252 research outputs found

    Motion Planning under Uncertainty for Autonomous Navigation of Mobile Robots and UAVs

    Get PDF
    This thesis presents a reliable and efficient motion planning approach based on state lattices for the autonomous navigation of mobile robots and UAVs. The proposal retrieves optimal paths in terms of safety and traversal time, and deals with the kinematic constraints and the motion and sensing uncertainty at planning time. The efficiency is improved by a novel graduated fidelity state lattice which adapts to the obstacles in the map and the maneuverability of the robot, and by a new multi-resolution heuristic which reduces the computational complexity. The motion planner also includes a novel method to reliably estimate the probability of collision of the paths considering the uncertainty in heading and the robot dimensions

    Autonomous navigation for UAVs managing motion and sensing uncertainty

    Get PDF
    We present a motion planner for the autonomous navigation of UAVs that manages motion and sensing uncertainty at planning time. By doing so, optimal paths in terms of probability of collision, traversal time and uncertainty are obtained. Moreover, our approach takes into account the real dimensions of the UAV in order to reliably estimate the probability of collision from the predicted uncertainty. The motion planner relies on a graduated fidelity state lattice and a novel multi-resolution heuristic which adapt to the obstacles in the map. This allows managing the uncertainty at planning time and yet obtaining solutions fast enough to control the UAV in real time. Experimental results show the reliability and the efficiency of our approach in different real environments and with different motion models. Finally, we also report planning results for the reconstruction of 3D scenarios, showing that with our approach the UAV can obtain a precise 3D model autonomouslyThis research was funded by the Spanish Ministry for Science, Innovation, Spain and Universities (grant TIN2017-84796-C2-1-R) and the Galician Ministry of Education, University and Professional Training, Spain (grants ED431C 2018/29 and “accreditation 2016–2019, ED431G/08”). These grants were co-funded by the European Regional Development Fund (ERDF/FEDER program)S

    Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of Abstraction

    Full text link
    Navigating in search and rescue environments is challenging, since a variety of terrains has to be considered. Hybrid driving-stepping locomotion, as provided by our robot Momaro, is a promising approach. Similar to other locomotion methods, it incorporates many degrees of freedom---offering high flexibility but making planning computationally expensive for larger environments. We propose a navigation planning method, which unifies different levels of representation in a single planner. In the vicinity of the robot, it provides plans with a fine resolution and a high robot state dimensionality. With increasing distance from the robot, plans become coarser and the robot state dimensionality decreases. We compensate this loss of information by enriching coarser representations with additional semantics. Experiments show that the proposed planner provides plans for large, challenging scenarios in feasible time.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, May 201

    Automatic driving path plan based on iterative and triple optimization method

    Full text link
    This paper presents a triple optimization algorithm of two-dimensional space, driving path and driving speed, and iterates in the time dimension to obtain the local optimal solution of path and speed in the optimal driving area. Design iterative algorithm to solve the best driving path and speed within the limited conditions. The algorithm can meet the path planning needs of automatic driving vehicle in complex scenes and medium and high-speed scenes

    AN ADAPTIVELY SAMPLED PATH PLANNER USING WAYPOINTS: AN ANY-ANGLE VARIANT

    Get PDF
    This thesis develops a low-cost grid-based path planner that intrinsically supports smooth, curved vehicle dynamics. There are many advantages to grid-based planners, including working natively in the digital space of most sensors, and efficiency in low dimensional space. However, discrete planners create jaggedness in most paths. Further, the dimensionality must be limited for efficiency, usually by limiting vehicle steering angles to a small finite set. The algorithm presented here, Waypoint-A*, extends A* to produce low-cost curved trajectories, taking the dynamics of the vehicle into account explicitly post-planning. Considering the path generated by A* as composed of a set of waypoints, Waypoint-A* calculates the minimum-cost heading on a continuum, to direct the vehicle to the waypoint at the location resulting in the lowest total cost. Smoothness of these curves is invariant to terrain resolution and computation

    Mission and Motion Planning for Multi-robot Systems in Constrained Environments

    Get PDF
    abstract: As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do. That is, the users of the robots may have a different point of view from the one the robots do. The first part of this dissertation covers methods that resolve some instances of this mismatch when the mission requirements are expressed in Linear Temporal Logic (LTL) for handling coverage, sequencing, conditions and avoidance. That is, the following general questions are addressed: * What cause of the given mission is unrealizable? * Is there any other feasible mission that is close to the given one? In order to answer these questions, the LTL Revision Problem is applied and it is formulated as a graph search problem. It is shown that in general the problem is NP-Complete. Hence, it is proved that the heuristic algorihtm has 2-approximation bound in some cases. This problem, then, is extended to two different versions: one is for the weighted transition system and another is for the specification under quantitative preference. Next, a follow up question is addressed: * How can an LTL specified mission be scaled up to multiple robots operating in confined environments? The Cooperative Multi-agent Planning Problem is addressed by borrowing a technique from cooperative pathfinding problems in discrete grid environments. Since centralized planning for multi-robot systems is computationally challenging and easily results in state space explosion, a distributed planning approach is provided through agent coupling and de-coupling. In addition, in order to make such robot missions work in the real world, robots should take actions in the continuous physical world. Hence, in the second part of this thesis, the resulting motion planning problems is addressed for non-holonomic robots. That is, it is devoted to autonomous vehicles’ motion planning in challenging environments such as rural, semi-structured roads. This planning problem is solved with an on-the-fly hierarchical approach, using a pre-computed lattice planner. It is also proved that the proposed algorithm guarantees resolution-completeness in such demanding environments. Finally, possible extensions are discussed.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Annual Report, 2014-2015

    Get PDF

    Data driven low-bandwidth intelligent control of a jet engine combustor

    Get PDF
    This thesis introduces a low-bandwidth control architecture for navigating the input space of an un-modeled combustor system between desired operating conditions while avoiding regions of instability and blow-out. An experimental procedure is discussed for identifying regions of instability and gathering sufficient data to build a data-driven model of the system\u27s operating modes. Regions of instability and blow-out are identified experimentally and a data-driven operating point classifier is designed. This classifier acts as a map of the operating space of the combustor, indicating regions in which the flame is in a good or bad operating mode. A data-driven predictor is also designed that monitors the combustion process in real time and provides a prediction of what operating mode the flame will be in for the next measurement. A path planning algorithm is then discussed for planning an input trajectory from the current operating condition to the desired operating condition that avoids regions of instability or blow-out in the input space. An adaptive layer is incorporated into the path planning algorithm to ensure that the path planner can update its trajectory when new information about the operating space becomes available
    • …
    corecore