510 research outputs found

    BEMDEC: An Adaptive and Robust Methodology for Digital Image Feature Extraction

    Get PDF
    The intriguing study of feature extraction, and edge detection in particular, has, as a result of the increased use of imagery, drawn even more attention not just from the field of computer science but also from a variety of scientific fields. However, various challenges surrounding the formulation of feature extraction operator, particularly of edges, which is capable of satisfying the necessary properties of low probability of error (i.e., failure of marking true edges), accuracy, and consistent response to a single edge, continue to persist. Moreover, it should be pointed out that most of the work in the area of feature extraction has been focused on improving many of the existing approaches rather than devising or adopting new ones. In the image processing subfield, where the needs constantly change, we must equally change the way we think. In this digital world where the use of images, for variety of purposes, continues to increase, researchers, if they are serious about addressing the aforementioned limitations, must be able to think outside the box and step away from the usual in order to overcome these challenges. In this dissertation, we propose an adaptive and robust, yet simple, digital image features detection methodology using bidimensional empirical mode decomposition (BEMD), a sifting process that decomposes a signal into its two-dimensional (2D) bidimensional intrinsic mode functions (BIMFs). The method is further extended to detect corners and curves, and as such, dubbed as BEMDEC, indicating its ability to detect edges, corners and curves. In addition to the application of BEMD, a unique combination of a flexible envelope estimation algorithm, stopping criteria and boundary adjustment made the realization of this multi-feature detector possible. Further application of two morphological operators of binarization and thinning adds to the quality of the operator

    The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM–FM images

    Get PDF
    The synchrosqueezing method aims at decomposing 1D functions into superpositions of a small number of “Intrinsic Modes”, supposed to be well separated both in time and frequency. Based on the unidimensional wavelet transform and its reconstruction properties, the synchrosqueezing transform provides a powerful representation of multicomponent signals in the time–frequency plane, together with a reconstruction of each mode. In this paper, a bidimensional version of the synchrosqueezing transform is defined, by considering a well-adapted extension of the concept of analytic signal to images: the monogenic signal. We introduce the concept of “Intrinsic Monogenic Mode”, that is the bidimensional counterpart of the notion of Intrinsic Mode. We also investigate the properties of its associated Monogenic Wavelet Decomposition. This leads to a natural bivariate extension of the Synchrosqueezed Wavelet Transform, for decomposing and processing multicomponent images. Numerical tests validate the effectiveness of the method on synthetic and real images

    Multidimensional and multivariate empirical mode decomposition

    Get PDF
    Over the last decade, Empirical Mode Decomposition (EMD) has developed into a versatile tool for adaptive, scale-based modal decomposition. EMD has proven to be capable of decomposing multivariate signals with cross-channel mode alignment. However, the algorithms for envelope identification in multivariate EMD come with a computational burden rendering it unsuitable for the large computational demands of multidimensional signal processing. The current work introduces an alternative approach to multivariate EMD, and by combining it with existing fast and adaptive algorithms, paves the way for performing multivariate EMD on multidimensional signals. The application of the algorithm developed through the current study, when applied to the Direct Numerical Simulation (DNS) of a flat-plate boundary layer (a large dataset), revealed the desired scale separation behaviour across multiple data channels. This proves that the algorithm could be useful for a broad range of future problems

    A block-based background model for moving object detection

    Get PDF
    Detecting the moving objects in a video sequence using a stationary camera is an important task for many computer vision applications. This paper proposes a background subtraction approach. As first step, the background is initialized using the block-based analysis before being updated in each incoming frame. Our background frame is generated by collecting the blocks background candidates. The block candidate selection is based on probability density function (pdf) computation. After that, the absolute difference between the background frame and each frame of sequence is computed. A noise filter is applied using the Structure/Texture decomposition in order to minimize the noise caused by background subtraction operation. The binary motion mask is formed using an adaptive threshold that was deduced from the weighted mean and variance calculation. To assure the correspondence between the current frame and the background frame, an adaptation of background model in each incoming frame is realized. After comparing results obtained from the proposed method to other existing ones, it was shown that our approach attains a higher degree of efficac

    Detail Enhancing Denoising of Digitized 3D Models from a Mobile Scanning System

    Get PDF
    The acquisition process of digitizing a large-scale environment produces an enormous amount of raw geometry data. This data is corrupted by system noise, which leads to 3D surfaces that are not smooth and details that are distorted. Any scanning system has noise associate with the scanning hardware, both digital quantization errors and measurement inaccuracies, but a mobile scanning system has additional system noise introduced by the pose estimation of the hardware during data acquisition. The combined system noise generates data that is not handled well by existing noise reduction and smoothing techniques. This research is focused on enhancing the 3D models acquired by mobile scanning systems used to digitize large-scale environments. These digitization systems combine a variety of sensors – including laser range scanners, video cameras, and pose estimation hardware – on a mobile platform for the quick acquisition of 3D models of real world environments. The data acquired by such systems are extremely noisy, often with significant details being on the same order of magnitude as the system noise. By utilizing a unique 3D signal analysis tool, a denoising algorithm was developed that identifies regions of detail and enhances their geometry, while removing the effects of noise on the overall model. The developed algorithm can be useful for a variety of digitized 3D models, not just those involving mobile scanning systems. The challenges faced in this study were the automatic processing needs of the enhancement algorithm, and the need to fill a hole in the area of 3D model analysis in order to reduce the effect of system noise on the 3D models. In this context, our main contributions are the automation and integration of a data enhancement method not well known to the computer vision community, and the development of a novel 3D signal decomposition and analysis tool. The new technologies featured in this document are intuitive extensions of existing methods to new dimensionality and applications. The totality of the research has been applied towards detail enhancing denoising of scanned data from a mobile range scanning system, and results from both synthetic and real models are presented
    • …
    corecore