
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2016

Data driven low-bandwidth intelligent control of a
jet engine combustor
Nathan L. Toner
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Artificial Intelligence and Robotics Commons, and the Mechanical Engineering
Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Toner, Nathan L., "Data driven low-bandwidth intelligent control of a jet engine combustor" (2016). Open Access Dissertations. 866.
https://docs.lib.purdue.edu/open_access_dissertations/866

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/866?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages

�������� �	
��� ���
�� �������

������ ����������
�������� � !""#

�$%&'&(�'&&%)*+*',- �..%/*+-.%

0123 23 45 678429: 41;4 417 417323<=233784;425> ?87?;87=

@:

A>424B7=

C58 417 =7D877 59

E3 ;??85F7= G: 417 92>;B 7H;I2>2>D 65II24477J

KL MNO POQM LR ST UVLWXOYZO [VY [Q \VYO]QMLLY PT MNO QM\YOVM ^V MNO KNOQ^Q_`^QQO]M[M^LV
aZ]OOSOVMb c\PX^d[M^LV `OX[Tb [VY eO]M^R^d[M^LV `^QdX[^SO] fg][Y\[MO hdNLLX iL]S jklb
MN^Q MNOQ^Q_Y^QQO]M[M^LV [YNO]OQ ML MNO m]Ln^Q^LVQ LR c\]Y\O oV^nO]Q^MTpQ qcLX^dT LR
rVMOZ]^MT ^V sOQO[]dNt [VY MNO \QO LR dLmT]^ZNM S[MO]^[Xu

v??85F7= G: w;x58 y85973358z3{J

v??85F7= G:J

|}~� �� ��} �}�~���}��~� ��~��~�} �����~� �~�}

DATA DRIVEN LOW-BANDWIDTH INTELLIGENT CONTROL

OF A JET ENGINE COMBUSTOR

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Nathan L. Toner

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2016

Purdue University

West Lafayette, Indiana

ii

To my awesome wife, without whom I would have stood no chance of finishing my

Ph.D., and to the family and friends who kept me sane when all hope seemed lost.

iii

ACKNOWLEDGMENTS

I would like to first thank my advisor, Galen King, who supported me and en-

couraged me when I needed it the most, and whose love of learning and discovery

is a constant source of inspiration. I am also grateful to Tyler Davis, who got me

started down the road of good computer programming, and to Andrew Watchorn,

whose classes introduced me to many universal programming concepts that made me

a better coder; an invaluable skill, as it happens.

To my friends, with whom I shared many stimulating conversations, and many

dumb ones when our brains were tired—Steven Riddle, Trevor Snow, William Robert-

son, Robert Steinman, Aman Satija, Fei Yang, Roberto Ulloa to name but a few—

thank you.

To my family, who was always there with kind words, encouragement, and good

advice, I could never have made it anywhere near this far without you.

And last, to my wife. You are my anchor and the rock on which I stand.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

SYMBOLS . x

ABBREVIATIONS . xiv

ABSTRACT . xvi

1. INTRODUCTION . 1

2. PROPOSED CONTROLLER ARCHITECTURE 6

3. NINE-ELEMENT RESEARCH COMBUSTOR 9
3.1 Design . 10
3.2 Manufacturing and Assembly . 14

4. EXPERIMENTAL PROCEDURE . 16
4.1 Choosing Operating Conditions . 16
4.2 Running the Experiment . 20
4.3 Hardware Setup . 24
4.4 Instrumentation . 30

5. DATA PROCESSING . 37
5.1 Power Spectra and Frequency Analysis 37
5.2 Mutual Information Analysis . 41
5.3 K-Means Clustering . 42

6. IDENTIFYING OBSTACLES IN THE OPERATING SPACE 50
6.1 Classification Algorithms . 50

6.1.1 Support Vector Machine . 50
6.1.2 Extreme Learning Machine 52
6.1.3 Fuzzy Classification . 54
6.1.4 Multi-Layer Feed-Forward Neural Networks 56

6.2 Application to the Combustor System 58

7. PREDICTING THE OPERATING MODE OF THE COMBUSTOR . . 62

8. PATH PLANNING ALGORITHMS FOR COMBUSTOR CONTROL . . 67

9. CONCLUSIONS . 76

v

Page

10.RECOMMENDATIONS . 80

LIST OF REFERENCES . 90

A. 9-ELEMENT BURNER DRAWINGS . 99

B. MASS FLOW CONTROLLER STEP RESPONSES 111

VITA . 113

vi

LIST OF TABLES

Table Page

4.1 Mass flow controller model parameters. 28

vii

LIST OF FIGURES

Figure Page

2.1 Illustration of the proposed controller moving the combustion system through
its operating space while avoiding identified “obstacles”. 6

2.2 Proposed controller block diagram. 7

2.3 Proposed controller sequence diagram. 8

3.1 Nine-element combustor assembly dimensions in inches. 9

3.2 Section view of the nine-element combustor assembly. 11

3.3 Nine-element combustor assembly with combustion chamber. The com-
bustor assembly is designed to raise the base of the flame to the level of
the bottom of the viewing window, as shown here. 12

3.4 Illustration of the nine-element combustor fuel stage layout. The center
“pilot” fuel line is independent, and then the middle ring and outer ring
are each on separate fuel lines. 12

3.5 (a) Nine-element swirler puck with 60◦ vane angle and (b) its cross section. 13

3.6 Illustration of swirler effective area. Effective area is shaded blue, and is
the total swirler element area minus the fuel line area and the area taken
up by the swirler vanes and walls. 14

3.7 Finished nine-element burner assembly. 15

4.1 Comparison of Halton sequence and uniform random sequence for generat-
ing 1000 air mass flow rate and overall equivalence ratio test points. Note
that the Halton sequence (a) covers the region more uniformly with fewer
gaps and clumps than the pseudo-random sequence (b). 17

4.2 1000 Halton-sequence-generated fuel and air flow rate test points for each
of three fuel lines (see Figure 3.4). Note that fuel flow rates exhibit a ramp-
like structure because the Halton sequence generates quasi-random fuel-air
equivalence ratios, and the fuel-air equivalence ratio depends linearly on
the air flow rate. 20

4.3 LabVIEW experiment automation VI class diagram. 22

4.4 LabVIEW experiment automation VI activity diagram. 23

4.5 LabVIEW data writing VI activity diagram. 24

viii

Figure Page

4.6 Three-axis translation table for experimental procedures. 25

4.7 Schematic of lab hardware and interactions. 26

4.8 2 V step responses of air mass flow controller. 27

4.9 Comparison of actual and Padé approximation model step response of air
mass flow controller. 29

4.10 Illustration of dynamic pressure measurement locations, measurements are
in inches and degrees. 32

4.11 Illustration of dynamic pressure remoting assembly with heat shield. . . 33

5.1 Power spectrum waterfall plot of ambient microphone signal. The ambient
microphone sits outside of the combustion chamber, approximately 1 m
away, and exhibits the richest dynamics in the lower frequency ranges. 38

5.2 Power spectrum waterfall plot of the microphone 0 signal. Note the vertical
banding in the signal, indicating structure in the frequency response of the
chamber. 39

5.3 Power spectrum waterfall plot of the microphone 1 signal. Note that ver-
tical banding is still present, but is slightly less distinct than the banding
in Figure 5.2. 39

5.4 Power spectrum waterfall plot of the microphone 2 signal. Here the visible
structure of the signal is significantly reduced as the microphone moves
further from the combustor assembly. 40

5.5 Power spectrum waterfall plot of the microphone 3 signal. Here all but
the highest harmonics of the combustion chamber have blended together. 40

5.6 Waterfall plots of auto-mutual information for the ambient dynamic pres-
sure sensor and each of the dynamic pressure sensors along the axis of the
combustion chamber. 43

5.7 Mean distance measure of all data points to their nearest centroid vs. the
number of centroids. The elbow indicates the optimum number of labels
for clustering the data set. 46

5.8 t-SNE projection of labeled 12-dimensional data points onto two dimen-
sions. In this projection, operating modes are more clearly separated, with
blow-outs intermixed with the flickering and attached conditions. . . . 48

5.9 t-SNE projection of labeled 17-dimensional data points onto two dimen-
sions. Note that operating modes under this projection are generally inter-
mixed, but blow-out conditions tend toward one corner of the projection,
with flickering conditions aggregating closer to blow-outs. 49

ix

Figure Page

6.1 Fuzzy extreme learning machine network illustration. 54

6.2 Triangular fuzzy membership function. 55

6.3 Multi-layer feed-forward neural network structure with M hidden layers
where each hidden layer is defined by its activation function Ai, and is
connected to the previous layer by weights Wi and biases bi. 57

7.1 Recurrent neural network structure. Inputs come as a sequence of vectors
xi, and the network outputs a result yi for each input. The network
then passes its output forward to the next iteration of the network, thus
maintaining some memory. This can be viewed as a chain of identical
network elements where each element passes its output to the next element
in the chain. 63

7.2 Recurrent neural network structure illustrating long-term dependency is-
sue common to RNNs. A typical RNN structure would have difficulty in
learning a long-term dependency between the red-shaded output yk and a
far-away previous input like the red-shaded x0. 63

7.3 A single node of a long short-term memory network, illustrating the in-
ternal state and sigmoid gates on input, output, and state. Note that not
all details of the LSTM node structure are shown here. 64

8.1 Path planner activity diagram. 72

8.2 Path planning step in continuous domain. 74

10.1 Path-following controller block diagram. 83

B.1 2 V step response of the pilot mass flow controller. 111

B.2 2 V step response of the middle mass flow controller. 112

B.3 2 V step response of the outer mass flow controller. Note that this step
response was taken from a non-zero initial steady-state condition by chang-
ing the input from 2 V to 4 V. This was done to avoid excessive nonlinearity
in the outer fuel line mass flow controller observed when turning on. . . 112

x

SYMBOLS

A cross-sectional area

A state transition matrix (state space)

As
eff effective swirler area

B input matrix (state space)

bk binary flame state: 0 for no flame, 1 for flame

bk bias vector at kth layer of feed-forward neural network

c speed of sound

C measurement matrix (state space)

Cs
D discharge coefficient of the swirler

ci the ith centroid for K-means clustering

D distance matrix for K-means clustering

e model prediction error

H matrix of activation functions

H(p,q) Kullback-Leibler divergence between probability distribution

functions p and q

h(x) hidden layer activations given input x

h(x,x′) heuristic cost estimate between state x and x′

J0, J1 Bessel functions

Jp cost associated with path p

K controller gain matrix

Kx static gain associated with x

K(x,y) generic kernel function on x and y

L length

L(x, λ) Lagrangian of x parameterized by λ

ṁ mass flow rate vector

xi

ṁx mass flow rate of x

Nv number of vanes

P (p,q) perplexity between probability distribution functions p and q

p(s) path through the operating space parameterized by s

p′(t) measured combustor pressure signal

p(x) marginal probability distribution function of x

p(x, t) pressure at location x, time t

p(x, y) joint probability distribution function of x and y

pi the ith prime number

p̂i(t) ith observed oscillatory mode of p′(t)

Pr Prandtl number

Px(t) dynamic pressure readings at x, psi

Q reflection coefficient for a semi-infinite line

q feature vector augmented with inputs u

Q state error weighing matrix

Q(x, t) heat release at location x, time t

R radius

R input effort weighing matrix

Rs
i inner radius of the swirler

Rs
o outer radius of the swirler

r(x) rectified linear unit activation function on x

s path length along state trajectory

S a sequence of operating conditions

t time, seconds

t vector of training labels

T matrix of training label data

td or δ time delay, seconds

tk label associated with the kth state vector

Tv vane thickness

xii

U sequence of control efforts

u(t) control effort vector at time t

V volume

v̄i mean dynamic pressure power at the ith microphone

Vx voltage associated with x

W wave shear number

w0 optimal hyper-plane weights

Wk weight matrix at kth layer of feed-forward neural network

x state vector, feature vector, or spacial coordinate

X set of experimental measurements

XB set of points composing a decision boundary

xd desired operating condition

y propagation constant

y measured operating condition or classification vector

ỹ classification output as a probability distribution function

ẑ estimated or predicted value of z

zi the ith support vector

α gradient descent learning rate

β output weight matrix of ELM network

γ ratio of specific heats

δ threshold value

ε inflation factor

ζ damping ratio

θv vane angle with respect to flow direction

μAj,i
(xj) membership value of the jth input and ith fuzzy rule

ν kinematic viscosity

ρ density

σi standard deviation of dynamic pressure at the ith microphone

σ(x) sigmoid activation function on x

xiii

τ time constant, seconds

φi fuel-air equivalence ratio of the ith fuel line

φ(x) support vector machine nonlinear mapping function

Ω volume of integration

ω angular frequency, radians per second

ωn natural frequency, radians per second

ℵ training set comprising measurements and labels

xiv

ABBREVIATIONS

ACC active combustion control

ADA∗ anytime dynamic A∗

Adam adaptive momentum estimate (gradient descent optimizer)

AG-ELM adaptive growth extreme learning machine

ARA∗ anytime repairing A∗

CC command and control

ELM extreme learning machine

FELM fuzzy extreme learning machine

FFT fast Fourier transform

FIS fuzzy inference system

FLM fuzzy learning machine

FSVM fuzzy support vector machine

HCCI homogeneous charge compression ignition

I-ELM incremental extreme learning machine

KL-divergence Kullback-Leibler divergence

LDI linear direct injection

LIF laser-induced florescence

LPM liters per minute

LQG linear quadratic Gaussian (regulator)

LQR linear quadratic regulator

LS-SVM least-squares support vector machine

LSTM long short-term memory network

MFC mass flow controller

MPC model predictive control

OPC operating point control

xv

OP-ELM optimal-pruning extreme learning machine

OS-ELM online-sequential extreme learning machine

PCA principle component analysis

PI proportional-integral (control)

PSVM proximal support vector machine

relu rectified linear unit

RNN recurrent neural network

SLFN single hidden layer feed-forward neural network

SSA singular spectrum analysis

SVM support vector machine

t-SNE t-distributed stochastic neighbor embedding

UML Universal Modeling Language

VI virtual instrument (LabVIEW program)

xvi

ABSTRACT

Toner, Nathan L. Ph.D., Purdue University, August 2016. Data Driven Low-Bandwidth
Intelligent Control of a Jet Engine Combustor. Major Professor: Galen B. King,
School of Mechanical Engineering.

This thesis introduces a low-bandwidth control architecture for navigating the

input space of an un-modeled combustor system between desired operating conditions

while avoiding regions of instability and blow-out. An experimental procedure is

discussed for identifying regions of instability and gathering sufficient data to build

a data-driven model of the system’s operating modes. Regions of instability and

blow-out are identified experimentally and a data-driven operating point classifier

is designed. This classifier acts as a map of the operating space of the combustor,

indicating regions in which the flame is in a “good” or “bad” operating mode. A data-

driven predictor is also designed that monitors the combustion process in real time

and provides a prediction of what operating mode the flame will be in for the next

measurement. A path planning algorithm is then discussed for planning an input

trajectory from the current operating condition to the desired operating condition

that avoids regions of instability or blow-out in the input space. An adaptive layer

is incorporated into the path planning algorithm to ensure that the path planner

can update its trajectory when new information about the operating space becomes

available.

1

1. INTRODUCTION

A jet engine combustor adds energy to a system by mixing air and fuel together and

converting this air-fuel mixture’s chemical potential energy to heat through combus-

tion. In a linear direct injection (LDI) combustor, fuel is injected directly into an

air stream. The air is often passed through a swirler assembly to make it turbulent

prior to injecting the fuel. The air and fuel mix together as they pass through a

venturi, and the mixture is ignited at the exit of the venturi. See, for example, [1, 2]

for typical LDI combustor designs. Combustion typically occurs in a cylindrical or

annular cavity called the combustion chamber. The resulting flame either attaches to

the venturi or remains detached in the combustion chamber. Air is often added to the

combustion chamber downstream of the swirler assembly to complete the combustion

process [3]. This configuration is referred to as swirl-stabilized combustion, and is

found in many industrial combustor applications. Many modern combustors combine

multiple small combustor assemblies into a single combustor cup in order to improve

air-fuel mixing and reduce emissions [2, 4, 5].

Full-scale jet engine combustors typically have multiple inputs that can be ad-

justed, including the mass flow rate of one or more air inlets and the mass flow rate

of one or more fuel lines. Typically air flow rate is specified in liters per minute

(LPM), and fuel flow rate is determined by the fuel-air equivalence ratio, φi. Fuel-air

equivalence ratio is the ratio between the fuel-to-oxidizer ratio of the mixture and the

stoichiometric fuel-to-oxidizer ratio (1.1) [6]. A combustion controller may be used

to adjust these inputs to regulate the operating condition of the combustor to some

desired condition while avoiding or attenuating any unstable or otherwise undesirable

dynamic responses of the combustion process.

φi =
mfuel/mox(
mfuel/mox

)
st

(1.1)

2

The interaction of multiple turbulent mixing and combustion processes, along with

the interactions between the heat release of the flame and the acoustic properties of

the combustion chamber, result in very complex dynamics governing LDI combustion.

This complexity leads to difficulty in developing accurate physics-based models of a

combustion process that are also tractable for use for controller design [7,8], and ne-

cessitates the use of finite element modeling methods [9–12] or laboratory-based flame

imaging or optical point measurement techniques [13–16] to characterize the response

of a given combustion system to various operating conditions. One phenomenon of

particular interest in the design and control of combustion systems is the type of

instability that occurs due to the interaction of the heat release of the flame with

the acoustic properties of the combustion chamber. Instabilities of this nature are

known as thermoacoustic instabilities and cause significant discrete-frequency oscil-

lations in the combustor, shortening its lifespan and potentially causing catastrophic

failure [14, 17, 18]. These instabilities are self-excited modes of oscillation within

the combustor, wherein combustion excites acoustic modes of the system, which in

turn feed back into the combustion process when at the appropriate phase [19]. The

mechanisms that lead to thermoacoustic instabilities have been extensively studied

to inform better combustor design [13, 20–22].

The Rayleigh criterion is often used to describe the conditions under which ther-

moacoustic instabilities develop in a combustion system [20]. The Rayleigh criterion

states that when unsteady heat is added in phase with pressure fluctuations, a con-

dition exists where the pressure is amplified [23]. The normalized Rayleigh index can

be defined in terms of the spacial and time-dependent pressure p(x, t), heat release

Q(x, t), and their means p̄(x) and Q̄(x) (1.2).

R =
1

tf − t0

∫ tf

t0

(∫
Ω

(
p(x, t)− p̄(x)

)
dx∫

Ω
p̄(x) dx

)(∫
Ω

(
Q(x, t)− Q̄(x) dx

)∫
Ω
Q̄(x) dx

)
dt (1.2)

In (1.2), x is the spacial coordinate within the combustor, t is time, and Ω is

the volume of integration. A value of R > 0 indicates a region where an amplifying

relationship exists between thermal and acoustical energy, leading to instability. A

3

value ofR < 0 indicates a region where a damping relationship exists between thermal

and acoustical energy. Most efforts in combustion control and combustor design focus

on the attenuation of the power of thermoacoustic instabilities.

Attenuating thermoacoustic instabilities is accomplished by interrupting the cou-

pling between the flame and the acoustic modes of the combustion chamber. Passive

approaches to this problem include designing the fuel injector assembly or combus-

tion chamber geometry to reduce the likelihood of instabilities occurring at desired

operating conditions [24, 25], and removing power from the acoustic modes of the

chamber by adding Helmholtz resonators, acoustic liners, and other damping tech-

nologies [25–27]. The problem with these passive approaches is that they typically

only work for a small range of operating conditions [8]. Active attenuation of com-

bustion instabilities is the natural extension from a design-based approach.

Many modern combustion control systems fall under the category of active com-

bustion control (ACC). These systems utilize high-bandwidth controllers to actively

attenuate thermoacoustic instabilities as they are encountered [8, 28, 29]. ACC tech-

niques have been shown to dramatically reduce the acoustic power of resonance modes

in both laboratory-scale and full-scale combustors. For laboratory-scale combustors,

high-fidelity actuation is typically accomplished with speakers connected to the com-

bustion chamber [28, 30–32]. These acoustic controllers reduce pressure fluctuation

amplitude by detecting a resonance mode and actuating the speakers at a phase-

shifted copy of this resonance, thus adjusting the pressure component of the Rayleigh

criterion (1.2). The phase shift is chosen such that maximum attenuation occurs [19].

This technique has the drawback of potentially altering the acoustic characteristics of

the combustion chamber, making control more difficult. Furthermore, these actuators

lack sufficient robustness for use in industrial-scale combustion systems. Other meth-

ods of changing the system boundary conditions, for example by changing the inlet

or exhaust boundary condition, are also employed, but suffer from power limitations

at larger scales [8], and are thus not widely adopted in industrial combustors.

4

For full-scale combustors, actuation is typically accomplished with high-speed

modulation of fuel input or with spill valves [33–35], thus adjusting the heat release

component of the Rayleigh criterion (1.2). Early attempts at fuel modulation em-

ployed on-off automotive fuel injectors, which are nonlinear [36]. Solenoid valves

were adopted next for their linear performance, but suffered from poor bandwidth

and insufficient control authority [34]. Magneto-restrictive valves and other high-

bandwidth actuators have been used more recently and show promise for full-scale

applications [37,38]. Many of these actuators have the drawback of lacking sufficient

robustness or requiring frequent maintenance [8], and are thus not widely adopted in

industrial combustors.

Most combustion controllers found in industrial applications can be classified as

operating point controllers (OPC). OPC techniques regulate a combustor’s operating

condition to fixed paths through the combustor’s operating space in order to get from

one desired operating condition to another while avoiding (or powering through)

combustion instabilities. Operating conditions and paths are chosen to maintain

performance criteria including power output, pollutant emissions, and noise levels [39].

This thesis details the design and implementation of a low-bandwidth OPC strat-

egy to circumvent regions of instability or blow-out in the operating space of a com-

bustor rather than actively cancel them using high-bandwidth control [39]. This

strategy avoids the necessity for high-fidelity actuators that suffer from the potential

drawbacks discussed previously. The operating space of the combustor system is ex-

plored experimentally and an operating point classifier is developed to differentiate

“good” and “bad” regions of the operating space. A path planning algorithm utilizes

this map a priori to determine a trajectory p(s) from the current operating point x

to a desired operating point xd that avoids regions of instability or blow-out while

seeking to minimize a total path cost Jp. An operating point predictor is developed

to monitor the combustion process in situ and predict upcoming combustion modes.

This information may be used by the path planning algorithm to improve the operat-

ing point trajectory in real time. Basic linear quadratic regulator (LQR) control on

5

the mass flow controllers (MFC) providing air and fuel to the combustion chamber is

used to regulate the MFCs to the desired operating point trajectory.

7

system, sensors, and predictor. A simple control loop following the desired trajectory

through the operating space is assumed.

xd P
u0 x

Path
planner Control System

SensorsPredictor
y

x̂

Figure 2.2. Proposed controller block diagram.

In Figure 2.2, xd is the desired operating condition, x is the current operating

condition of the system, y is the measured operating condition of the system, x̂ is

the upcoming operating condition of the system predicted by the predictor, P is the

operating point sequence representing the desired trajectory generated by the path

planner, and u0 is the first element of this input sequence. The components of this

block diagram will be discussed in the following. The components and interactions of

the controller are illustrated in a universal modeling language (UML) [40] sequence

diagram shown in Figure 2.3, wherein a model predictive control (MPC) structure is

shown.

UML sequence diagrams like Figure 2.3 show the sequential interaction between

different processes or entities. Each entity is identified with a label at the top of

the diagram and its lifeline is represented by a dashed line extending downward from

the label. The active time of an entity (with respect to the control architecture)

is represented by a solid box on the lifeline. Calls from one entity to another are

represented by solid horizontal arrows and return messages are represented by dashed

arrows. A self-call is represented by a looped arrow. Sub-processes (usually stemming

from self-calls) are shown as multiple boxes stacked on top of the entities lifeline.

9

3. NINE-ELEMENT RESEARCH COMBUSTOR

A multi-element combustor comprising nine separate LDI combustion elements—each

element comprising an air swirler, fuel line, and venturi—was designed and built for

developing the proposed intelligent control system. The combustor was designed

to be fed by a single air line and three separately controllable fuel lines, and to

meet dimensional constraints imposed by existing laboratory equipment. A drawing

showing the overall dimensions of the combustor assembly is shown in Figure 3.1,

where units are inches.

Figure 3.1. Nine-element combustor assembly dimensions in inches.

The multi-element combustor has the following characteristics that are desirable

for the proposed controller:

• It is a complicated system that is very difficult to model.

10

• It has an operating space that includes regions of flame instability, lean blow-

out, and rich blow-out.

• It must move through this operating space according to the dynamics of the

mass-flow controllers and combustion chamber.

• As the system heats up, its dynamics and the nature of the unstable regions of

its operating space will likely change, requiring a controller that can adapt to

new information.

The complicated dynamics of the system lend themselves well to a controller that

can learn a dynamic model of the system through experimental data. The regions

of instability and blow-out in the operating space can be viewed as obstacles when

planning a trajectory from the current operating condition to a desired operating

condition.

3.1 Design

Fuel is fed from three separate mass flow controllers through nine fuel rods that

extend from the base of the combustor to the exit of the venturi plate. Air is fed from

a single mass flow controller through multiple air lines into a cylindrical pipe. The

air then travels through a sintered plate and a honeycomb flow straightener to ensure

uniform airflow. A pressure tap immediately following the sintered plate provides a

measurement of the air pressure prior to air-fuel mixing and combustion. Air then

passes through a nine-element swirler puck and exits into the venturi plate. The fuel

rods pass through holes in the center of each swirler element before exiting upstream

of the venturi plate where air and fuel are mixed. The enclosure around the swirler

puck press fits inside of the combustion chamber, sealing that end of the chamber. A

mounting plate was added to the design to enable easier mounting to experimental

apparatus. The components of the system can be seen in a section view shown in

Figure 3.2.

11

������� �	
��

����	�� ���

��
�� �	
��
�������� �	
��

��������� ����

���	 �����

�	�� ���
��������

�������� �	
��

�������� �
�

��� ���
���

Figure 3.2. Section view of the nine-element combustor assembly.

The combustion chamber is a 3 foot long stainless steel square tube with a 4×4 inch
outer cross section (3.56×3.56 inch inner cross section). Transparent viewing windows

begin 1 inch from the bottom of the combustion chamber (where the combustor

assembly is installed). The swirler puck in the combustor assembly is sandwiched

between the venturi plate and a spacer plate. The spacer plate and venturi plate

provide a 1 inch standoff that fits inside of the combustion chamber and raises the

exit of the venturi plate to the level of the transparent viewing window as shown in

Figure 3.3. Note that Figure 3.3 does not show the full length of the combustion

chamber.

The nine elements of the combustor assembly were divided into three fuel stages

as shown in Figure 3.4. The center element is an independent fuel stage referred to as

the “pilot” stage. The remaining elements are divided into two fuel stages according

12

Figure 3.3. Nine-element combustor assembly with combustion cham-
ber. The combustor assembly is designed to raise the base of the flame
to the level of the bottom of the viewing window, as shown here.

to their distance from the center, and are referred to as the “middle” and “outer”

stages. The equivalence ratio of each fuel stage, φi, can be set independently.

�

��

�

� � �

�

�

Figure 3.4. Illustration of the nine-element combustor fuel stage
layout. The center “pilot” fuel line is independent, and then the
middle ring and outer ring are each on separate fuel lines.

13

The swirler puck was designed with nine 60◦ vane angle swirler elements with

five vanes per element. Each element has a channel through the center through

which the fuel line passes. In the current swirler puck, all swirler elements have

counter-clockwise rotation. The rotational direction, vane angle, and number of vanes

of each swirler element are design parameters that can be adjusted to change the

characteristics of the combustor [41]. The swirler puck is shown in Figure 3.5(a), and

its cross section clearly showing the fuel channels through the center of each swirler

element is shown in Figure 3.5(b).

(a) (b)

Figure 3.5. (a) Nine-element swirler puck with 60◦ vane angle and
(b) its cross section.

The swirler puck has an effective area of As
eff = 0.4387 in2. The effective area

of the swirler is the total area of the swirler normal to air flow, minus any blockage

due to swirler vanes and the fuel rod passage through the center, and multiplied by

a discharge coefficient [42]. If the inner radius of the swirler is defined as the radius

of the outer wall of the fuel passage Rs
i , the outer radius of the swirler is Rs

o, the

14

thickness of the swirler vanes is Tv, and the number of swirler vanes is Nv, then the

effective area of the swirler As
eff can be calculated as shown in (3.1).

Aannulus = π
((

Rs
o

)2 − (Rs
i

)2)
Ablocked = TvNv

(
Rs

o −Rs
i

)
Ageometric =

(
Aannulus − Ablocked

)
cos θv

As
eff = Ageometric × Cs

D (3.1)

In (3.1), θv is the vane angle with respect to the flow direction, and Cs
D is the

discharge coefficient of the swirler, which was assumed to be Cs
D = 0.6 for this design.

The effective area of a single swirler element viewed from the top is shaded blue in

Figure 3.6.

����

��

Figure 3.6. Illustration of swirler effective area. Effective area is
shaded blue, and is the total swirler element area minus the fuel line
area and the area taken up by the swirler vanes and walls.

3.2 Manufacturing and Assembly

The nine-element combustor was manufactured in the Mechanical Engineering

student machine shop with the following exceptions:

• Welding of end plates to the cylindrical air chamber was done by Purdue Uni-

versity Research Machining Services.

• 3D printing of the swirler puck was done by the College of Engineering I2I Lab.

15

• The flow straightener was cut from aluminum honeycomb by Kent Machining,

Inc. in Pendleton, IN using an electrostatic discharge machining process.

The majority of the combustor was manufactured from mild steel. The venturi

plate was made from 304 stainless steel due to the high-temperature reacting environ-

ment to which it is exposed. Machining was done by hand on a three-axis manually-

controlled milling machine, and on a manually-controlled lathe. Final reshaping of

the combustor standoff for fitting into the combustion chamber was accomplished by

hand using a grinding wheel and file. Manufacturing drawings for the various com-

ponents of the nine-element combustor can be found in Appendix A. The completed

nine-element combustor assembly is shown in Figure 3.7.

(a) Isometric View (b) Side View

Figure 3.7. Finished nine-element burner assembly.

Swagelok tube fittings were used to connect air and fuel lines, and to connect the

static pressure gauge upstream of the swirler and venturi assembly. Swagelok tube

fittings and union tee fittings were used to create fuel manifolds that split fuel coming

from the air mass flow controller and from two of the fuel mass flow controllers into

four lines each. These lines were then connected to the air intake fittings on the main

cylinder of the combustor assembly, and to the inner and outer ring of fuel stages

shown in Figure 3.4.

16

4. EXPERIMENTAL PROCEDURE

The nine-element combustor system has four inputs, u ∈ R
4, that can be controlled:

the mass flow rate of air to the system and the mass flow rates of each of the three

fuel stages. Fuel mass flow rates are determined from a desired overall equivalence

ratio, φt, and percentages of total fuel flow for each fuel stage. The system was tested

at various input conditions to build a map of the operating space that can then be

used to determine regions of instability and blow-out, and to inform the design and

implementation of the proposed controller. The tested operating conditions were

chosen using an algorithm based on a low-discrepancy sequence (Section 4.1). A

LabVIEW program—called a virtual instrument (VI)—was built to run the system

through each of these operating conditions and record response data (Section 4.2).

The LabVIEW program controlled the air and fuel mass flow rates using mass flow

controllers connected to the system (Section 4.3), and recorded operating condition

information read by static and dynamic pressure transducers, thermocouples, and a

high-temperature probe (Section 4.4).

4.1 Choosing Operating Conditions

Low-discrepancy or quasi-random sequences like the Halton sequence and vari-

ations thereof [43] are deterministic sequences that possess random-like qualities.

These sequences have been shown to improve the convergence of numeric integra-

tion and modeling techniques like support vector machines (SVM), extreme learning

machines (ELM), and single-layer fuzzy neural networks (SLFN); they tend to have

random-like properties while more uniformly covering a region of interest like a sec-

tion of the operating space of a system [44, 45]. A comparison of a two-dimensional

1000-point Halton sequence and pseudo-random sequence for air mass flow rates and

17

fuel-air equivalence ratios is shown in Figure 4.1. The Halton sequence shown in

Figure 4.1(a) covers the area of interest more uniformly than the random sequence

shown in Figure 4.1(b), avoiding the regions of clumped or sparse sample points.

100 150 200 250 300 350 400

0.4

0.5

0.6

0.7

0.8

0.9

Halton Sequence of Air Flow Rates and Equivalence Ratios

E
qu

iv
al

en
ce

Air (SLPM)

(a) Halton sequence

100 150 200 250 300 350 400

0.4

0.5

0.6

0.7

0.8

0.9

Uniform Random Air Flow Rates and Equivalence Ratios

E
qu

iv
al

en
ce

Air (SLPM)

(b) Uniform pseudo-random sequence

Figure 4.1. Comparison of Halton sequence and uniform random
sequence for generating 1000 air mass flow rate and overall equivalence
ratio test points. Note that the Halton sequence (a) covers the region
more uniformly with fewer gaps and clumps than the pseudo-random
sequence (b).

An M -element Halton sequence [46] over a range of the input space u ∈ R
m of a

system is built by designating a prime number, pi, associated with each dimension of

the input space for i = 1, 2, . . . ,m. Any number N can be written in p-ary notation

as (4.1).

N = eMpM + · · ·+ e1p+ e0 0 ≤ ej ≤ p− 1 (4.1)

Thus N can be represented by the base-p integer string eM · · · e1e0. The Halton

sequence then takes the radical inverse of this (4.2), which generates a very uniformly-

distributed sequence on the interval [0, 1] for each prime pi.

Rp(N) =
e0
p
+

e1
p2

+ · · ·+ eM
pM+1

(4.2)

18

The sequence S is then built for m dimension by generating a unique radical

inverse sequence for each coordinate using the first m primes (4.3).

SN =
[
R2(N) R3(N) R5(N) R7(N)

]
(4.3)

For the combustion system, the operating conditions of interest were determined

using a Halton sequence to set the air mass flow rate ṁA and total fuel-air equivalence

ratio φt between certain desirable bounds by scaling the Halton sequence. The ith

Halton sequence Si can be scaled by the minimum and maximum values of interest

for the ith input, ui,min and ui,max as in (4.4).

S∗
i (j) = ui,min + Si(j)×

(
ui,max − ui,min

)
(4.4)

In (4.4), Si(j) and S∗
i (j) are the jth element of the original and scaled sequence

respectively, with j ∈ [1,M] for the ith dimension. The limits of interest for the air

mass flow rate and total fuel-air equivalence ratio are:

• ṁA ∈ [1, 4]% pressure drop across the combustor assembly.

• φt ∈ [0.4, 0.9]

Note that “% pressure drop” is the percentage increase in pressure over atmo-

spheric measured just up-stream of the combustor assembly, and is a common method

of specifying the air flow rate through a combustor assembly. For our system, pressure

drop was approximately equal to the voltage input to the air MFC. Three additional

Halton sequence elements, ci ∈ [0, 1] for i = 1, 2, 3, were generated and then nor-

malized (4.5) to represent the proportion of the total fuel flow rate provided by each

MFC.

c̃i =
ci∑3
j=1 cj

(4.5)

The total fuel flow rate was determined from the air mass flow rate and desired

total fuel-air equivalence ratio φt (4.6), and then split between each of the fuel MFCs

using the normalized fuel proportions c̃i (4.7). If any individual MFC flow rate gen-

erated in this way was below ≈ 5% of the MFCs maximum flow rate, that flow rate

19

was set to zero, and another MFC’s flow rate (typically the middle fuel line’s MFC)

was increased to maintain the desired overall flow rate. Checks were performed to

ensure that the overall total fuel flow rate after these adjustments met the desired

value.

ṁF =
φtṁA(

ṁfuel/ṁox

)
st

(4.6)

ṁi = c̃iṁF (4.7)

The resulting four-dimensional operating conditions of interest were the scaled

mass flow rates of air and the three fuel lines. This sequence can be denoted S∗.

A Python script was written to determine this input sequence, and the sequence of

operating conditions was saved to a colon-delimited text file to be used by a LabVIEW

VI (Section 4.2). The resulting fuel mass flow rates are plotted against the associated

air mass flow rate for each of the three fuel lines in Figure 4.2. The middle fuel line

shown in Figure 4.2(b) does not exhibit as clear a gap between low flow rates and zero

because this fuel line was used to balance small flow rates as mentioned previously.

Note that the Halton sequence requires a large number of data points M if the

prime numbers pi are large. What constitutes “large” must be determined heuristi-

cally, but an insufficient number of points in the sequence for larger prime numbers

will result in clear patterns and higher-discrepancy in the sequence. As a different

prime number should be used for each dimension of a sequence, this issue can arise in

higher-dimensional sequences. For this reason, modifications to the Halton sequence

have been developed that further reduce discrepancy, including the scrambled Halton

sequence [43], which randomly permutes the sequence for each prime Rp(N) result-

ing in lower-discrepancy sequences in higher dimensions. For this experiment, the

largest prime number used was p5 = 11, and the 1000 data point sequence was still

sufficiently random-like.

20

100 150 200 250 300 350 400

0

5

10

15

20

25

30
Pilot Fuel vs. Air Test Point Flow Rates

P
ilo

t (
S

LP
M

)

Air (SLPM)

(a) Pilot

100 150 200 250 300 350 400
-5

0

5

10

15

20

25

30

35

Middle Fuel vs. Air Test Point Flow Rates

M
id

dl
e

(S
LP

M
)

Air (SLPM)

(b) Middle

100 150 200 250 300 350 400

0

5

10

15

20

25

Outer Fuel vs. Air Test Point Flow Rates

O
ut

er
 (

S
LP

M
)

Air (SLPM)

(c) Outer

Figure 4.2. 1000 Halton-sequence-generated fuel and air flow rate
test points for each of three fuel lines (see Figure 3.4). Note that fuel
flow rates exhibit a ramp-like structure because the Halton sequence
generates quasi-random fuel-air equivalence ratios, and the fuel-air
equivalence ratio depends linearly on the air flow rate.

4.2 Running the Experiment

A LabVIEW command and control (CC) VI was created to automate experiments

on the nine-element burner. The VI commands the system to move between the oper-

21

ating conditions of interest generated by the Halton sequence discussed in Section 4.1,

and records the readings from various sensors monitoring the system as it transitions

between and settles on operating conditions. If a blow-out is detected, the VI first

goes to its current target operating condition to attempt to reignite at that condition,

and then returns the system to a known stable operating condition if the target con-

dition could not be lit. It waits for the flame to be re-ignited before moving on to the

next operating condition of interest. Operating conditions are selected sequentially

from the Halton sequence, resulting in a quasi-random walk through the operating

space.

The VI was written as an object-oriented state machine, wherein different “states”

are designed to perform specific tasks by calling class methods, and an overall state

machine manages transitions between these states to ensure that the experiment is

run properly. An object-oriented approach was chosen to simplify data handling using

the encapsulation of data within a class. Two main classes were used: a Data Handler

class that connects to the database and records experimental data in a queue, and

an Experiment class that handles running the experiment and placing data on the

queue. The Experiment object used in the VI comprises a Data Handler object. A

UML class diagram for these two classes is shown in Figure 4.3.

A UML activity diagram detailing the operation of the LabVIEW CC VI is shown

in Figure 4.4. This diagram shows the states of the VI in boxes and decision branches

as diamonds. Arrows between elements on the diagram indicate the flow of the

program between states and decision branches.

The Initialize state in Figure 4.4 waits for the user to specify an operating con-

dition input file name, database connection information, and data field information.

Once submitted, this state activates the sensors and mass flow controllers for the

system, opens a connection to the input file, opens a connection to the database that

is used to store experimental data, and spawns a process that will write data to this

database as it is recorded. Figure 4.5 shows an activity diagram for this data writing

process. The next state takes initial atmospheric pressure readings using a static

25

The nine-element combustor is mounted on a three-axis translation table illus-

trated in Figure 4.6. The combustor is mounted on the central red-colored platform

in the figure. This table enables the combustion chamber to be moved relative to the

centerline of a CCD camera or laser, enabling various axial and radial locations of

the flame to be measured using techniques like chemiluminescence and laser-induced

florescence (LIF). The position of the table is controlled manually by a separate Lab-

VIEW VI, and is set to a constant position for these experiments.

Figure 4.6. Three-axis translation table for experimental procedures.

Air and fuel are connected to the combustor via flexible hoses. Air and fuel mass

flow rates are controlled using Porter mass flow controllers as given below. Each

air and fuel line uses a single dedicated mass flow controller so that all lines can

be independently adjusted. For the middle and outer fuel lines, the single fuel flow

coming from the MFC is split into four lines using a manifold made from Swagelok®

T-junctions.

1. Air: Porter Model 203A 500 SLPM flow rate calibrated for air.

2. Fuel line 1: Porter Model 251, 40 SLPM flow rate calibrated for methane.

3. Fuel line 2: Porter Model 251, 40 SLPM flow rate calibrated for methane.

27

0 2 4 6 8 10 12 14 16

0

50

100

150

200

200 SLPM Step Response of Air Mass Flow Controller

R
es

po
ns

e
(S

LP
M

)

Time (sec)

 Actual
 Input

Figure 4.8. 2 V step responses of air mass flow controller.

The static gain KMFC is given by (4.10) where Vmax = 5 VDC, Vmin = 0 VDC,

ṁmin = 0 SLPM, and ṁmax varies for the air and fuel MFCs and is given in the

preceding. The model parameter values for each of the MFCs are summarized in

Table 4.1.

GP1(s) =
Q(s)

V (s)
= e−tds

KMFC

τs+ 1
(4.8)

GP2(s) =
Q(s)

V (s)
= e−tds

KMFC

1
ω2
n
s2 + 2ζ

ωn
s+ 1

(4.9)

KMFC =
ṁmax − ṁmin

Vmax − Vmin

(4.10)

We can develop a controller to better regulate the MFCs to the desired mass

flow rate. To do so, we must first linearize the transfer function (4.8) and (4.9) by

replacing the time delay term with a Padé approximation (4.11), where the numerator

and denominator can be of arbitrary order m and n respectively. The numerator and

denominator are respectively defined by (4.12) and (4.13) [47]. For the first-order

system, a Padé approximation of order m = n = 2, and for the second-order systems,

28

Table 4.1. Mass flow controller model parameters.

MFC KMFC , SLPM/V τ , sec ζ ωn, rad/s td, sec

Air 99.21 N/A 0.7054 1.35 1.8

Pilot 7.967 0.520 N/A N/A 0.546

Middle 7.964 0.516 N/A N/A 0.194

Outer 7.972 0.239 N/A N/A 0.306

a Padé approximation with numerator order m = 3 and denominator order n = 2 fit

the response data well. This substitution results in the linearized system dynamics

given in state-space form (4.14) for the first-order system and (4.15) for the second-

order system.

e−tds ≈
∑m

i=1 pi∑n
i=1 qi

=
1− 3td

5
s+

3t2d
20
s2 − t3d

60
s3

1 + 2td
5
s+

t2d
20
s2

(4.11)

pi = (−1)i (m+ n− i)!m!

(m+ n)!i!(m− i)!
(4.12)

qi =
(m+ n− i)!n!

(m+ n)!i!(n− i)!
(4.13)

ẋ =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

−12
τt2d

−12τ−6td
τt2d

−6τ−td
τtd

⎤⎥⎥⎥⎦x+

⎡⎢⎢⎢⎣
0

0

12
τt2d

⎤⎥⎥⎥⎦V (4.14)

Q = KMFC

[
1 −td

2

t2d
12

]
x

x =
[
x ẋ ẍ

]T

29

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0

0 0 1 0

0 0 0 1

−20ω2
n

t2d

−8tdω
2
n−40ζωn

t2d

−t2dω
2
n−40tdζωn−20

t2d

−2tdζωn−8
td

⎤⎥⎥⎥⎥⎥⎥⎦x+

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

20ω2
n

t2d

⎤⎥⎥⎥⎥⎥⎥⎦V (4.15)

Q = KMFC

[
1 −3td

5

3t2d
20

−t3d
60

]
x

x =
[
x ẋ ẍ

...
x
]T

A step response for the air mass flow controller is shown against the step response

of the model for this mass flow controller using (4.15) in Figure 4.9.

0 2 4 6 8 10 12 14 16
-50

0

50

100

150

200

Comparison of 200 SLPM Step Response of Air MFC with Model

R
es

po
ns

e
(S

LP
M

)

Time (sec)

 Actual
 Model
 Input

Figure 4.9. Comparison of actual and Padé approximation model
step response of air mass flow controller.

A simple linear quadratic regulator (LQR) can then be designed using the state

space equation (4.14) or (4.15). The control effort for the LQR is defined as u =

−Kx and the control law K is determined by solving the algebraic Riccati equation

(4.16) [48] assuming the state space equations (4.14) and (4.15) can be expressed as

30

ẋ = Ax+Bu and Q = Cx. In (4.16), Q is a state error weighing matrix, and R is

an input effort weighing matrix.

K = R−1BTP (4.16)

0 = ATP+PA−PBR−1BTP+Q

In the event that there is significant noise in the system—i.e. xk+1 = Axk +

Buk + vk and Qk = Cxk + wk where vk is Gaussian white process noise, wk is

Gaussian white measurement noise, and equations are shown in discrete time—a

linear quadratic Gaussian regulator (LQG) can be used [49]. An LQG is an LQR

where the state of the system in the presence of noise is estimated using a Kalman

filter. The control effort the the LQG is defined as uk = −Kx̂k where x̂k is the

Kalman-estimated state of the system (4.17).

x̂k+1 = Ax̂k +Buk + Lk

(
Qk+1 −C

(
Ax̂k +Buk

))
(4.17)

The Kalman gain Lk is iteratively determined by solving the following discrete

Riccati equation (4.18) [48].

Pk+1 = A
(
Pk −PkC

T
(
CPkC

T +W
)−1

CPk

)
AT +V (4.18)

P0 = E
[(
x0 − x̂0

)(
x0 − x̂0

)T]
Where V and W are the estimated covariance matrices of the process noise and

measurement noise respectively. The Kalman gain Lk at time k is then given by

(4.19).

Lk = APkC
T
(
CPkC

T +W
)−1

(4.19)

By observation, process and measurement noise were minimal for the MFCs and

an LQR controller was sufficient to regulate the MFCs to desired set points.

4.4 Instrumentation

Local dynamic pressure measurements were taken at four points along the axis

of the combustion chamber using GRAS 46BD 1/4 inch CCP microphone sets. Mi-

31

crophones were placed approximately logarithmically, with tighter spacing between

microphones near the primary combustion zone, and wider spacing further away. A

median-filtered mean measured power from the closest microphone to the combustor

was used as a reliable indicator of whether a flame was present. An ambient dy-

namic pressure measurement was taken near the combustion chamber using a GRAS

46AQ 1/2 inch CCP random incidence microphone set. The dynamic pressure sen-

sor locations are shown in Figure 4.10, where all units are inches unless otherwise

specified.

The GRAS 46BD microphones have a safe operating temperature range up to

70 C, much lower than the temperature of the combustion chamber. For this reason,

a method of making local dynamic pressure measurements without jeopardizing the

sensors was required. The GRAS microphones were installed several inches away from

the combustion chamber behind a heat shield using remoting tubes [50–52] to transfer

dynamic pressure fluctuations within the combustion chamber to the microphones.

Each remoting tube comprises a 15 cm standoff tube that transfers pressure fluctu-

ations from the combustion chamber to the pressure transducer, and a 30 m open

damping tube tube after the pressure transducer that provides a semi-infinite termi-

nation. The semi-infinite termination helps to reduce the effects of high-frequency

wave reflections off the end of the remoting tube. The end of this coil was left open

to atmosphere, as the combustion process takes place at atmospheric pressure and

so bulk fluid flow through the remoting tube was not a concern. A Swagelok® T-

junction is used to connect the pressure transducer to the standoff tube and damping

tube, and a Swagelok® weld fitting is used to connect the remoting tube assembly

to the combustion chamber. This setup is illustrated in Figure 4.11, where units

are inches unless otherwise specified. For a full drawing of the combustion chamber

assembly with remoting tubes, see Appendix A.

The dynamic pressure fluctuations measured by a GRAS microphone, Pm(t), are

the convolution of the pressure fluctuations within the combustion chamber, Pp(t),

with the dynamics of the remoting tube, Pr(t) (4.20). Equivalently, the frequency

32

Figure 4.10. Illustration of dynamic pressure measurement locations,
measurements are in inches and degrees.

33

Figure 4.11. Illustration of dynamic pressure remoting assembly with heat shield.

response measured by a microphone, Gm(jω), is the frequency response of the com-

bustion process, Gc(jω), in series with that of the remoting tube, Gr(jω) (4.21).

To recreate the approximate dynamic characteristics of the combustion process, the

response measured by the microphones must be deconvolved with an approximate

model of the dynamics of the remoting tube.

Pm(t) = Pc(t) ∗ Pr(t) (4.20)

Gm(jω) = Gc(jω) ·Gr(jω) (4.21)

The remoting tube adds some volume to the system that is being measured, and

this volume can be characterized by a frequency response function, Gr(jω). Pres-

sure waves traveling through a tube are attenuated primarily via boundary layer

interactions [51], and visco-thermal effects [50]. For the combustor operating at at-

mospheric pressure, we can assume that no bulk fluid flows through the remoting

tube, and so visco-thermal effects are the dominant attenuating factor [52,53]. Bergh

and Tildeman [53] developed the standard model for pressure fluctuations within a

series connection of N tubes with N volumes assuming no bulk fluid flow through

34

the tubes. Using the simplifying assumptions of Samuelson [50, 54]—primarily that

the tube is homogeneous except at the transducer, which adds a small volume, V , to

the system—the frequency response function of the standoff tube with semi-infinite

termination can be expressed as (4.22).

Gr(jω) =
P1

P0

(jω) =
(
cosh(yL01) +Q sinh(yL01) +

(
sinh(yL01) tanh(yL1e)

))−1

(4.22)

where L01 is the distance from the wave source to the pressure transducer (standoff

length), L1e is the distance from the pressure transducer to the semi-infinite tube

termination, Q is a reflection coefficient (4.23), and y is the propagation constant

(4.24).

Q =
ωV

cA

[(
1 +

2(γ − 1)J1(E)

EJ0(E)

)(
2J1(W)

WJ0(W)
− 1

)]− 1
2

(4.23)

W 2 = −R2 jωρ

μ
= −R2 jω

ν

E = PrW

y =
ω
(
1 + 2(γ−1)J1(E)

EJ0(E)

) 1
2

c
(

2J1(W)
WJ0(W)

− 1
) 1

2

(4.24)

In (4.23) and (4.24), the zero and first-order Bessel functions are denoted J0 and

J1 respectively. Their arguments are the dimensionless shear wave number, W , and

the product, E, of this shear number with the Prandtl number Pr. The transducer

volume is denoted V , and represents the additional cavity volume introduced where

the pressure transducer intersects the remoting tube assembly. The cross-sectional

area and radius of the standoff tube are denoted A and R respectively, and the speed

of sound is denoted c. Analysis of these models and empirical study of remoting tube

configurations shows that shorter standoffs reduce attenuation of pressure fluctuations

and are preferable over longer standoffs, larger radius tubes increase the bandwidth

of the remoting tube assembly, and a very long damping tube must be used to avoid

distortion at lower frequencies [51,55,56]. The necessary length of the damping tube

increases as the radius of the remoting tube increases.

35

To determine minimum standoff tube lengths, 1 m long 1/8 inch stainless steel

tubes with a 2.29 mm inner diameter were connected to the combustion chamber

and the system was run to a steady external temperature. Thermocouples were then

inserted into the tubes and slowly moved closer to the combustion chamber until the

operating temperature limit of the microphones was reached. Several centimeters

was then added to this length as a buffer. The standoff tubes were then cut, and the

remoting tubes and heat shield assembled with thermocouples in place of the pressure

transducers. The system was again run to a steady external temperature to ensure

that the pressure transducer would not exceed its maximum operating temperature

in this final configuration. Finally, the thermocouples were replaced with the pressure

transducers so that dynamic pressure measurements could be made.

Temperatures at the outer walls of the combustion chamber were measured using

four Omega 5TC-GG-K-24-36 24 AWG K-type thermocouples with braided glass

insulation at locations corresponding to each of the dynamic pressure probes. The exit

temperature of the flame was monitored with an Omega TJ36-CAXL-38U-18 Super-

OMEGACLAD® XL heavy duty transition junction K-type thermocouple probe

with a 3/8 inch diameter.

A GE PMP-4060 static pressure transducer was used to measure the absolute

atmospheric pressure and the absolute pressure upstream of the swirler puck (see

Figure 3.2). The difference between these two measurements corresponds to the

pressure drop across the swirler and venturi assembly. This pressure drop was used

to determine the overall mass flow rate through the combustor, and is fed back to

the mass flow control loop to maintain a desired overall flow rate. The pressure

transducers are configured to measure pressures in the range P ∈ [11.5, 17.5] psi.

Thermocouples and pressure transducers are connected to a National Instruments

PXI-1033 controller. The PXI also handles sending commands to the computer inter-

face modules. The PXI interfaces with the desktop running the CC VI through an NI

PXI-1033 Integrated MXI Express card, enabling 110 MB/s sustained throughput be-

tween the PXI and PC. The PXI has one high-speed analog input card for interfacing

36

with dynamic pressure transducers, one analog output card, and two general-purpose

data acquisition cards installed:

• NI PXI-4472: 8-channel, 24-bit, 102.4 kS/s simultaneous analog input

• NI PXI-6704: analog output

• NI PXI-6229: 32-channel multifunctional DAQ

• NI PXI-6143: 8-channel, 16-bit, 250 kS/s multifunctional DAQ

37

5. DATA PROCESSING

One significant hurdle to using conventional machine learning techniques with our

data is that our data is not yet labeled. By understanding the structure of the data,

we can employ unsupervised learning techniques like K-means clustering to assign

categories to different operating modes of the combustion chamber. The analysis and

categorization of the data set is discussed in the following.

Experimental data was stored in an Oracle® MySQL database and processed us-

ing custom Python scripts. The data that was recorded every 0.01 seconds included

the desired and actual mass flow rates for each of the four mass flow controllers (air

and three fuel lines) in LPM, the outer combustion chamber wall temperatures at four

locations along the flame axis in degrees Centigrade, the static pressure drop across

the venturi plate as a percent of atmospheric, and the raw dynamic pressure readings

from the four microphones placed along the flame axis using remoting tubes as dis-

cussed in Section 4.4. Dynamic pressure readings were taken at a rate of 10 kHz, so

100 dynamic pressure readings from each microphone were recorded for each reading

from the thermocouples, static pressure sensor, etc.

5.1 Power Spectra and Frequency Analysis

Data was segmented into 0.5 second windows, with each window overlapping by

50%—the first window contained data recorded between 0 and 0.5 seconds, the second

window between 0.25 and 0.75 seconds, and so on. A fast Fourier transform (FFT) was

performed on each window, resulting in the power spectra varying over the duration

of the experiment. Each spectrum was scaled to decibels and plotted on a time

vs. frequency “waterfall” as shown in Figures 5.1–5.5 where the color represents the

decibel magnitude of a specific frequency at a specific time. Frequencies range between

38

10
00

20
00

30
00

40
00

50
00

105

211

316

421

Ambient Power Spectrum Waterfall

Frequency, Hz

T
im

e,
 s

ec

-40.00

-21.50

-3.000

15.50

34.00

52.50

Power, dB

Figure 5.1. Power spectrum waterfall plot of ambient microphone
signal. The ambient microphone sits outside of the combustion cham-
ber, approximately 1 m away, and exhibits the richest dynamics in
the lower frequency ranges.

0 on the left to 5 kHz on the right. Time begins at 0 at the bottom and increases

going up.

The vertical bands most prominent in Figure 5.2 do not change with operating

condition, and represent structure imposed by the frequency response dynamics of the

physical combustion chamber: these bands exist because similar power was recorded

at nearly the same frequency throughout most of the duration of the experiment.

Evenly spaced bands most likely represent harmonics of the combustion chamber. By

observing the response of the microphones measuring inside of the combustion cham-

ber (Figure 5.2–5.5), we see that the primary resonance frequency of the combustion

chamber is approximately 250 Hz, with measurable harmonics up to 1500 Hz (six

times the primary) and higher at some operating conditions. The primary resonance

mode occurs in a region of very rich frequency response, but after approximately

400 Hz, the harmonics of this mode dominate the response.

39

10
00

20
00

30
00

40
00

50
00

105

211

316

421

Mic 0 Power Spectrum Waterfall

Frequency, Hz

T
im

e,
 s

ec

-40.00

-16.80

6.400

29.60

52.80

76.00

Power, dB

Figure 5.2. Power spectrum waterfall plot of the microphone 0 signal.
Note the vertical banding in the signal, indicating structure in the
frequency response of the chamber.

10
00

20
00

30
00

40
00

50
00

105

211

316

421

Mic 1 Power Spectrum Waterfall

Frequency, Hz

T
im

e,
 s

ec

-40.00

-16.30

7.400

31.10

54.80

78.50

Power, dB

Figure 5.3. Power spectrum waterfall plot of the microphone 1 signal.
Note that vertical banding is still present, but is slightly less distinct
than the banding in Figure 5.2.

40

10
00

20
00

30
00

40
00

50
00

105

211

316

421

Mic 2 Power Spectrum Waterfall

Frequency, Hz

T
im

e,
 s

ec

-40.00

-18.10

3.800

25.70

47.60

69.50

Power, dB

Figure 5.4. Power spectrum waterfall plot of the microphone 2 signal.
Here the visible structure of the signal is significantly reduced as the
microphone moves further from the combustor assembly.

10
00

20
00

30
00

40
00

50
00

105

211

316

421

Mic 3 Power Spectrum Waterfall

Frequency, Hz

T
im

e,
 s

ec

-40.00

-20.00

0.000

20.00

40.00

60.00

Power, dB

Figure 5.5. Power spectrum waterfall plot of the microphone 3 signal.
Here all but the highest harmonics of the combustion chamber have
blended together.

41

Horizontal bands represent changes in the response of the system as the input

conditions changed over time. Note that dynamic pressure data was only recorded

when the input conditions were not changing; thus each horizontal line in the waterfall

plots of Figures 5.1–5.5 represents the power spectra for a specific, stationary input

condition. By observation, the combustion chamber exhibited four distinct categories

of combustion: attached flames, detached stable flames, detached flickering flames

(local extinction), and complete blow out. Flames that are on the verge of attaching

or detaching, and intermittently flicker between these two modes, could be considered

a fifth category. Very little data was collected for blow-out conditions, and so these do

not show up well in the waterfall plots. Lower power conditions typically correspond

to detached stable flames, which are much quieter than attached or flickering flames.

Higher power conditions without very high-frequency dynamics typically correspond

to attached flames, as these are louder than detached flames. The conditions show-

ing the highest-frequency dynamics typically correspond to flickering flames, which

exhibit characteristics of a square wave and have high-frequency harmonics. These

flickering states often precede a blow-out, and can be seen as long horizontal bands

of high power primarily in Figures 5.1–5.3.

The structure observable in these figures and the previous discussion implies that

this data can be used to cluster experimental data into flame mode categories. This

process will be discussed shortly.

5.2 Mutual Information Analysis

Mutual information is a measurement of the similarity between the joint proba-

bility distribution function of two variables, x and y, and the näıve joint probability

assuming the two distribution functions are independent. In other words, it is the

number of bits of information saved if one understands the relationship between x

and y rather than assuming that they are independent. More generally, it can be

used as a distance measure between two processes [57, 58].

42

The mutual information between two discrete distributions X and Y is defined as

(5.1), where p(x) (or p(y)) is the marginal probability distribution function of x (or

y), and p(x, y) is the joint probability distribution function of x and y.

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(5.1)

Figure 5.6 shows an auto-mutual information waterfall plot where the y-axis shows

the measurement time, and the x-axis shows a time delay, δ. The color of the plot

indicates the degree of similarity between two samples, delayed by δ indicated by the

x-axis.

There is not much consistent structure in the auto-mutual information; however,

the wider horizontal bands of high mutual information typically correspond to local

extinction flame modes (flickering), and precede a blow out. There is a faint vertical

band present in all microphones around δ = 0.002 seconds. This perhaps indicates

wave reflections occurring within the combustion chamber, or quasi-periodicity in the

flame. Significant vertical banding in the auto-mutual information would imply some

periodic structure of the flame. As is, very little periodic structure appears to exist.

The flame is, perhaps, chaotic.

5.3 K-Means Clustering

K-means clustering is an unsupervised classification technique whereby unlabeled

data is divided into K classes such that the in-class sum-squared distance of points

in that class to the class centroid is minimized [59]. If the data set is given as

X =
[
x0 x1 . . . xn

]
where xi is the ith sample and there are n samples, the

K-means algorithm can be summarized by the following:

1. Initialize K centroids cj with j ∈ [1, K] at the locations of K randomly-selected

samples from the data set.

2. Calculate the distance matrix D =
[
di,j

]
n×K

from every point in the data set

to each of the K clusters: di,j = (xi − cj)
T (xi − cj).

43

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

105

211

316

421

Ambient Auto Mutual Information

Delay, sec

T
im

e,
 s

ec

0.000

0.3230

0.6460

0.9690

1.292

1.615

M
ut

ua
l I

nf
or

m
at

io
n,

 b
its

(a) Ambient

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

105

211

316

421

Mic 0 Auto Mutual Information

Delay, sec

T
im

e,
 s

ec

0.000

0.3380

0.6760

1.014

1.352

1.690

M
ut

ua
l I

nf
or

m
at

io
n,

 b
its

(b) Mic 0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

105

211

316

421

Mic 1 Auto Mutual Information

Delay, sec

T
im

e,
 s

ec

0.000

0.3380

0.6760

1.014

1.352

1.690
M

ut
ua

l I
nf

or
m

at
io

n,
 b

its

(c) Mic 1

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

105

211

316

421

Mic 2 Auto Mutual Information

Delay, sec

T
im

e,
 s

ec

0.000

0.3430

0.6860

1.029

1.372

1.715

M
ut

ua
l I

nf
or

m
at

io
n,

 b
its

(d) Mic 2

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

105

211

316

421

Mic 3 Auto Mutual Information

Delay, sec

T
im

e,
 s

ec

0.000

0.3350

0.6700

1.005

1.340

1.675

M
ut

ua
l I

nf
or

m
at

io
n,

 b
its

(e) Mic 3

Figure 5.6. Waterfall plots of auto-mutual information for the ambi-
ent dynamic pressure sensor and each of the dynamic pressure sensors
along the axis of the combustion chamber.

44

3. Assign a label yi to each point in the data corresponding to the cluster to which

it has the minimum distance: yi = argmin
j∈[1,K]

di,j

4. Update the cluster centroid locations to the mean location of all of the points

within that cluster: cj =
∑

xi

Nj
: {xi|yi = j}. Note that here Nj is the number

of elements with label j.

5. If the maximum number of iterations has been reached, break.

6. If any cluster data point assignment has changed, return to step 2.

7. If no assignment has changed, break.

What data is considered in determining distance to a centroid affects how well the

algorithm separates data into distinct categories [60, 61]. Using the data structure

analysis discussed in the preceding, flame status bk ∈ {0, 1} static pressure Pk ∈ R,

mass flow rate of each MFC ṁk ∈ R
4, and mean power measured by each microphone

v̄k ∈ R
5 were chosen as the features of interest for K-means clustering. Note that the

flame status, bk, was determined using a threshold on the median-filtered mean power

reading from the closest microphone to the combustor in the combustion chamber.

This proved to be a reliable measurement of the presence of a flame. Additional tests

were conducted with more features, but did not converge to meaningful clusterings. A

TensorFlow [62] script was written to perform K-means clustering withK = 2, 3, . . . , 7

centroids to determine the appropriate number of categories for the data set. K-

means clustering is sensitive to the choice of initial centroid locations [63], and so a

Monte-Carlo method was employed to run the K-means algorithm many times for

each value of K with randomly-selected starting centroids. The algorithm is shown

in pseudocode below.

mean_distances = []

for K in range(2, 8):

MC_history = []

for _ in range(MC_repeats):

45

centroids, assignments, distances = run_k_means(data, K)

MC_history.append(mean(distances[:, assignments]))

record centroid and assignment history too...

mean_distances.append(min(MC_history))

keep track of best centroids and assignments...

plot(range(2, 8), mean_distances)

The main K-means function, run_k_means(), runs a number of iterations of the

K-means algorithm and quits if centroid locations cease to change. Its sub-function,

initialize_centroids(), randomly chooses points from the input data set as initial

centroids. This random selection of initial centroids is repeated for each iteration

of the Monte-Carlo run for training K-means with a given value of K. These two

functions are shown in pseudocode below.

def run_k_means(data, K):

centroids = initialize_centroids(data, K)

cluster_assignments = zeros(len(data))

for i in range(max_iterations):

Find closest centroids

for j in range(len(data)):

for k in range(len(centroids)):

distances[j, k] = (data[j] - centroids[k])**2

best_centroids = argmin(distances, axis=1) # find closest centroid

if best_centroids == cluster_assignments:

break # no change in assignments, we’re done

cluster_assignments = best_centroids

Update centroid locations

for i in range(len(centroids)):

centroids[i] = mean(data[best_centroids == i])

return (centroids, cluster_assignments, distances)

46

def initialize_centroids(data, K):

centroids = []

for i in range(K):

centroids[i] = data[random_int(0, len(data))]

return centroids

The mean distance measure to closest centroids for the best performing clustering

for each value of K is shown in Figure 5.7.

2 4 6 8
0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03
Distance Measure vs. Number of Centroids

M
ea

n
S

qu
ar

e
D

is
ta

nc
e

Number of Centroids (#)

Elbow

Figure 5.7. Mean distance measure of all data points to their near-
est centroid vs. the number of centroids. The elbow indicates the
optimum number of labels for clustering the data set.

The shape of Figure 5.7 is typical of K-means clustering applications, and the

elbow indicated at K = 4 in the figure is the point at which we reach optimal cluster-

ing. Fit usually improves beyond this point, but this is typically due to over-fitting—a

single distinct group may end up with multiple centroids, reducing the mean distance

of data points within that group to their nearest centroid, but resulting in multiple

identified classes for the same distinguishable class in the data set. With four clusters,

it is easy to assign physical meaning to each cluster. The four clusters correspond to

47

operating conditions wherein the flame is attached, detached and stable, detached and

flickering (local extinctions), and totally blown out. Note that thermoacoustic insta-

bilities were either not observed, or were difficult to distinguish from local extinction

conditions. This is likely due to insufficient power from the burner for exciting ther-

moacoustic instabilities in the chosen combustion chamber. The clustering of the data

points is visualized in Figures 5.8 and 5.9, in which the higher-dimensional data has

been projected onto a plane using the t-distributed stochastic neighbor embedding

(t-SNE), which attempts to find the projection that minimizes the divergence be-

tween the probability distribution functions of the higher-order and lower-order data

sets [64–66]. Both of these figures show projections of higher-dimensional data onto a

two-dimensional manifold. For Figure 5.8, the kth operating condition is represented

by a 12-feature vector comprising the label tk ∈ {0, 1, 2, 3}, flame state bk ∈ {0, 1},
static pressure Pk ∈ R, current flow rates of the four mass flow controllers ṁk ∈ R

4,

and mean power measured by each of the five microphones v̄ ∈ R
5. For Figure 5.9,

the standard deviation of the power spectra measured by each of the five microphones

σ ∈ R
5 is included as well, thus representing each operating condition as a 17-feature

vector.

Figure 5.8 clearly shows the separation between operating conditions when rep-

resented as 12-feature vectors. Here, each operating mode is grouped into a distinct

region of the graph, with the exception of blow-out states which are intermixed with

attached and flickering modes. This matches the observation that blow-out typically

occurred after the flame began to flicker and die, or when the flame was attached and

air flow rates increased to the point that the flame was extinguished. Furthermore,

Figure 5.8 shows flickering conditions situated between attached and detached modes;

often the transition between these two modes involved intermittent reattachment of

the flame which has similar characteristics to a detached flickering flame.

From Figure 5.9 we see that the t-SNE algorithm does not differentiate between

stable 17-feature operating conditions, which makes some sense as attached and de-

tached operating conditions both occur throughout the operating space of the com-

48

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-5

0

5

10

t-SNE projection of data clusters from 12 to 2 dimensions

 detached
 attached
 flickering
 blow-out

Y
 p

ro
je

ct
io

n

X projection

Figure 5.8. t-SNE projection of labeled 12-dimensional data points
onto two dimensions. In this projection, operating modes are more
clearly separated, with blow-outs intermixed with the flickering and
attached conditions.

bustor and do not seem to be confined to specific regions. Blow-out conditions seem

to form a distinct group on the right-hand side of Figure 5.9, and flickering states tend

to aggregate towards this group. This matches the trend that the flame often begins

to detach and flicker before blowing out. Flickering states are also seen intermixed

with attached and detached flames, likely corresponding to those conditions where

the flame is transitioning between attached and detached, and thus intermittently

attaching.

49

-25 -20 -15 -10 -5 0 5 10 15 20 25 30 35

-10

-5

0

5

10

t-SNE projection of data clusters from 17 to 2 dimensions

 detached
 attached
 flickering
 blow-out

Y
 p

ro
je

ct
io

n

X projection

Figure 5.9. t-SNE projection of labeled 17-dimensional data points
onto two dimensions. Note that operating modes under this projection
are generally intermixed, but blow-out conditions tend toward one
corner of the projection, with flickering conditions aggregating closer
to blow-outs.

50

6. IDENTIFYING OBSTACLES IN THE OPERATING SPACE

In order to effectively plan trajectories between desired operating conditions while

avoiding regions of instability or blow out, we must develop a map of the operating

space using our experimental data. To differentiate regions of desirable performance

in the operating space of the combustor from regions of instability or blow out, we

first label our training data set as in Section 5.3. A data-driven classifier can then

be trained using this labeled data set to predict the boundaries between different

combustion modes in the operating space of the combustor.

6.1 Classification Algorithms

The problem of identifying desirable and undesirable regions within the operat-

ing space of the combustion process from experimental data can be reduced to a

binary classification problem once the experimental data has been labeled. N labels

can be grouped into two categories corresponding to desirable and undesirable condi-

tions, thus binary classification. A decision boundary can then be modeled using any

number of binary classification algorithms such as support vector machines (SVM),

extreme learning machines (ELM), or fuzzy learning machines (FLM) [67]. This deci-

sion boundary can be used to identify regions that should be avoided by the controller

(obstacles), and to predict the classification of new operating conditions online as the

system runs.

6.1.1 Support Vector Machine

The support vector machine and its variants [68–70] have been used extensively for

binary and multi-class classification problems. SVM has two major learning features:

51

1. The training data are first mapped onto a higher-order feature space through

some nonlinear mapping function z = φ(x) : Rn → R
ν with ν > n.

2. An optimization method is then employed to maximize the linear separation

margin between two different categories within this feature space while mini-

mizing misclassification error [68, 71].

SVMs have been applied to flame quality classification in industrial boilers [72]

and a least-squares SVM was applied to modeling bio-diesel engine performance and

emission characteristics [73].

If the hyper-plane separating two different data categories in ν-dimensional feature

space is w0 · z+ b0 = 0, it has been shown that the weights w0 for the optimal hyper-

plane in the feature space can be written as a sum of a limited number of the feature

vectors, zi, called the support vectors (6.1).

w0 =
∑

support vectors

tiαizi (6.1)

The decision boundary of the binary SVM classifier can then be expressed as (6.2),

wherein t̂ is the predicted label of the transformed operating condition z = φ(x) and

zi · z is the dot product between support vector zi and vector in feature space to be

classified z. More generally, the dot product in (6.2) can be replaced by other kernel

functions, K
(
z, zi
)
, like the radial basis function K

(
z, zi
)
= exp

{
− |z−zi|2

σ2

}
.

t̂ = f(z) = sign

(∑
support vectors

tiαizi · z+ b0

)
(6.2)

Given the training set ℵ =
{
(ti, zi) | ti ∈ {−1, 1}, zi ∈ R

ν , i = 1, . . . , l
}
, the

hyper-plane that maximizes the separation between classes while minimizing misclas-

sification error can be found by minimizing (6.3) subject to the constraints (6.4) [68].

w2

2
+ cF

(
l∑

i=1

ξi

)
(6.3)

ti
(
w · zi + b

) ≥ 1− ξi i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l (6.4)

52

In (6.3), c is a constant, F (u) is a monotonically convex function, e.g. F (u) = u2,

and ξi are slack variables used to allow for some misclassification for systems that are

not completely linearly separable in the feature space.

The computational complexity of SVM algorithms is usually at least quadratic

with the number of training examples. The traditional SVM therefore does not scale

well to complex problems with large training sets. The least-squares SVM (LS-SVM)

[70] and proximal SVM (PSVM) [69] provide fast implementations of the traditional

SVM by utilizing equality constraints to result in a least-squares training solution

and avoid quadratic programming [71].

6.1.2 Extreme Learning Machine

Extreme learning machines (ELM) are a class of single-hidden-layer feed-forward

neural networks (SLFN) wherein the input weights are randomly assigned and the

output weights and hidden layer parameters are determined analytically using a least-

squares approach [71, 74–76]. This training approach gives ELMs the advantage of

being extremely fast to train compared with systems that require numeric optimiza-

tion algorithms. SLFNs are capable of approximating any continuous function [77]

and implementing any classification application [78]. Thus the ELM, a class of SLFN,

can be used generally for classification and continuous function approximation appli-

cations [71, 74]. ELMs have been used to model the stable operating envelope of an

unstable homogeneous charge compression ignition (HCCI) engine [67], for predicting

combustion phasing in HCCI engines [79], for modeling bio-diesel engine performance

and emission characteristics [73], and for many other applications.

The decision boundary of a binary ELM classifier takes the form (6.5), wherein t̂

is the predicted label for input x, h(x) is the hidden-layer output corresponding to

the input to the ELM x, and B is the output weight matrix between the hidden layer

and the ELM output layer.

t̂ = sign
(
f(x)
)
= sign

(
h(x)B) (6.5)

53

Given a training set ℵ =
{
(ti, xi) | ti ∈ R

m, xi ∈ R
n, i = 1, . . . , N

}
where ti are

the outputs (labels) associated with the training inputs, and with activation function

h(x) : Rn → R and L hidden neurons, the output weight matrix B that minimizes

training error and has minimum norm can be found using (6.6).

B̂ = H†T (6.6)

In (6.6) the matrix H is an N ×L matrix of the hidden layer activation functions

(6.7) for N training samples and L ≤ N hidden neurons. The matrix T is an N ×m

matrix of the training output data (6.8) for an m-dimensional output vector. The

output weight matrix B̂ ∈ R
L×m. In the case of a binary classifier, ti = ti ∈ {−1, 1} is

the label associated with each training input xi. The expression H† =
(
HHH

)−1
HH

is the Moore-Penrose pseudo-inverse of H [80], and HH is the conjugate transpose of

H.

H =

⎡⎢⎢⎢⎣
h
(
w1x1 + b1, ζ1

) · · · h
(
wLx1 + bL, ζL

)
... · · · ...

h
(
w1xN + b1, ζ1

) · · · h
(
wLxN + bL, ζL

)
⎤⎥⎥⎥⎦
N×L

(6.7)

T =

⎡⎢⎢⎢⎣
tT1
...

tTN

⎤⎥⎥⎥⎦ (6.8)

The training algorithm for an ELM given the training set ℵ described previously

can be summarized as:

1. Randomly assign input weight vectors wi, input weight scalars bi, and hidden

layer parameters ζi for i = 1, . . . , L.

2. Calculate the hidden layer output matrix H (6.7).

3. Calculate the minimum-norm least squares output weight vector B̂ using (6.6).

54

6.1.3 Fuzzy Classification

For systems where uncertainty may exist as to which category a given data point

falls into, fuzzy learning machines such as the fuzzy SVM (FSVM) [81] and fuzzy

ELM (FELM) [82, 83] have been developed. The FSVM and FELM apply a fuzzy

membership function to each input data point, allowing different inputs to make

different contributions to the overall learning of the decision boundary. In this way

the decision boundary can account for uncertainty in the membership of the training

data in each category.

The FELM method applies the ELM approach to a fuzzy inference system (FIS).

An SLFN is created with L fuzzy rules as its hidden nodes. The parameters of the

hidden nodes are randomly initialized, and the output is the inner product of the

firing strength of these rules with an output weight matrix B (for vector output

y), or output weight vector ζ (for scalar output t). This network is illustrated in

Figure 6.1.

���
���

���

��

��

��

��

��

��

��

��

�	

�� � �

���������
�� ��

Figure 6.1. Fuzzy extreme learning machine network illustration.

Triangular membership functions like that shown in Figure 6.2 are commonly used

in FIS [84]. The ith membership function is parameterized by its center for the jth

input variable cj,i, and by its left and right bounds ζj,i =
[
aj,i bj,i

]
.

55

������ ���

����	�
 ���� ���

Figure 6.2. Triangular fuzzy membership function.

The membership value of μAj,i

(
xj

)
of the jth input value and the ith triangular

fuzzy rule is given by (6.9):

μAj,i

(
xj; cj,i, ζj,i

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

aj,i−xj

aj,i−cj,i
aj,i ≤ xj ≤ cj,i

bj,i−xj

bj,i−cj,i
cj,i < xj ≤ bj,i

0 otherwise

(6.9)

The firing strength of the ith rule to the input x ∈ X ⊂ R
n is then given by (6.10).

Ri

(
x; ci, Zi

)
= μA1,i

(
x1; c1,i, ζ1,i

)⊗ μA2,i

(
x2; c2,i, ζ2,i

)⊗ · · ·
⊗ μAn,i

(
xn; cn,i, ζn,i

)
(6.10)

In (6.10), the ⊗ operator represents a fuzzy AND operation: μ1⊗μ2 = min(μ1, μ2)

[84]. The matrix Zi =
[
ζ1,i ζ2,i · · · ζn,i

]
contains the parameters of the ith mem-

bership function for each of the n inputs. The firing strength of each of the L fuzzy

rules can be normalized by (6.11).

Gi

(
x; ci, Zi

)
=

Ri

(
x; ci, Zi

)
L∑
i=1

Ri

(
x; ci, Zi

) (6.11)

The label t̂ for an input x predicted by the fuzzy model is then given by the sign

of the inner product of the normalized firing strengths of each of the L fuzzy rules

with an output weight vector β ∈ R
L (6.12).

t̂ = GAβ

GA =
[
G1(x; c1, Z1) · · · GL(x; cL, ZL)

]
∈ R

L (6.12)

56

The decision boundary of the FELM classifier is then given by the set of points

XB where the decision function (6.12) equals zero (6.13).

XB =
{
x | GAβ = 0

}
(6.13)

The FELM training algorithm is a direct extension of the ELM algorithm to FIS:

1. Randomly assign fuzzy membership function parameters cj,i and ζj,i for each of

the n inputs and L fuzzy rules.

2. Calculate the normalized firing strength Gi of each of the fuzzy rules (6.11).

3. Calculate the minimum-norm least squares output weight vector β̂ using an

approach similar to (6.6).

6.1.4 Multi-Layer Feed-Forward Neural Networks

With recent advancements in high-efficiency backwards propagation techniques,

multi-layer feed-forward neural networks and convolutional neural networks—wherein

all interconnecting weights and biases are trained—have become quite popular [62].

The extreme learning machine (Section 6.1.2) and fuzzy learning machine (Section 6.1.3)

are examples of single-hidden-layer feed-forward networks in which the input weights

and biases are untrained. A fully-trained multi-layer network generalizes this con-

cept to include multiple hidden layers while training all weight matrices and bias

vectors. Any nonlinear differentiable function can be used as the activation func-

tion for hidden neurons, but some notable functions include the rectified linear unit

(relu), whose activation r(x) is given by (6.14), the sigmoid function (6.15), and the

hyperbolic tangent function, tanh(x).

r(x) =

⎧⎪⎨⎪⎩
0, x < 0

x, x ≥ 0

(6.14)

σ(x) =
1

1 + e−x
(6.15)

57

For a network with M hidden layers, the activation (output) of layer k− 1 can be

denoted hk−1 ∈ R
nk−1 . The activation of layer k can then be determined by (6.16),

where Wk is an nk×nk−1 matrix of trainable weights connecting layer k−1 to layer k,
bk ∈ R

nk is a vector of trainable biases, and fk(·) is the nonlinear activation function

for layer k. The first layer of a network is the input layer, thus h0 = x. The final

layer of the network is the output layer; thus with M hidden layers, the output ŷ is

given by (6.17) where WO ∈ R
m×nM and bO ∈ R

m are the output weights and biases

respectively, and hM is the final hidden layer activation of the network. This network

structure is illustrated in Figure 6.3.

hk = fk
(
Wkhk−1 + bk

)
(6.16)

ŷ = WOhM + bO (6.17)

...

...

...

x1

x2

xn

A1 A2 y1

y2

ymn1
copies

...

n2
copies

AM

...

nM
copies

...

W1, b1 WO, bO

h1 h2 hM

W2, b2

Figure 6.3. Multi-layer feed-forward neural network structure with
M hidden layers where each hidden layer is defined by its activation
function Ai, and is connected to the previous layer by weights Wi and
biases bi.

For classification applications, we represent our data labels as one-hot encoded

vectors, which for m labels have m elements that are all zero except for the element

corresponding to the appropriate label, which is one (6.18). We then want to output

a probability distribution representing our confidence in how well the input vector

58

matches each of our possible output categories. To convert the output vector ŷ to a

probability distribution function ỹ, the softmax function (6.19) is used.

yi
k =

⎧⎪⎨⎪⎩
1 i = tk

0 otherwise

(6.18)

ỹi = γ(ŷ)i =
eŷi∑m
j=1 e

ŷj
(6.19)

To train the network, we first define a performance metric J that measures how

well our network is predicting our training data. A common choice of performance

metric is the mean Kullback-Leibler divergence (KL-divergence) between the predic-

tions and the one-hot training labels (6.20), where ln(·) is typically either the base-2

logarithm or natural logarithm of the argument (natural logarithm for this discus-

sion) [57,58]. The KL-divergence between two probability distribution functions is at

a minimum H(p,q) = 0 when p = q.

H(yk, ỹk) =
m∑
i=1

yik ln

(
y

ỹ

)i

k

(6.20)

Note that for our system, the length of the output m is equal to the number of

flame modes identified with our clustering algorithm (Section 5.3), K; thus K = m.

Any back propagation algorithm can then be used to perform a stochastic gradient

descent training process to determine the network weights Wi and biases bi with

i = 0, 1, . . . , N that minimize the training loss (6.20). Stochastic gradient descent in-

volves running many iterations of back propagation training on small training batches

taken from the overall training set. This allows for much faster iterations of back

propagation that, in the aggregate, converge to a minimum cost.

6.2 Application to the Combustor System

Using the operating point classification discussed in Section 5.3, training data

point xi can be associated with a label ti depending on whether its existing label

59

from K-means classification associates it with a blow out or otherwise undesirable

operating mode (6.21).

ti =

⎧⎪⎨⎪⎩
0 undesirable mode

1 desirable mode

(6.21)

Data labels were combined such that detached, stable flames were considered

“good” and flickering flames, blow-out, and attached flames were all considered “bad”.

This ensured that there was roughly the same number of good and bad data points,

and allows us to attempt to train a classifier that can be used as a map to move

through the combustor’s operating space while maintaining a detached stable flame.

This label was then converted to a two-element one-hot vector (6.18).

Several classifiers were trained using Tensorflow [62] with various structures. Given

the fact that the classifier is to be used as a map for planning a trajectory through

the operating space of the combustor, only information about the space that we can

know a priori can be used in training this map. Thus, the inputs to the classifier

xk ∈ R
4 were solely the flow rates to each of the four MFCs, and the outputs of the

classifier were the estimated probabilities that each input condition will be “good” or

“bad”. The model performance was sensitive to the initial conditions of the model

parameters, and so a Monte-Carlo training approach was used to select the best model

out of many training sessions.

The structure that performed best was a two-hidden-layer neural network with 256

hidden nodes in each layer, and all elements fully connected. The first hidden layer

was activated with the relu function (6.14), and the second hidden layer was activated

with the hyperbolic tangent function tanh(x). Weight matrices and biases connecting

the layers were trained by gradient descent using the adaptive momentum estimate

(Adam) optimizer [85]. The Adam gradient descent algorithm takes a variable-sized

step in the direction of the gradient of the cost function with respect to the parameters

for each training batch, with step size dependent on estimates of the first- and second-

order moments of the gradient. If we define our parameters as a vector θ, and given

a cost function J(θ), the estimated first- and second-order moments of the gradient

60

of the cost function at step k are (6.22) and (6.23) respectively. Here gk = ∇J(θ)
is the gradient of the cost function with respect to the model parameters, θ, and β1

and β2 are optimizer parameters that can be tuned, but are typically chosen to be

close to 1.

mk = β1mk−1 + (1− β1)gk (6.22)

vk = β2vk−1 + (1− β2)g
2
k (6.23)

The authors note that the estimates of the first- and second-order moments of the

gradients are biased toward zero when initialized as vectors of zeros. They counteract

this bias by finding a bias-corrected estimate of the first- and second-order moments

of the gradients: (6.24) and (6.25) respectively.

m̂k =
mk

1− βk
1

(6.24)

v̂k =
vk

1− βk
2

(6.25)

The parameter vector is then updated according to the Adam update law (6.26),

where α is the learning rate of the algorithm, and ε is another parameter that can

be tuned. The variable-sized step through the parameter space is given by Δθk =

α√
v̂k+ε

m̂k in (6.26).

θk+1 = θk − α√
v̂k + ε

m̂k (6.26)

The authors propose default values of β1 = 0.9, β2 = 0.999, and ε = 10−8. A

typical value for the learning rate is α = 0.001. Model parameters (θ in the preceding)

were the weight matrices and biases connecting layers of the network and were defined

as W1 ∈ R
256×4, b1 ∈ R

256, W2 ∈ R
256×256, b2 ∈ R

256, WO ∈ R
2×256, and bO ∈ R

2.

Weight matrices were initialized with Gaussian random numbers with zero mean and

standard deviation of σ = 1√
n
for an n ×m matrix. Bias vectors were initialized to

zero. The output of the classifier was converted to a probability distribution function

with the softmax function (6.19).

After training, the mean perplexity (6.27) of the model on the validation set

was found to be P (y, ỹ) ≈ 1.58, corresponding to a validation classification accu-

61

racy (number of correct classifications divided by total number of data points in the

validation set) of 91%. Perplexity is a measure of how well an approximation of a

probability distribution predicts the actual distribution; the smaller the perplexity,

the better the approximation predicts the actual probability distribution function. If

the two distributions are equal, the KL-divergence (6.20) will be 0, and perplexity will

be 1. For this data set, the perplexity indicates how well the model’s classification

match the actual data point’s classification on average.

P (p,q) =
1

n

n∑
k=1

eH(pk,qk) (6.27)

62

7. PREDICTING THE OPERATING MODE OF THE COMBUSTOR

Given the classifier map discussed in Chapter 6, we can attempt to plan a path

through the operating space of the combustor while maintaining some operating mode

and avoiding regions of instability and blow-out. This map, however, is imperfect, and

only utilizes a priori information in its prediction, specifically the flow rates to each

of the four MFCs. We would like to utilize in situ information about the system—

including additional sensor readings and time-series history—as the combustor runs

to improve our prediction of nearby performance and predict whether operating condi-

tions that we are approaching will differ from the conditions predicted by the classifier.

Furthermore, many path planning algorithms utilize “look-ahead” information about

the space through which we are planning a path in order to improve the path as it is

traversed and to avoid unforeseen obstacles [86–88]. Thus having a predictor may aid

in planning trajectories through the operating space of the combustor in real time.

Recurrent neural networks (RNN) are a good candidate for incorporating additional

sensor information in real time while also maintaining some “memory” of what has

happened in the system for informing predictions; see, for example, [89–92].

In general, an RNN can be viewed as a chain of identical network elements, each

feeding its output into the next element in the chain. At a given time step, measure-

ments from the system are fed into the RNN element, which outputs a prediction

based on this input and the previous value of the RNN. This process is illustrated

in Figure 7.1, where xi is the ith input, yi is the ith prediction, and A is the RNN

element.

Sometimes our system only requires that we incorporate information from recent

measurements in our prediction of future measurements. This is the case illustrated

in Figure 7.1, where xk only depends on the previous N results, and N is small. For

some systems, much more context is needed to predict future labels. This requires

65

The stored state is next updated as in (7.4), where the ∗ operator represents

element-wise multiplication.

hk = fk ∗ hk−1 + ik ∗ h̃k (7.4)

The output of the LSTM element is then dependent on an “output gate” vector

ok (7.5) and the updated LSTM state hk (7.6).

ok = σ
(
Wo[gk−1,xk] + bo

)
(7.5)

gk = ok ∗ tanh(hk) (7.6)

The LSTM has a fairly broad parameter space comprising the weight matrices

Wf , Wi, Wh, and Wo ∈ R
N×(N+n), as well as the bias vectors bf , bi, bh, and

bo ∈ R
N . Finally, the prediction from the network ŷk ∈ R

m is given by (7.7) where

Wp ∈ R
m×N and bp ∈ R

m.

ŷk = Wpgk + bp (7.7)

A TensorFlow [62] script was written to train an LSTM network on experimental

data using the Adam gradient descent optimization method [85]. The network state

vector was given dimension N = 64, and the network was composed of ten layers.

Input data used the same 11 features used to train K-means: flame state bk ∈ {0, 1},
input conditions xk ∈ R

4, static pressure Pk ∈ R, and mean dynamic pressure power

at each sensor v̄k ∈ R
5. The labeled experimental data set was divided into a train-

ing and validation set, with the last 30% of the data going into the validation set.

Training labels were represented as one-hot vectors, i.e. vectors with as many ele-

ments as we have distinct training labels where all elements are zero except the ith

element corresponding to label tk (6.18). One-hot training labels can be viewed as a

probability distribution function wherein only one bin has non-zero probability. The

model performance was sensitive to the initial conditions of the model parameters,

and so a Monte-Carlo training approach was used to select the best model out of

many training sessions.

The prediction error of the network was determined by converting predicted la-

bels ŷk into probabilities ỹk with the softmax function (7.8) and then determining

66

the mean KL-divergence between the predictions and the one-hot training labels

(6.20) [57, 58]. This is similar to the process used to train the classifier, discussed in

Chapter 6.

ỹik = γ(ŷk)i =
eŷ

i
k∑m

j=1 e
ŷjk

(7.8)

Note that for our system, the length of the output m is equal to the number

of flame modes identified with our clustering algorithm (Section 5.3), K; thus K =

m = 4. After training, the mean perplexity (6.27) of the model on the validation set

was found to be P (y, ỹ) ≈ 1.23, corresponding to a validation prediction accuracy

(number of correct predictions divided by the total number of data points in the

validation set) of 92%. For this data set, the perplexity indicates how well the model’s

predicted labels match the actual data labels on average.

P (p,q) =
1

n

n∑
k=1

eH(pk,qk) (7.9)

67

8. PATH PLANNING ALGORITHMS FOR COMBUSTOR CONTROL

We begin this section looking at path planning through a discrete operating space

with costs associated with each operating point within the space. We assign high

costs to unstable or blow-out conditions and low costs to stable conditions based on

experimental data. This produces a discrete operating point map with costs asso-

ciated with each measured operating condition. The problem of taking the system

from an initial operating condition x0 ∈ X ⊂ R
n to a desired operating condition

xd ∈ X can be viewed as a path-planning problem in n-dimensional space. A path

xk = p(k) | k = 0, . . . , N may be designed to minimize the normalized discrete cost

function Jp (8.1). By assigning high enough costs to conditions that have been iden-

tified as “bad”, the minimum-cost path between two points will avoid these regions.

Jp =
N∑
k=0

c
(
p(k)
)

(8.1)

In (8.1) c(·) represents a cost function c : Rn → R andN is the number of operating

points in the path. For the operating point cost map method, c(x) is simply the cost

value associated with the condition x. The Anytime Dynamic A∗ (ADA∗) algorithm

is an anytime replanning algorithm that can be used to find a path between xk and

xd in real time, and to minimize the cost of this path as time allows. The ADA∗

algorithm comprises two main components:

1. Dynamic replanning in the presence of new information

2. Anytime path planning and optimization under time constraints

The first component, replanning, is the ability of the algorithm to incorporate

new information into its optimal trajectory in an efficient manner. This is addressed

by incorporating ideas from the D∗ [86] and D∗ lite [99] algorithms. These algorithms

find an optimal path from a starting point x0 to a desired point xd by maintaining

68

an estimate J(x) of the cost from each operating condition to the goal condition. It

also stores a one-step look-ahead cost Jnext(x) which satisfies (8.2).

Jnext(x) =

⎧⎪⎨⎪⎩
0 x = xd

minxnext∈Succ(x)
(
c(x) + c(xnext) + J(xnext)

)
x = xd

(8.2)

In (8.2), Succ(x) ⊂ X are the operating points neighboring x. A point is said to

be consistent if J(x) = Jnext(x), otherwise it is over-consistent if J > Jnext, or under-

consistent if J < Jnext. The algorithm uses a heuristic and a priority queue “OPEN”

to focus its search efficiently. The heuristic h(x,x′) estimates the cost of an optimal

path between points x and x′, and must be less than or equal to the actual least-cost

path between points x and x′. A good candidate for the heuristic is the Euclidean

distance in n-dimensional space between x and x′ (8.3). The priority queue OPEN

always holds the inconsistent points, which need to be updated and made consistent.

h(x,x′) =
√

(x− x′)T (x− x′) (8.3)

Operating points in the OPEN set are assigned a pair of key values, key[0] and

key[1] based on their cost values J and Jnext, and their heuristic h(x0,x). Details

about the key values are given in the following. If the cost of any point changes, the

algorithm updates the values of Jnext of any points affected by the cost change, and

then places all inconsistent points on the priority queue. It then proceeds to update

points on the queue in increasing priority until the queue is empty. Due to the design

of the key value of the queue and the inclusion of the heuristic, the algorithm ensures

that points along the path are processed efficiently, and that points that do not matter

for the path are ignored. When operating point costs decrease, the key value key[0]

ensures that only those points that are over-consistent and could potentially decrease

the overall path cost will be processed. When operating point costs increase, the

algorithm ensures that only those points that are under-consistent and affect the cost

of the current path will be processed. Upon completion, the algorithm will return the

optimal path between x0 and xd.

69

The second component of ADA∗, anytime planning, is the ability of the algorithm

to provide a sub-optimal trajectory that successfully navigates between desired points

(if feasible) at any time, using extra time to optimize this trajectory. This is addressed

by incorporating ideas from the Anytime Repairing A∗ (ARA∗) algorithm [100]. ARA∗

takes advantage of the idea of consistency discussed previously, but multiplies the

heuristic h(x,x′) by an inflation factor ε ≥ 1. This means that the priority of any

operating condition in the OPEN queue is dependent on the inflation factor ε. The

algorithm begins by doing an A∗ search using a large initial inflation factor ε0 >>

1, but only visiting each point in the operating space once. If a point becomes

inconsistent, rather than placing it back in the OPEN set, it is placed in a set of

inconsistent points, “INCONS”. On the next iteration of the algorithm, the points in

the set INCONS are placed into OPEN, the inflation factor is reduced ε ← ε − δ, and

the process is repeated. By only visiting each point once in a search, the search is

completed very quickly. Furthermore, by only reconsidering points from the previous

search that became inconsistent, much of the previous search effort can be reused.

The ADA∗ algorithm combines these two into a single algorithm. Its main func-

tion is given in pseudo-code in the following. If no changes in operating point cost

are detected, the main function plans an initial sub-optimal path, and then begins

decreasing ε and updating the path until an optimal solution is found (ε = 1). This is

exactly the same as the ARA∗ algorithm. If point costs change significantly, however,

then the current solution may no longer be good, and it may be costly to repair it

completely. In these cases, the value of ε is increased so that a less optimal solution

can be obtained quickly [101]:

def main():

Initialize costs

Insert desired point x_d into OPEN

path = compute_or_improve_path()

fork(controller())

while x != x_d:

70

if point cost has changed:

for x in points_with_new_cost:

Update cost(x)

update_point(x)

if change in cost is large:

Increase eps or re-plan from scratch

elif eps > 1:

eps -= delta

OPEN.update(INCONS) # add INCONS points to OPEN set

INCONS.clear() # empty these sets

CLOSED.clear()

path = compute_or_improve_path()

if eps == 1:

wait for changes in point costs

x = read_current_point()

The line fork(controller()) calls some control function that seeks to maintain

the system on the path generated by the path planning algorithm. The while loop

inside of the main() function continually improves the optimality of the path while

incorporating new information until the current operating condition matches the de-

sired condition. The functions compute_or_improve_path() and update_point(x)

are given in pseudo-code below:

def compute_or_improve_path():

while min(key(s in OPEN)) < key(x_0) or J_next(x_0) != J(x_0):

x = OPEN.remove_min() # get point with minimum key from OPEN

if J(x) > J_next(x):

J(x) = J_next(x)

CLOSED.add(x)

71

update_point(x_prev) for x_prev in Predecessors(x)

else:

J(x) = Inf

update_point(x)

update_point(x_prev) for x_prev in Predecessors(x)

def update_point(point x):

if x was not visited before:

J(x) = Inf

if x != x_d:

Find closest neighbor.

J_next(x) = min(cost(x) + cost(x_next) + J(x_next))

if x in OPEN:

OPEN.remove(x)

if J(x) != J_next(x):

if x not in CLOSED:

OPEN.add(x)

else:

INCONS.add(x)

Because changes in operating point costs may cause some points to become under-

consistent, points need to be inserted into the OPEN set with a key value reflecting

the minimum of their old cost and their new cost. Furthermore, under-consistent

points need to use costs with un-inflated heuristics. The key(x) function is given in

pseudo-code below. Note that a list of two values is returned by key(x). Operating

point x is said to have a smaller key than point x′ if key(x)[0] < key(x’)[0] or if

key(x)[0] == key(x’)[0] and key(x)[1] < key(x’)[1].

def key(point x):

if J(x) > J_next(x):

return [J_next(x) + eps*h(x_0, x); J_next(x)]

73

model. If no new information is present, it either plans an initial sub-optimal path

to the final condition, or spends a cycle optimizing the current path. If there is still

time, the optimization process repeats, otherwise the algorithm calls the controller to

follow the path.

If new operating point cost information is present (e.g., the system detects an

unexpected instability and needs to update its operating point cost map accordingly,

or the system predicts unexpected behavior in the future), the algorithm updates

the operating point cost map. A heuristic factor is then used to determine whether

the updated operating point cost map has a “significant” enough effect on the path

cost. If the path cost changes significantly, the algorithm plans a new sub-optimal

path from scratch and begins optimizing again; otherwise the algorithm re-plans the

existing path, utilizing as much of the existing optimized path as possible.

Existing implementations of the ADA∗ and similar algorithms focus on path plan-

ning for autonomous ground and aerial vehicles, where on-board sensors can be used to

look ahead and update information about the space around the vehicle [99,102–106].

For the combustor control application, the sensors on the system can only measure

the current operating condition, and so the algorithm is unable to take advantage

of look-ahead information. For this reason, the predictor discussed in Chapter 7 is

incorporated into the path planning algorithm to provide look-ahead predictions of

the stability (cost) of future operating conditions along the path.

Additional considerations must be made for path planning with obstacles defined

by a classifier as discussed in Chapter 6. In this case, the operating space is no

longer a directed graph with costs associated with each move through the space, but

a continuous space with mathematically-defined boundaries, xB, between conditions

identified as “good” and “bad” given by (8.4) for the ELM and (8.5) for the FELM.

Note that we will treat the MLFN separately in the following.

xB ∈ XB = {x | h(x)β = 0} (8.4)

xB ∈ XB = {x | G(x; c, a)β = 0} (8.5)

74

The ADA∗ algorithm builds a path sequentially in steps. This can be applied to a

continuous space with obstacles defined by an ELM classifier by minimizing some cost

function taking steps Δx of fixed length ‖Δx‖ in a local region around the current

operating point. One approach to avoid crossing region boundaries is to determine

the direction r(x2) =
x2−x1

‖x2−x1‖ that minimizes deviation from the vector between the

starting point and the desired point ed =
xd−x1

‖xd−x1‖ (8.6)

r = min
x2

r(x2) · ed∥∥r(x2)
∥∥∥∥ed∥∥ (8.6)

while meeting a condition that the minimum distance to the boundary point d2 =(
xB − x2

)T (
xB − x2

) ≥ δ for positive distances, with distance sign defined by (8.7).

sign
(
d(x)
)
=

⎧⎪⎨⎪⎩
+1 ∀x | h(x)β > 0

−1 ∀x | h(x)β < 0

(8.7)

The minimum distance to the ELM decision boundary defined by (8.4) can be

found using Lagrange multipliers [107] by defining the Lagrangian L(x, λ) =
(
x −

x2

)T (
x− x2

)
+ λh(x)β and setting its partial derivatives to zero (8.8).

∇L(x, λ) = 0

∂

∂λ
L(x, λ) = h(x)β = 0 (8.8)

The step size, ‖Δx‖, must then be tuned to ensure that the steps are small enough

to avoid crossing over region boundaries. This process is illustrated in Figure 8.2.

��

�
��

��
��

��

���

��

��

��

�

��

��

��

	
�� 	
�� � 	
�� �

Figure 8.2. Path planning step in continuous domain.

75

This process could run into problems if non-convex obstacles are encountered.

Improvements to the path planning algorithm applied to a space defined by a classifier

like the ELM or FELM is an ongoing area of interest for this project. This process

can be applied to the FELM by placing its decision boundary function (8.5) in the

Lagrangian instead of the ELM decision boundary function.

One candidate for the overall cost function for the path is the total Euclidean

path length plus some penalty based on the closeness of the path to obstacles. If

straight-line steps of length ‖Δx‖ are taken, then the path length can be simplified

to the total number of steps, N , times this length (8.9)

Jp = N‖Δx‖+ α
N∑
k=1

c
(
d(xk)

)
(8.9)

where c(·) : R → R is some cost function that penalizes the path for being too close

to obstacles, and α is a weighing factor used to adjust the relative weight of path

length and the obstacles proximity penalty.

Using the MLFN classifier, it is more difficult to evaluate the decision boundary

defined by (8.10), where yB is an m-element uniform PDF indicating the boundary

between classifications.

xB ∈ XB (8.10)

=
{
x|fM

(
WMfM−1

(
WM−1fM−2

(
. . . f1(W1x+ b1) . . .

)
+ bM−1

)
+ bM

)
= yB

}
In this case, the a priori map of the operating space of the combustor can be

discretized by evaluating it over a grid of possible input conditions, and a directed

graph of the operating space’s classification can be built. The ADA∗ algorithm can

then be run without modification on the discretized map of the operating space, and

nearest discrete points in the space can be updated with the predictor when predicted

operating conditions do not match classification.

76

9. CONCLUSIONS

A nine-element research combustor was designed and built for the purpose of devel-

oping a data-driven classifier of the operating space of the combustor that could be

used as an a priori map of the operating mode of the flame at a given operating

condition, and for the purpose of developing a data-driven predictor that could use in

situ information to predict upcoming flame modes. An experimental procedure was

designed to characterize the operating space of this system. A LabVIEW command

and control VI was developed to interface with existing lab hardware and automate

this experimental procedure and data collection process.

Analysis of the structure of the experimental data was presented. K-means cluster-

ing was used to label experimental data points as “attached”, “detached”, “flickering”,

and “blow-out”. A multi-layer feed-forward neural network operating point classifier

was built using the labeled experimental data to act as a map of “good” (detached)

and “bad” (attached, flickering, or blow-out) operating conditions throughout the

space. The classifier exhibited 91% accuracy in labeling the operating class of the

flame (“good” or “bad”) when tested on a validation data set that was excluded from

the training set. This indicates that a priori mapping of the operating modes of the

combustor system is feasible, but not perfect. This operating point classifier could

act as a map for planned a priori trajectories through the operating space of the sys-

tem that avoid undesirable operating modes, but given the classifier’s accuracy, real

time updates to these trajectories would likely be required as unexpected behaviors

become apparent.

To this end, a long short-term memory recurrent neural network predictor was

built using the labeled experimental data set. This predictor monitors the operation

of the combustor in situ, giving it access to significantly more information than the

classifier—including operation history—that it can use to predict what flame mode

77

will occur next. The predictor is 92% accurate in predicting the operating mode of

the next reading from the combustor on a validation data set, and predicts which spe-

cific mode identified by the K-means classifier will be seen; not just “good” or “bad”

classifications. If only “good” and “bad” classifications are required, the predictor’s

accuracy improves. The predictor can be used as a substitute for “look-ahead” in-

formation about the operating space of the combustor, and can be used to inform a

real-time path planning algorithm about predicted behaviors that do not match the

a priori operating space map. While the predictor does provide information about

upcoming operating conditions, two drawbacks exist:

1. The predictor only provides a probabilistic estimate of the upcoming operating

condition.

2. As presented the predictor only predicts the operating mode of the next mea-

surement of the combustion chamber.

The first drawback is intrinsic to the system and the fact that our path is temporal,

not spacial, in nature—we cannot measure future operating modes directly. The

second drawback can be addressed by training the predictor to output a series of

upcoming predicted operating modes instead of just one. The training process can

be modified to provide each training batch with a label batch that is itself a series

of upcoming operating modes instead of only the next operating mode. This could

be implemented with the current network structure and would require only minor

changes to the Tensorflow model. This method would, however, require modifications

to the way that data is collected. Currently, operating modes are characterized based

on static measurements: the input condition is not changing while measurements

are taking place. In order to predict a sequence of operating modes, training data

would need to include measurements as the operating condition is changing along

a prescribed path. These paths, then, would need to adequately blanket the region

of interest in the operating space in much the same way that the Halton-sequence-

generated operating conditions of interest currently do.

78

A controller architecture was introduced that utilizes the operating space classifier

and operating mode predictor to plan a trajectory between desired operating condi-

tions in the combustor’s operating space, and to update this trajectory as predicted

behavior deviates from the behavior of the a priori map. A path planning algorithm

was introduced that determines a feasible and optimal path in real time through

the operating space of the system that moves the system from its current operating

condition to a desired condition while avoiding regions of instability and blow-out.

The accuracy of both the MLFN classifier and the LSTM predictor on the vali-

dation data set are promising considering the apparent complexity of the system. A

path through the input space of the combustor planned using the classifier as an a

priori map can then take advantage of the additional information available in situ by

using the predictor to monitor the current operating conditions of the combustor as

well as its history and determine what operating mode is most likely to occur next.

When the predicted operating mode does not match the expected mode, the map

can be updated with this new information and the anytime repairing path planning

algorithm can provide a corrected path right away.

Both the a priori map and the in situ classifier provide an estimate of the current

and future operating conditions of the combustor. Operating mode classifications

are based on features present in the data that is collected, and, other than blow-

out conditions, it is difficult to verify that an identified operating mode matches

the actual operating mode for a given input. Furthermore, some gradient may exist

between operating modes, such as the intermittent attachment and detachment of

flames when transitioning between attached stable flames and detached stable flames.

This makes it difficult to quantify the performance of the path planning algorithm

using the classifier map and predictor.

The approach presented herein may be viable as a method for expediting the

development of a new combustor system. The current development method for new

combustor systems involves extensive testing to map out operating point transitions

to achieve desired emissions and power output performance metrics while maintaining

79

safe operation. See, for example, [108] for some discussion of this testing procedure.

It is hoped that a method similar to that presented herein could be implemented,

incorporating emissions and power output measurements into the training data set,

to automatically determine operating point transition paths that achieve performance

and stability metrics on a full-scale combustor system. By automating this portion of

the combustor design process, it is hoped that new designs may be completed more

quickly and cheaply, thus enabling faster development of next generation combustor

technologies to meet increasingly strict emissions regulations.

80

10. RECOMMENDATIONS

Recommended next steps are divided into three categories: those pertaining to the

hardware, those pertaining to the experimental procedure, and those pertaining to

the controller. First, it is recommended that a combustion chamber with smaller

cross-sectional area be used for future analysis. This is a fundamental change to the

combustion system, which will require all new data gathering, classifier design, and

predictor design. The existing CC VI and Tensorflow scripts can be used with little or

no modification to run these new experiments and training procedures. It is expected

that this change will enable the combustor to more dramatically excite thermoacoustic

instabilities and resonance modes in the chamber while also reducing the thermal

capacity of the chamber; making temperature measurements more viable for use in

analyzing the system’s performance. This change would require a new combustion

chamber, as well as some re-design or re-work of the nine-element combustor assembly

so that it can be mated with the new chamber.

Experiments could be repeated with additional combustors with some modifica-

tion of the CC VI and little to no modification of the Tensorflow scripts. In this

way, one could study the generalizability of the current approach to other combustor

systems. The CC VI and Python script used to generate test points would need to be

modified to account for different input variables that may be adjusted for the different

combustor systems, for different ranges of inputs that provide desired flow rates and

fuel-air equivalence ratios, and for different stable re-ignite points.

A method for labeling data points as they are collected would improve confidence

in the validity of the labels applied to data points, and may improve the performance

of the classifier and predictor trained using these labels in correctly mapping out the

operating space and predicting future operating modes. Currently data points are

labeled with a “flame” or “no flame” status based on the median-filtered mean power

81

recorded at the dynamic pressure sensor closest to the combustor. If additional sensors

or processing techniques could be applied to robustly identify operating conditions

as “attached”, “detached”, or “flickering” in situ, then unsupervised classification of

operating conditions would no longer be needed and any classifier or predictor trained

from the data would have greater confidence in the validity of its outputs. Further-

more, the ability to identify operating conditions in situ would provide feedback as to

whether the operating space map and predictor are correctly identifying conditions,

and may provide an avenue by which these two components could be adapted online.

Attempts could be made to modify the experimental procedure to better canvas

the operating space of the combustor. Currently, if the combustor blows out early in

its move towards the next desired operating point, any ignitable operating conditions

between the blow-out point and the desired operating point will be skipped, and the

combustor will jump straight to the desired operating point to check for re-ignition.

This could lead to missed stable operating conditions that may be reachable on other

trajectories. Furthermore, the reliance on a single known re-ignite point may result

in identified stable operating modes being biased towards this re-ignite point. One

possible way to improve canvassing of the operating space would be to begin by

randomly sampling operating conditions to find several stable re-ignition points and

then choosing the re-ignition point from which we restart after each blow out and

failed re-ignition at a target condition randomly from several options. This would

effectively change the starting condition for the next test path through the operating

space and would offer different starting conditions for most re-ignites.

An extension to improving canvassing of the operating space would be to canvas

the operating space with a series of trajectories rather than stationary operating

modes, and attempting to train a predictor based on these trajectories that can

predict a series of upcoming operating modes. This could enable better look-ahead

for the path planning algorithm. Furthermore, developing the classifier and predictor

using non-stationary data might enable these components to better handle transient

conditions in the combustor system.

82

The natural progression of this research would be to extend these methods to

developing a data-driven dynamic model of the system that can be used to predict

the system’s response to a given input sequence. The goal of this model would be to

capture the dynamic response characteristics of the chamber, not only the operating

mode characteristics as the current classifier and predictor do. This presents several

challenges, including determining how to characterize the dynamic response of the

system from a given input. Techniques like principle component analysis (PCA)

and singular spectrum analysis (SSA) may be viable tools for this characterization.

Whatever technique proves viable, a data-driven dynamic model can be build from

inputs uk ∈ R
m and response feature vectors xk ∈ R

n following a similar method to

the classifier and predictor discussed herein.

An adaptive model predictive controller (MPC) [109,110] could next be developed

to regulate the combustor operating point to the desired path. An MPC utilizes an

internal model of the system and the current operating point to predict the evolution

of the system over a finite prediction horizon. The control effort is calculated by

optimizing the predicted performance of the system over a finite horizon to determine

an optimal control sequence U =
[
u0 u1 · · · uN−1

]
, and the first step of the

control sequence u0 is applied to the plant. This process repeats for every sampling

cycle. Typically in MPC, the predicted system response is described by a difference

equation (10.1).

x̂k+1 = f
(
x̂k,uk

)
yk = g

(
x̂k

)
(10.1)

Here we will refer to x̂k as the predicted state of the system at time k. The control

and state sequences must satisfy uk ∈ U ⊂ R
m and x̂k ∈ X ⊂ R

n respectively for

all k. The state sequence resulting from the control sequence U is denoted X̂ =[
x̂0 x̂1 · · · x̂N−1

]
. The control objective is to steer the system state sequence

X̂ such that the states follow a desired trajectory sequence P ∈ X
N ⊂ R

n×N . For

83

initial state x, trajectory length N , input trajectory U, and resulting predicted state

trajectory X̂, the cost can be defined as JMPC(x,U) (10.2)

JMPC(x,U) =
N−1∑
i=0

[(
pi − x̂i

)T
Q
(
pi − x̂i

)
+ uT

i Rui

]
(10.2)

where Q ∈ R
n×n is a matrix that can be used to adjust the weights of the error vector

(pi− x̂i)—for instance by weighing error in certain state variables more heavily than

others—and R ∈ R
m×m is a matrix that can be used to adjust the weights of each

element of the control effort ui. It is possible to utilize different values for these

matrices at each step in the sequence, i.e. Qi and Ri, thus allowing us to weigh errors

and control efforts differently throughout time. As a first attempt, it would be simpler

to choose constant controller cost function weight matrices. The control problem then

requires determining the control sequence U0 that minimizes a cost function JMPC

(10.3).

J0
MPC = min

U

{
JMPC(x,U) | uk ∈ U, k = 0, . . . , N − 1

}
(10.3)

The control law then applies the first element of the optimal control sequence

u0
0 to the system. On the next sampling cycle, the current state of the system x is

updated and the process is repeated. The overall control system including the path

planner but without the predictor discussed previously is illustrated in Figure 10.1.

��
�

�
�� ��

����

	
���� ���
�

������

Figure 10.1. Path-following controller block diagram.

Obviously an important part of the model predictive control scheme is the model

chosen to represent the system. For the combustion system in question, a good

physics-based model does not exist or is computationally inefficient for control pur-

poses. For this reason, it is proposed that a data-based model be developed using the

feature vectors obtained from techniques like PCA and SSA on the same experiment

84

performed to train the state classifier, discussed in Chapter 4. A candidate model

follows the same design approach as the ELM classifier, but incorporates input data

to predict the state of the system at the next time step (10.4)

x̂k+1 = hT
(
qk,W

)B (10.4)

where qk =
[
xT
k uT

k

]T
∈ R

n+m is the feature vector augmented by adding the inputs

to the end, W =
[
w1 · · · wM

]
∈ R

(n+m)×M is a matrix of the input weights for the

M hidden nodes, hT =
[
h1

(
q,w1

)
, h2

(
q,w2

) · · · hM

(
q,wM

)] ∈ R
M is a vector

of the M hidden nodes, and B =
[
β1 · · · βn

]
∈ R

M×n is the output weight matrix

from the M hidden nodes to the n features of xk+1 ∈ R
n. The radial basis function

(10.5) is a candidate for the hidden node activation function.

hi

(
q,wi

)
= exp

{
−(qTwi − ci

)2
σ2
i

}
(10.5)

In (10.5), the parameter ci represents the center of the ith hidden node, and

parameter σi represents the width of the ith hidden node. For the ELM algorithm,

these parameters and the input weights wi are randomly initialized and held constant;

only the output weights B are tuned.

Note that for the ELM, a more complicated hidden node is chosen such that a

single-layer feed-forward network may be used with randomly initialized input weights

and hidden node parameters while maintaining enough complexity to capture the

dynamics we wish to model. MLFN structures may be viable as well. When all but

the output weights of the network are initialized randomly, it is possible that the

MLFN structure and ELM structure discussed here are equivalent for this problem.

The proper structure for modeling the dynamics of the system is an open question.

Given L training sets ℵj =
{
(xi,ui)

j | xj
i ∈ X ⊂ R

n, uj
i ∈ U ⊂ R

m, i =

1, . . . , N, j = 1, . . . , L
}
, the ELM can be trained by first constructing the next-

step feature matrix X′ ∈ R
n×L(N−1) (10.6), the augmented feature matrix Q ∈

R
(n+m)×L(N−1) (10.7), and the matrices W and B discussed previously. Note that

85

the transposes of X′ and Q are shown in (10.6) and (10.7) respectively in order to fit

the expression on a single line.

(
X′)T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
x1
2

)T(
x1
3

)T
...(

x1
N

)T(
x2
2

)T
...(

x2
N

)T
...(

xL
2

)T
...(

xL
N

)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.6)

QT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
q1
1

)T(
q1
2

)T
· · ·(

q1
N−1

)T(
q2
1

)T
· · ·(

q2
N−1

)T
· · ·(
qL
1

)T
· · ·(

qL
N−1

)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.7)

86

The hidden node output matrix H(Q,W) ∈ R
L(N−1)×M (10.8) is next calculated

using the M hidden nodes with randomly assigned centers ci and widths σi for i ∈
{1, . . . ,M}.

H(Q,W) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hT (q1
1,W)
...

hT (q1
N−1,W)

hT (q2
1,W)
...

hT (q2
N−1,W)
...

hT (qL
1 ,W)
...

hT (qL
N−1,W)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.8)

Based on these definitions, the following theorem can be stated [76]:

Theorem 10.0.1 Given some small positive value δ > 0 and activation function

h : R → R which is infinitely differentiable, there exists M ≤ N such that for N

arbitrary distinct samples
(
xi, ti

) | xi ∈ R
p, ti ∈ R

n, for any input weight vectors

wi ∈ R
n and any hidden layer parameters bi ∈ R chosen according to any continuous

probability distribution function, then with probability one, ‖HN×MBM×n −TN×n‖ <
δ.

The proof for Theorem 10.0.1 is given in [76].

Finally, it has been proven that the minimum-norm least squares solution B̂ to the

system HB = X′ is given by (10.9), where H† =
(
HHH

)−1
HH is the Moore-Penrose

pseudo-inverse, and HH is the conjugate transpose of H [111, 112]. Note that the

Moore-Penrose pseudo-inverse results in a matrix with transposed dimensions.

B̂ =
[
H(Q,W)

]†(
X′)T (10.9)

The solution (10.9) has the following properties:

87

1. It is the least-squares solution to HB = X′:∥∥HB̂ −X′∥∥ = ∥∥HH†X′ −X′∥∥ = min
B

∥∥HB −X′∥∥
2. It has the smallest norm among all of the least squares solutions of HB = X′:∥∥B̂∥∥ = ∥∥H†X′∥∥ ≤ ∥∥B∥∥

∀B ∈ {B | ‖HB −X′‖ ≤ ‖HZ−X′‖, ∀Z ∈ R
M×n
}

3. The minimum-norm least squares solution is unique.

When used to predict the performance of the system, the predicted state update

equation as a function of the augmented predicted state vector q̂k is given by (10.10).

x̂k+1 = h
(
q̂k,W

)B̂ (10.10)

The prediction error is defined as êk = xk − x̂k, where xk is the actual system

feature vector at the kth time step. With this ELM model, the MPC discussed above

could be a viable candidate for a model-based controller using a data-drive model for

regulating the operating condition of the research combustor system.

The next step would be incorporating a method for updating the data-driven

model of the system in the presence of unexpected system behavior. With the ELM

model discussed previously, this simply requires that one be able to adjust the network

weight matrix B with new operating data. One candidate method for updating the

network weight matrix as new information becomes available is the online sequential

ELM (OS-ELM) algorithm [82,83,113,114]. This algorithm trains the initial network

as discussed previously, defining P0 =
(
HHH

)−1
, so thatH† = P0H

H . The algorithm

then updates the network weight matrix sequentially with each new data point. Given

the new augmented feature vector qk+1 and system response feature vector x′
k+1, the

algorithm updates the output weight matrix sequentially according to (10.11).

Pk+1 = Pk −
Pkh
(
qk+1

)
hT
(
qk+1

)
Pk

1 + hT
(
qk+1

)
Pkh
(
qk+1

)
B̂k+1 = B̂k +Pk+1h

(
qk+1

)((
x′
k+1

)T − hT
(
qk+1

)B̂k) (10.11)

88

Rather than applying this algorithm with each new data point, a threshold δ could

be introduced. The algorithm could then retrain the output weight matrix when the

norm of the error vector ‖êk+1‖ > δ. The OS-ELM algorithm can be summarized as:

1. Randomly assign input weight vectors wi, optional biases bi, and hidden layer

parameters ζi for i = 1, . . . , L hidden nodes.

2. Calculate the hidden layer output matrix H (6.7).

3. Calculate the initial minimum-norm least squares output weight vector B̂ using

(6.6).

4. Present the next data point ℵk+1 =
(
qk+1,x

′
k+1

)
.

5. Calculate the new hidden layer activation vector h(qk+1), predicted state x̂k+1,

and prediction error êk+1.

6. If ‖êk+1‖ > δ, where δ is a heuristic prediction error threshold, update the

output weight matrix B̂k+1 using (10.11).

7. Set k = k + 1 and return to step 4.

The OS-ELM algorithm maintains a static neural network and only updates the

output weight matrix when new information is available, or when prediction error

is too high. Another possibility for adapting the system model online is to use an

algorithm that modifies the underlying hidden layer of the neural network when pre-

diction error is too high. Algorithms exist that seek to grow a network, choosing

optimal hidden nodes at each iteration, or prune a very large network, leaving only

the most important nodes for predicting system performance. Network growing algo-

rithms including the incremental ELM (I-ELM) [75, 113] and adaptive growth ELM

(AG-ELM) [115]. The I-ELM algorithm begins with a small network trained in ex-

actly the same way as the traditional ELM, and then adds a single node at a time

until an error requirement or the maximum network size is met. An enhanced I-ELM

(EI-ELM) chooses new nodes from a set of candidate nodes based on which node has

89

the largest effect on the overall error. The AG-ELM algorithm adaptively builds a

network from scratch one node at a time until some prediction error threshold or a

maximum number of hidden nodes is reached.

The optimal pruning ELM (OP-ELM) [113, 116] algorithm seeks to prune a very

large ELM so that only the most important nodes remain. The OP-ELM algorithm

begins with a very large ELM trained in the same way as described previously but

possibly incorporating various hidden layer activation functions, e.g. linear, sigmoid,

Gaussian. OP-ELM then ranks the hidden layer neurons based on their contribution

to reducing the prediction error of the ELM by applying the multi-response spare

regression algorithm [117]. The best hidden nodes are then selected through leave-

one-out validation.

While each of these algorithms seeks to choose the best hidden node at each

step, they still build a static hidden node structure that stops adapting once the

maximum network size or desired prediction error has been reached. Model structure

and adaptive training algorithms are an open area of research, and what model and

adaptation algorithm is best for this problem is an open question that may merit

further study. This discussion of MPC and adaptive ELM is given for the sake of

establishing some ground work toward the goal of developing a data-driven model-

based controller for the combustor system. Many questions remain, and this is an

area where future research may be merited.

LIST OF REFERENCES

90

LIST OF REFERENCES

[1] G. Bulat, K. Liu, G. Brickwood, V. Sanderson, and B. Igoe, “Intelligent oper-
ation of siemens (SGT-300) DLE gas turbine combustion system over an ex-
tended fuel range with low emissions,” in Proceedings of the ASME Turbo Expo
2011, (Vancouver, British Columbia, Canada), pp. 917–925, ASME, Jan. 2011.

[2] H. C. Mongia, “N+3 and N+4 generation aeropropulsion engine combustors:
part 6: operating conditions, target goals and lifted jets,” in Proceedings of the
49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, (San Jose, CA),
AIAA, July 2013.

[3] R. D. Flack, Fundamentals of jet propulsion with applications, vol. 17. Cam-
bridge University Press New York, 2005.

[4] K. M. Tacina, “Swirl-venturi lean direct injection combustion technology,” in
Prceedings of the Spring Technical Meeting of the Central States Section of the
Combustion Institute, pp. 1–9, Apr. 2012.

[5] C.-M. Lee, “NASA project develops next generation low-emissions combus-
tor technologies,” in Prceedings of the 51st AIAA Aerospace Sciences Meeting,
(Grapevine, TX), AIAA, Jan. 2013.

[6] K. K. Kuo, Principles of combustion. Hoboken, NJ: John Wiley, 2nd ed., 2005.

[7] R. Meyer, R. A. DeCarlo, S. Pekarek, and C. Doktorcik, “Gas turbine engine
behavioral modeling,” Purdue Electrical and Computer Engineering Technical
Reports, vol. 14, Jan. 2014.

[8] A. P. Dowling and A. S. Morgans, “Feedback control of combustion oscillations,”
Annual Review of Fluid Mechanics, vol. 37, no. 1, pp. 151–182, 2005.

[9] P. Schmitt, T. Poinsot, B. Schuermans, and K. P. Geigle, “Large-Eddy Sim-
ulation and experimental study of heat transfer, nitric oxide emissions and
combustion instability in a swirled turbulent high-pressure burner,” Journal of
Fluid Mechanics, vol. 570, pp. 17–46, Jan. 2007.

[10] H. Pitsch, “Large-Eddy Simulation of turbulent combustion,” Annual Review
of Fluid Mechanics, vol. 38, no. 1, pp. 453–482, 2006.

[11] G. Staffelbach, L. Y. M. Gicquel, G. Boudier, and T. Poinsot, “Large Eddy
Simulation of self excited azimuthal modes in annular combustors,” Proceedings
of the Combustion Institute, vol. 32, no. 2, pp. 2909–2916, 2009.

[12] R. Garby, L. Selle, and T. Poinsot, “Large-Eddy Simulation of combustion insta-
bilities in a variable-length combustor,” Comptes Rendus Mecanique, vol. 341,
pp. 220–229, Jan. 2013.

91

[13] K. K. Venkataraman, L. H. Preston, D. W. Simons, B. J. Lee, J. G. Lee, and
D. A. Santavicca, “Mechanism of combustion instability in a lean premixed
dump combustor,” Journal of Propulsion and Power, vol. 15, pp. 909–918, Nov.
1999.

[14] H. J. Lee, J. G. Lee, B. Quay, and D. Santavicca, “Mechanism of combustion
instability due to flame-vortex interactions in a lean premixed gas turbine com-
bustor,” in Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion
Conferences, AIAA, July 2013.

[15] G. B. King, N. M. Laurendeau, and M. W. Renfro, “Two-Point Scalar Time-
Series Measurements in Turbulent Partially Premixed Flames,” Final Report
20090429217, AFOSR/NA, Arlington, VA, Feb. 2009.

[16] K. M. Kopp-Vaughan, S. G. Tuttle, M. W. Renfro, and G. B. King, “Heat re-
lease and flame structure measurements of self-excited acoustically-driven pre-
mixed methane flames,” Combustion and Flame, vol. 156, pp. 1971–1982, Oct.
2009.

[17] J. J. Keller, “Thermoacoustic oscillations in combustion chambers of gas tur-
bines,” AIAA Journal, vol. 33, no. 12, pp. 2280–2287, 1995.

[18] S. Ducruix, T. Schuller, D. Durox, and S. Candel, “Combustion dynamics and
instabilities: Elementary coupling and driving mechanisms,” Journal of Propul-
sion and Power, vol. 19, no. 5, pp. 722–734, 2003.

[19] J. C. DeLaat, G. Kopasakis, J. R. Saus, C. T. Chang, and C. Wey, “Active
combustion control for a low-emissions aircraft engine combustor prototype:
Experimental results,” Journal of Propulsion and Power, vol. 29, no. 4, pp. 991–
1000, 2013.

[20] M. Harvazinski, W. Anderson, and C. Merkle, “Combustion instabil-
ity diagnostics using the rayleigh index,” in Proceedings of the 47th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, (San Diego,
CA), AIAA, Aug. 2011.

[21] P. Weigand, W. Meier, X. R. Duan, R. Giezendanner-Thoben, and U. Meier,
“Laser diagnostic study of the mechanism of a periodic combustion instability
in a gas turbine model combustor,” Flow, Turbulence and Combustion, vol. 75,
pp. 275–292, Dec. 2005.

[22] J. G. Lee and D. A. Santavicca, “Experimental diagnostics for the study of
combustion instabilities in lean premixed combustors,” Journal of Propulsion
and Power, vol. 19, pp. 735–750, Sept. 2003.

[23] J. W. S. Rayleigh, “The explanation of certain acoustical phenomena,” Nature,
vol. 18, no. 455, pp. 319–321, 1878.

[24] G. A. Richards, D. L. Straub, and E. H. Robey, “Passive control of combustion
dynamics in stationary gas turbines,” Journal of Propulsion and Power, vol. 19,
no. 5, pp. 795–810, 2003.

[25] Y. Huang and V. Yang, “Dynamics and stability of lean-premixed swirl-
stabilized combustion,” Progress in Energy and Combustion Science, vol. 35,
pp. 293–364, Aug. 2009.

92

[26] V. Bellucci, C. O. Paschereit, P. Flohr, and F. Magni, “On the use of Helmholtz
resonators for damping acoustic pulsations in industrial gas turbines,” in Pro-
ceedings of the ASME Turbo Expo 2011, (New Orleans, LA), pp. 2001–GT–0039,
ASME, June 2001.

[27] N. Tran, S. Ducruix, and T. Schuller, “Damping combustion instabilities with
perforates at the premixer inlet of a swirled burner,” Proceedings of the Com-
bustion Institute, vol. 32, no. 2, pp. 2917–2924, 2009.

[28] A. M. Annaswamy, M. Fleifil, J. W. Rumsey, R. Prasanth, J.-P. Hathout, and
A. F. Ghoniem, “Thermoacoustic instability: Model-based optimal control de-
signs and experimental validation,” IEEE Transactions on Control Systems
Technology, vol. 8, pp. 905–918, Nov. 2000.

[29] S. Candel, “Combustion dynamics and control: Progress and challenges,” Pro-
ceedings of the Combustion Institute, vol. 29, no. 1, pp. 1–28, 2002.

[30] C. O. Paschereit, E. Gutmark, and W. Weisenstein, “Structure and control of
thermoacoustic instabilities in a gas-turbine combustor,” Combustion Science
and Technology, vol. 138, pp. 213–232, Sept. 1998.

[31] C. O. Paschereit, E. Gutmark, and W. Weisenstein, “Control of thermoacoustic
instabilities and emissions in an industrial-type gas-turbine combustor,” in Pro-
ceedings of the 27th Symposium (International) on Combustion, pp. 1817–1824,
CI, 1998.

[32] A. S. Morgans and A. P. Dowling, “Model-based control of combustion insta-
bilities,” Journal of Sound and Vibration, vol. 299, pp. 261–282, Jan. 2007.

[33] J. M. Cohen and A. Banaszuk, “Factors affecting the control of unstable com-
bustors,” Journal of Propulsion and Power, vol. 19, no. 5, pp. 811–821, 2003.

[34] J. R. Seume, N. Vortmeyer, W. Krause, J. Hermann, C.-C. Hantschk, P. Zangl,
S. Gleis, D. Vortmeyer, and A. Orthmann, “Application of active combustion
instability control to a heavy duty gas turbine,” in Proceedings of the ASME
ASIA ’97 Conference & Exposition, (Singapore), pp. 97–AA–119, ASME, Oct.
1997.

[35] C. E. Johnson, Y. Neumeier, M. Neumaier, B. T. Zinn, D. D. Darling, and
S. S. Sattinger, “Demonstration of active control of combustion instabilities on
a full-scale gas turbine combustor,” in Proceedings of ASME Turbo Expo 2001,
(New Orleans, LA), pp. 2001–GT–0519, ASME, June 2001.

[36] P. J. Langhorne, A. P. Dowling, and N. Hooper, “Practical active control system
for combustion oscillations,” Journal of Propulsion and Power, vol. 6, no. 3,
pp. 324–333, 1990.

[37] Y. Neumeier and B. T. Zinn, “Experimental demonstration of active control of
combustion instabilities using real-time modes observation and secondary fuel
injection,” in Proceedings of the 26th Symposium (International) on Combus-
tion, pp. 2811–2818, CI, 1996.

[38] P. Barooah, T. J. Anderson, and J. M. Cohen, “Active combustion instability
control with spinning valve actuator,” in Proceedings of ASME Turbo Expo
2002, (Amsterdam, The Netherlands), pp. GT–2002–30042, ASME, June 2002.

93

[39] N. Docquier and S. Candel, “Combustion control and sensors: A review,”
Progress in Energy and Combustion Science, vol. 28, no. 2, pp. 107–150, 2002.

[40] M. Fowler, UML distilled: a brief guide to the standard object modeling lan-
guage. Addison-Wesley Professional, 2004.

[41] K.-H. Yoo, J.-C. Kim, H.-G. Sung, L. Zhang, and V. Yang, “Flow dynamics in
combustors with multi-element swirl injectors,” in Proceedings of the 49th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Exposition, (Orlando, FL), pp. AIAA–2011–786, AIAA, Jan. 2011.

[42] A. H. Lefebvre, Gas turbine combustion. CRC Press, 2nd ed., Sept. 1998.

[43] E. Braaten and G. Weller, “An improved low-discrepancy sequence for multidi-
mensional quasi-Monte Carlo integration,” Journal of Computational Physics,
vol. 33, pp. 249–258, Nov. 1979.

[44] N. Petrov, I. Jordanov, and J. Roe, “Identification of radar signals using neu-
ral network classifier with low-discrepancy optimisation,” in Proceedings of the
2013 IEEE Congress on Evolutionary Computation (CEC), (Cancun, Mexico),
pp. 2658–2664, IEEE, June 2013.

[45] W. J. Morokoff and R. E. Caflisch, “Quasi-Monte Carlo integration,” Journal
of Computational Physics, vol. 122, pp. 218–230, Dec. 1995.

[46] J. H. Halton and G. B. Smith, “Algorithm 247: Radical-inverse quasi-random
point sequence,” Communications of the ACM, vol. 7, pp. 701–702, Dec. 1964.

[47] V. Hanta and A. Prochzka, “Rational approximation of time delay,” Institute
of Chemical Technology in Prague. Department of computing and control engi-
neering. Technicka, vol. 5, no. 166, p. 28, 2009.

[48] P. Lancaster and L. Rodman, Algebraic riccati equations. Clarendon Press,
1995.

[49] M. Athans, “The role and use of the stochastic linear-quadratic-Gaussian
problem in control system design,” IEEE Transactions on Automatic Control,
vol. 16, pp. 529–552, Dec. 1971.

[50] D. Straub, D. Ferguson, R. Rohrssen, and E. Perez, “Design considerations for
remote high-speed pressure measurements of dynamic combustion phenomena,”
in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, (Reno,
NV), pp. AIAA 2007–561, AIAA, Jan. 2007.

[51] G. Ferrara, L. Ferrari, and G. Sonni, “Experimental characterization of a remot-
ing system for dynamic pressure sensors,” in Proceedings of the ASME Turbo
Expo 2005, (Reno-Tahoe, NV), pp. GT2005–68733, ASME, Jan. 2005.

[52] D. R. Englund and W. B. Richards, “The infinite line pressure probe,” Technical
Memorandum NASA TM-83582, National Aeronautics and Space Administra-
tion, Cleveland, OH, May 1984.

[53] H. Bergh and H. Tijdeman, “Theoretical and experimental results for the dy-
namic response of pressure measuring systems,” Technical Report NLR-TR
F.238, Nationaal Lucht-En Ruimtevaartlaboratorium, Jan. 1965.

94

[54] R. D. Samuelson, “Pneumatic instrumentation lines and their use in measur-
ing rocket nozzle pressure,” Technical Report RN-DR-0124, Aerojet-General
Corporation, Sacramento, CA, July 1967.

[55] M. A. White, M. Dhingra, and J. V. R. Prasad, “Experimental analysis of a
waveguide pressure measuring system,” Journal of Engineering for Gas Tur-
bines and Power, vol. 132, pp. 041603–041603, Jan. 2010.

[56] H. Zinn and M. Habermann, “Developments and experiences with pulsation
measurements for heavy-duty gas turbines,” in Proceedings of GT2007, (Mon-
treal, Canada), pp. GT2007–27475, ASME, May 2007.

[57] T. M. Cover and J. A. Thomas, Elements of information theory. Hoboken, NJ:
Wiley, 2006.

[58] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-
nical Journal, vol. 5, no. 1, pp. 3–55, 1948.

[59] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-means clustering al-
gorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[60] C. Ding and X. He, “K-means clustering via principal component analysis,” in
Proceedings of the 21st International Conference on Machine Learning, ICML,
(Banff, Canada), ACM, 2004.

[61] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition
Letters, vol. 31, pp. 651–666, June 2010.

[62] Martn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Man, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vigas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems.
2015. Software available from tensorflow.org.

[63] P. S. Bradley and U. M. Fayyad, “Refining initial points for K-means cluster-
ing,” in Proceedings of the 15th International Conference on Machine Learning,
(San Francisco, CA), pp. 91–99, ICML, 1998.

[64] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, no. 2579-2605, p. 85, 2008.

[65] L. Van der Maaten, “Learning a parametric embedding by preserving local
structure,” in Proceedings of the 12th International Conference on Artificial
Intelligence and Statistics, vol. 5 of JMLR: W&CP, (Clearwater Beach, FL),
pp. 384–391, 2009.

[66] L. Van der Maaten and G. Hinton, “Visualizing non-metric similarities in mul-
tiple maps,” Machine learning, vol. 87, no. 1, pp. 33–55, 2012.

95

[67] V. M. Janakiraman, X. Nguyen, J. Sterniak, and D. Assanis, “Modeling the
stable operating envelope for partially stable combustion engines using class
imbalance learning,” IEEE Transactions, in Review, June 2013.

[68] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, pp. 273–297, Sept. 1995.

[69] G. M. Fung and O. L. Mangasarian, “Multicategory proximal support vector
machine classifiers,” Machine Learning, vol. 59, pp. 77–97, May 2005.

[70] J. A. K. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Processing Letters, vol. 9, pp. 293–300, June 1999.

[71] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for
regression and multiclass classification,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 42, pp. 513–529, Apr. 2012.

[72] C. I. Torres, F. Hernandez, A. Trejo, and G. Ronquillo, “Support vector ma-
chines applied to a combustion process,” in Proceedings of the 9th Electronics,
Robotics and Automotive Mechanics Conference (CERMA), pp. 176–181, Nov.
2012.

[73] K. I. Wong, P. K. Wong, C. S. Cheung, and C. M. Vong, “Modeling and op-
timization of biodiesel engine performance using advanced machine learning
methods,” Energy, vol. 55, pp. 519–528, June 2013.

[74] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: A new
learning scheme of feedforward neural networks,” in Proceedings of the IEEE
International Joint Conference on Neural Networks, 2004, vol. 2, pp. 985–990,
IEEE, July 2004.

[75] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using incre-
mental constructive feedforward networks with random hidden nodes,” IEEE
Transactions on Neural Networks, vol. 17, pp. 879–892, July 2006.

[76] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory
and applications,” Neurocomputing, vol. 70, pp. 489–501, Dec. 2006.

[77] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

[78] G.-B. Huang, Y.-Q. Chen, and H. A. Babri, “Classification ability of single
hidden layer feedforward neural networks,” IEEE Transactions on Neural Net-
works, vol. 11, pp. 799–801, May 2000.

[79] A. Vaughan and S. V. Bohac, “An extreme learning machine approach to pre-
dicting near chaotic HCCI combustion phasing in real-time,” arXiv preprint
arXiv:1310.3567, Oct. 2013.

[80] G. Strang, Linear algebra and its applications. Belmont, CA: Thomson,
Brooks/Cole, 4th ed., 2006.

[81] C.-F. Lin and S.-D. Wang, “Fuzzy support vector machines,” IEEE Transac-
tions on Neural Networks, vol. 13, pp. 464–471, Mar. 2002.

96

[82] G.-B. Huang, N.-Y. Liang, H.-J. Rong, P. Saratchandran, and N. Sundararajan,
“On-line sequential extreme learning machine,” in Proceedings of the IASTED
International Conference on Computational Intelligence, (Calgary, Canada),
IASTED, July 2005.

[83] H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchandran, “Online
sequential fuzzy extreme learning machine for function approximation and clas-
sification problems,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 39, pp. 1067–1072, Aug. 2009.

[84] Y. C. Shin, Intelligent systems: modeling, optimization, and control. No. 30 in
Automation and control engineering, Boca Raton: CRC Press, 2009.

[85] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proceedings of the International Conference on Learning Representations 2015,
ICLR, 2015.

[86] A. Stentz, “The focussed D* algorithm for real-time replanning,” in Proceedings
of the International Joint Conference on Artificial Intelligence, Aug. 1995.

[87] A. Stentz, “Optimal and efficient path planning for partially-known environ-
ments,” in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 4, pp. 3310–3317, IEEE, May 1994.

[88] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Au-
tonomous obstacle avoidance and maneuvering on a vision-guided MAV using
on-board processing,” in Proceedings of the 2011 IEEE International Confer-
ence on Robotics and Automation (ICRA), (Shanghai, China), pp. 2472–2477,
IEEE, May 2011.

[89] N. Subrahmanya and Y. C. Shin, “Constructive training of recurrent neural
networks using hybrid optimization,” Neurocomputing, vol. 73, pp. 2624–2631,
Aug. 2010.

[90] Y. Xia and G. Feng, “A new neural network for solving nonlinear projection
equations,” Neural Networks, vol. 20, pp. 577–589, July 2007.

[91] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication,” Science, vol. 304, pp. 78–80,
Apr. 2004.

[92] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in Proceedings of the 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp. 6645–6649, IEEE, May
2013.

[93] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5,
pp. 157–166, Mar. 1994.

[94] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[95] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition,”
Manuscript, 2014.

97

[96] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirec-
tional LSTM and other neural network architectures,” Neural Networks, vol. 18,
pp. 602–610, July 2005.

[97] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling.,” in Proceedings
of Interspeech 2014, (Singapore), pp. 338–342, ISCA, Sept. 2014.

[98] M. Liwicki, A. Graves, H. Bunke, and J. Schmidhuber, “A novel approach to
on-line handwriting recognition based on bidirectional long short-term memory
networks,” in Proceedings of the 9th International Conference on Document
Analysis and Recognition, vol. 1, pp. 367–371, 2007.

[99] S. Koenig and M. Likhachev, “Improved fast replanning for robot navigation in
unknown terrain,” in Proceedings of the 2002 IEEE International Conference
on Robotics and Automation, vol. 1 of ICRA, pp. 968–975, IEEE, 2002.

[100] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with provable
bounds on sub-optimality,” Advances in Neural Information Processing Sys-
tems, 2003.

[101] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime
dynamic A*: An anytime, replanning algorithm,” in Proceedings of the 2005
International Conference on Automated Planning and Scheduling, AAAI, 2005.

[102] M. Pivtoraiko and A. Kelly, “Differentially constrained motion replanning using
state lattices with graduated fidelity,” in Proceedings of the 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, pp. 2611–
2616, IEEE, Sept. 2008.

[103] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile
autonomous vehicles,” in Proceedings of the 2001 American Control Conference,
vol. 1, (Arlington, VA), pp. 43–49, AACC, June 2001.

[104] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,” The International Journal of Robotics Research,
vol. 26, pp. 141–166, Feb. 2007.

[105] C. Sprunk, B. Lau, P. Pfaffz, and W. Burgard, “Online generation of kinody-
namic trajectories for non-circular omnidirectional robots,” in Proceedings of
the 2011 IEEE International Conference on Robotics and Automation (ICRA),
(Shanghai, China), pp. 72–77, IEEE, May 2011.

[106] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert,
T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. McNaughton, N. Miller,
K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y.-W. Seo,
S. Singh, J. Snider, A. Stentz, W. . Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae,
T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang,
J. Struble, M. Taylor, M. Darms, and D. Ferguson, “Autonomous driving in ur-
ban environments: Boss and the Urban Challenge,” Journal of Field Robotics,
vol. 25, pp. 425–466, Aug. 2008.

[107] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods.
Academic Press, 2014.

98

[108] H. Mongia, “TAPS: A fourth generation propulsion combustor technology for
low emissions,” in Proceedings of the AIAA International Air and Space Sym-
posium and Exposition: The Next 100 Years, (Dayton, OH), AIAA, July 2003.

[109] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica, vol. 36,
pp. 789–814, June 2000.

[110] D. Q. Mayne, “Model predictive control: Recent developments and future
promise,” Automatica, vol. 50, pp. 2967–2986, Dec. 2014.

[111] C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications.
Probability and Mathematical Statistics Series, Wiley, 1971.

[112] D. Serre, Matrices: Theory and applications. No. 216 in Graduate Texts in
Mathematics, New York: Springer, 2nd ed., 2010.

[113] G.-B. Huang, D. H. Wang, and Y. Lan, “Extreme learning machines: A survey,”
International Journal of Machine Learning and Cybernetics, vol. 2, pp. 107–122,
May 2011.

[114] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A fast and
accurate online sequential learning algorithm for feedforward networks,” IEEE
Transactions on Neural Networks, vol. 17, pp. 1411–1423, Nov. 2006.

[115] R. Zhang, Y. Lan, G.-B. Huang, and Z.-B. Xu, “Universal approximation of
extreme learning machine with adaptive growth of hidden nodes,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 23, pp. 365–371, Feb.
2012.

[116] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, “OP-
ELM: Optimally pruned extreme learning machine,” IEEE Transactions on
Neural Networks, vol. 21, pp. 158–162, Jan. 2010.

[117] T. Simila and J. Tikka, “Multiresponse sparse regression with application
to multidimensional scaling,” in Artificial neural networks: Formal models
and their applications ICANN 2005 (W. Duch, J. Kacprzyk, E. Oja, and
S. Zadrozny, eds.), no. 3697 in Lecture Notes in Computer Science, pp. 97–
102, Berlin, Heidelberg: Springer, 2005.

APPENDICES

99

A. 9-ELEMENT BURNER DRAWINGS

Mechanical drawings of the components of the nine-element burner are included in

the following. These drawings were used to manufacture the burner primarily in the

mechanical engineering department’s student machine shop, with exceptions noted in

Chapter 3.

100

����

��
��

����

	�
�

��� �����

��
��
�

����

�

����������� ��� ��!

"#$%&$"#'()*(')+',-

./01234

56

7899: ; <= ;>?@ABCDCE

FGH IJK

LMLNOP

QRSTUTVWXY ZY[\]^_` Xa^bcZd

efghijfkl

mnopqrstuvwxyz{|}

~���� ��~����� ����������
������������� ����� ¡�� �¢�£¡¤¡�¥¦§¨©ª«¬¨«¬ ®¯ª ¨« ¨«°±ª¬²³´µ¶·¸ µ¹º¹²»¼½¾¿ÀÁÂÃÄÀÅÆÇÈÉÊËÌÍ ÎÏÐÑÒÑÑÓÔÕÖ×ØÔÙÚ

ÛÜÝ
Þßà
áââãäå
æçèéê
ëìíîï ����������� ��� ��!

101

A

0.2124

0.50

2.
50

3.56

 0.05 0.12

0.250.38
R0.25

2.
91 3.

56

0.532.50

1.280.500.50

0.
53

2.
50

1.
28

0.
50

0.
50

0.25 THRU

1.78

SHEET 1 O F 1

DRAWN

ve nturi_p la te

14-05-22

2

WEIG HT:

NATHAN TO NER

A4

SC ALE:1:1

DWG NO .

TITLE:

REVISIO NDO NO T SC ALE DRAWING

MATERIAL: 304 STAINLESS STEEL

DATESIG NATURENAME

C HK'D

APPV'D

EDG ES

FINISH:
BREAK SHARP
DEBUR AND

MFG

Q .A

 ANG ULAR: +/ - 0.1

UNLESS O THERWISE SPEC IFIED:
DIMENSIO NS ARE IN INC HES
SURFAC E FINISH:
TO LERANC ES:
 LINEAR: +/ - 0.002

ve nturi_p la te

DETAIL A
SC ALE 2 : 1

0.
50

82
°

82
°

0.
25

0.2876

102

A

F

FINISH:

 ANG ULAR:

Q .A

WEIG HT:

APPV'D

C HK'D

C

2

DEBUR AND

EDG ES

4

MFG

1 3

B

E

D

2015-03-30

sw irle r_60d e g

NATHAN L. TO NER

A4

SHEET 1 O F 1SC ALE:1:1

DWG NO .

NAME SIG NATURE

REVISIO N 0DO NO T SC ALE DRAWINGBREAK SHARP

TITLE: sw irle r_60d e gDATE

MATERIAL: 3D-PRINTED RESIN

UNLESS O THERWISE SPEC IFIED:
DIMENSIO NS ARE IN INC HES
SURFAC E FINISH:
TO LERANC ES:
 LINEAR:

DRAWN

.112

1.13

.16

.48

2.48

.11

AA

SEC TIO N A-A

.05

.60

.04

103

Q .A

MFG

APPV'D

C HK'D

DRAWN

1

sp a c e r_p la te

14-05-22NATHAN TO NER

WEIG HT:

A4

SHEET 1 O F 1SC ALE:1:1

DWG NO .

TITLE:

REVISIO NDO NO T SC ALE DRAWING

 ANG ULAR:

FINISH:

DATESIG NATURE

BREAK SHARP

MATERIAL: LO W-C ARBO N STEEL

EDG ES

DEBUR AND

NAME

UNLESS O THERWISE SPEC IFIED:
DIMENSIO NS ARE IN INC HES
SURFAC E FINISH:
TO LERANC ES:
 LINEAR: +/ - 0.002

sp a c e r_p la te

2.
50

1.
78

R0.25 THRU2.25 0.25 THRU

3.56

1.78

2.50
0.53

0.
53

3.
56

2.60 0.39

0.625

0.3876

0.05

104

DRAWN

0

mo unting _p la te

14-02-14NATHAN TO NER

WEIG HT:

A4

SHEET 1 O F 1SCALE:1:2

DWG NO .

TITLE:

REVISIO NDO NO T SC ALE DRAWING

MATERIAL: LO W-CARBO N STEEL

DATESIG NATURENAME

CHK'D

APPV'D

EDG ES

FINISH:
BREAK SHARP
DEBUR AND

MFG

Q .A

 ANG ULAR:

UNLESS O THERWISE SPECIFIED:
DIMENSIO NS ARE IN INCHES
SURFACE FINISH:
TO LERANCES:
 LINEAR: +/ - 0.005

mo unting _p la te

0.25 THRU

5.
95

1.
72

5 2.
97

5

2.
50

5.95

1.7252.50

2.975

R0.
06

2.25 THRU
0.25

105

.50

+.00
- .01

 THRU.20

.50

2.60

.50

.50

R.30 THRU

DRAWN

C

2 31 4

B

A

D

E

F

flo w_stra ig hte ne r

2014-06-13Na tha n L. To ne r

WEIG HT:

A4

SHEET 1 O F 1SC ALE:1:1

DWG NO .

TITLE:

REVISIO N 4DO NO T SC ALE DRAWING

MATERIAL: Al MESH, 1/ 8" x 0.002"

DATESIG NATURENAME

C HK'D

APPV'D

EDG ES

FINISH:
BREAK SHARP
DEBUR AND

MFG

Q .A

 ANG ULAR:

UNLESS O THERWISE SPEC IFIED:
DIMENSIO NS ARE IN INC HES
SURFAC E FINISH:
TO LERANC ES:
 LINEAR: +- 0.005

flo w_stra ig hte ne r

.75

106

0.50

2.6
0

0.
50

0.
50

0.50
0.11 THRU

DRAWN

sinte re d _p la te

2014-06-13Na tha n L. To ne r

WEIG HT:

A4

SHEET 1 O F 1SC ALE:1:1

DWG NO .

TITLE:

REVISIO N 0DO NO T SC ALE DRAWING

MATERIAL: SINTERED 304 STAINLESS STEEL

DATESIG NATURENAME

C HK'D

APPV'D

EDG ES

FINISH:
BREAK SHARP
DEBUR AND

MFG

Q .A

 ANG ULAR:

UNLESS O THERWISE SPEC IFIED:
DIMENSIO NS ARE IN INC HES
SURFAC E FINISH:
TO LERANC ES:
 LINEAR: +- 0.005

sinte re d _p la te

0.13

107

DRAWN

0

to p_fla ng e _sq ua re _8910K12

14-02-13NATHAN TO NER

WEIG HT:

A4

SHEET 1 O F 1SCALE:1:1

DWG NO .

TITLE:

REVISIO NDO NO T SC ALE DRAWING

MATERIAL: LO W-CARBO N STEEL

DATESIG NATURENAME

CHK'D

APPV'D

EDG ES

FINISH:
BREAK SHARP
DEBUR AND

MFG

Q .A

 ANG ULAR:

UNLESS O THERWISE SPECIFIED:
DIMENSIO NS ARE IN INCHES
SURFACE FINISH:
TO LERANCES:
 LINEAR: +/ - 0.005 IN

to p_fla ng e _sq ua re _8910K12

R0.
06

25

3.95
3.

95

0.
72

5

1.975

2.875

1.
97

5

0.7252.50
2.

50

4 x 0.20 THRU ALL
1/ 4-20 UNC THRU ALL

0.1875

108

3.00

0.892.875

2.47 2.50
2.60 0.89

(37/ 64 d ia .) x 4

(D d rill d ia .) x 1

DRAWN

0

unthre a d e d _b urne r_p ip e _7750K117

14-02-14NATHAN TO NER

WEIG HT:

A4

SHEET 1 O F 1SC ALE:1:1

DWG NO .

TITLE:

REVISIO NDO NO T SC ALE DRAWING

MATERIAL: LO W-C ARBO N STEEL

DATESIG NATURENAME

C HK'D

APPV'D

EDG ES

FINISH:
BREAK SHARP
DEBUR AND

MFG

Q .A

 ANG ULAR:

UNLESS O THERWISE SPEC IFIED:
DIMENSIO NS ARE IN MILLIMETERS
SURFAC E FINISH:
TO LERANC ES:
 LINEAR: +/ - 0.005

unthre a d e d _b urne r_p ip e _7750K117

0.57813

0.
45

2 x THRU 0.246

 THRU12 x

2.
25

109

0.50

3.95

3.
95

R0.
06

25

1.
47

5
0.

50
0.

50

1.4750.50

2.875 0.040
0.110

+

0.002
0.000 THRU

CHK'D

0

b o tto m_e ndc a p_sq ua re _8910K12

14-02-13NATHAN TONER

WEIGHT:

A4

SHEET 1 OF 1SCALE:1:1

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL: LOW-CARBON STEEL

DATESIGNATURENAME

APPV'D

MFG

EDGES

FINISH:
BREAK SHARP
DEBUR AND

Q.A

 ANGULAR:

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN INCHES
SURFACE FINISH:
TOLERANCES:
 LINEAR: +/ - 0.005 IN

DRAWN

0.1875

0.04

110

���
�
� ��
�

���
�

�	
���

�

���

��
���

�

�

����

����

�� �

����
����

���
�

���
�

����

���
�

���
�����

�� !"#$ %&%
'()*+ , - .

/012 3456 7839:;<=>?@>AB

CDEFGHIJKKLMNNLOLMLP

CDEFGHIJQQRSTTRURSV

WXYZ [W\X]^

_`abcde

fghijklmhnno
pqrstqutquvwxywv z x{v|}

~������

��

����� � �� �����������

��� ���

���� ¡

¢£¤¥¦¥§¨© ª«¬ ¬® ¯°±²³ «´±µ¶·

¸¹º»¼½¹¾¿ Àº¹½Á¾»ÀÀ Àº»»¾

ÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒ

ÓÔÕÖ× ØÙÓÚÛÜÝÞ ßàÝÛáâãäâå
æçèçéêëìíîïðð ñòóïôõöðï ð÷ïøöùöïúûüýþ���ý��� ��� ý� ý�����

��	
��
������

�����������

���� !"

#$%&'#()

*+,

-./

011234

56789

:;<=>

111

B. MASS FLOW CONTROLLER STEP RESPONSES

Step responses of the 40 SLPM fuel mass flow controllers are shown in Figures B.1–

B.3. Note that the step responses for the pilot and middle fuel MFCs were taken by

changing the input to the controller from 0 V to 2 V and recording their responses.

These two MFCs exhibit some time delay when turning on from zero input, but

exhibit close to first-order dynamics after that. The outer fuel line MFC, in con-

trast, exhibited excessive nonlinearity when turning on from zero input, and so in

experiments a small (< 0.5 V) minimum input was maintained for this MFC.

When changing flow rates from non-zero operating conditions, all mass flow con-

trollers exhibit approximately first-order dynamics with very little time delay, similar

to that shown in Figure B.3.

0 1 2 3 4 5

0

5

10

15

Pilot Fuel Line MFC Step Response

F
lo

w
 R

at
e

(S
LP

M
)

Time (sec)

 Input
 Response

Figure B.1. 2 V step response of the pilot mass flow controller.

112

0 1 2 3 4 5

0

5

10

15

Middle Fuel Line MFC Step Response

F
lo

w
 R

at
e

(S
LP

M
)

Time (sec)

 Input
 Response

Figure B.2. 2 V step response of the middle mass flow controller.

0 1 2 3 4

15

20

25

30

35
Outer Fuel Line MFC Step Response

F
lo

w
 R

at
e

(S
LP

M
)

Time (Sec)

 Input
 Response

Figure B.3. 2 V step response of the outer mass flow controller. Note
that this step response was taken from a non-zero initial steady-state
condition by changing the input from 2 V to 4 V. This was done to
avoid excessive nonlinearity in the outer fuel line mass flow controller
observed when turning on.

VITA

113

VITA

Nathan Toner was born in Rochester, NY on January 28, 1985. After a disap-

pointingly uneventful early childhood, he was pressed into service at the age of five

as a gold minder in northern Ontario, where through cunning and business acumen

uncharacteristic of one so young, he quickly rose to the top of the mining company

that had enslaved him. Using his now vast fortune, he relocated an indigenous pop-

ulation of woolly mammoth to the hidden tropical crater located at the north pole;

saving them from the looming threat of extinction and earning the title “Nate the

Great”. Having thus bankrupt himself, and reaching an age appropriate for college,

he attended Purdue University in West Lafayette, IN, where he received a bachelors

of science in mechanical engineering in 2008. He then worked for Cooper Power Sys-

tems in Milwaukee, WI and Greenwood, SC for two years until returning to Purdue

in 2010 to pursue a doctorate in intelligent controls. In graduate school, Nate the

Great fell into obscurity and has not made any additional significant contribution to

global welfare to the present day. Some say he is only biding his time. . .

	Purdue University
	Purdue e-Pubs
	8-2016

	Data driven low-bandwidth intelligent control of a jet engine combustor
	Nathan L. Toner
	Recommended Citation

	untitled

