4 research outputs found

    Motion compensated digital subraction angiography

    No full text
    Digital subtraction angiography, whether based on traditional X-ray or MR, suffers from patient motion artifacts. Until now, the usual remedy is to pixel shift by hand, or in some cases performing a global pixel shift semi-automatically. This is time consuming, and cannot handle rotations or local varying deformations over the image. We have developed a fully automatic algorithm that provides for motion compensation in the presence of large local deformations. Our motion compensation is very accurate for ordinary motions, including large rotations and deformations. It does not matter if the motions are irregular over time. For most images, it takes about a second per image to get adequate accuracy. The method is based on using the phase from filter banks of quadrature filters tuned in different directions and frequencies. Unlike traditional methods for optical flow and correlation, our method is more accurate and less susceptible to disturbing changes in the image, e.g. a moving contrast bolus. The implications for common practice are that radiologists' time can be significantly reduced in ordinary peripheral angiographies and that the number of retakes due to large or local motion artifacts will be much reduced

    Motion compensated digital subraction angiography

    No full text
    Digital subtraction angiography, whether based on traditional X-ray or MR, suffers from patient motion artifacts. Until now, the usual remedy is to pixel shift by hand, or in some cases performing a global pixel shift semi-automatically. This is time consuming, and cannot handle rotations or local varying deformations over the image. We have developed a fully automatic algorithm that provides for motion compensation in the presence of large local deformations. Our motion compensation is very accurate for ordinary motions, including large rotations and deformations. It does not matter if the motions are irregular over time. For most images, it takes about a second per image to get adequate accuracy. The method is based on using the phase from filter banks of quadrature filters tuned in different directions and frequencies. Unlike traditional methods for optical flow and correlation, our method is more accurate and less susceptible to disturbing changes in the image, e.g. a moving contrast bolus. The implications for common practice are that radiologists' time can be significantly reduced in ordinary peripheral angiographies and that the number of retakes due to large or local motion artifacts will be much reduced

    Motion compensated digital subraction angiography

    No full text
    Digital subtraction angiography, whether based on traditional X-ray or MR, suffers from patient motion artifacts. Until now, the usual remedy is to pixel shift by hand, or in some cases performing a global pixel shift semi-automatically. This is time consuming, and cannot handle rotations or local varying deformations over the image. We have developed a fully automatic algorithm that provides for motion compensation in the presence of large local deformations. Our motion compensation is very accurate for ordinary motions, including large rotations and deformations. It does not matter if the motions are irregular over time. For most images, it takes about a second per image to get adequate accuracy. The method is based on using the phase from filter banks of quadrature filters tuned in different directions and frequencies. Unlike traditional methods for optical flow and correlation, our method is more accurate and less susceptible to disturbing changes in the image, e.g. a moving contrast bolus. The implications for common practice are that radiologists' time can be significantly reduced in ordinary peripheral angiographies and that the number of retakes due to large or local motion artifacts will be much reduced

    <title>Motion-compensated digital subraction angiography</title>

    No full text
    corecore