Además, se llevaron a cabo dos estudios cualitativos, en los que se utilizó el prototipo “SoniBand” durante varios días y en dos contextos de uso diferentes, el laboratorio y el hogar. El objetivo de estos estudios era doble. En primer lugar, dilucidar los efectos que determinadas cualidades y características de las sonificaciones con metáforas tienen en la percepción que las personas tienen de su propio cuerpo y de su PA. En segundo lugar, comprender cómo los efectos observados pueden ser específicos de las poblaciones físicamente inactivas (vs. las activas). Los resultados revelaron conexiones específicas entre las propiedades de las sonificaciones de movimiento (por ejemplo, los cambios graduales o de frecuencia) por un lado, y las sensaciones corporales particulares (por ejemplo, sentirse fuerte) y los aspectos de la PA (por ejemplo, las repeticiones) por otro lado, pero los efectos parecen variar según el nivel de PA de las poblaciones. Por último, se discuten los hallazgos, las contribuciones y las guías de diseño de sonificación de movimiento y tecnología vestible para promover la PA a través de la actuación sobre la BP, para finalmente considerar las implicaciones para las posibles intervenciones y aplicaciones de apoyo a la PA, así como las oportunidades abiertas para futuras investigaciones.I owe thanks to “MAGIC SHOES” (PSI2016-79004-R and BES-2017-080471) and “CROSS-COLAB” (PGC2018-101884-B-I00) projects that funded my research. Thanks to “MAGIC OUTFIT” (PID2019-105579RB-I00) for letting me be part of the team and project.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Paloma Martínez Fernández.- Secretario: Domna Banakou.- Vocal: Mar González Franc
    corecore