2,458 research outputs found

    Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation

    Full text link
    Quantitative Magnetic Resonance Imaging (qMRI) provides researchers insight into pathological and physiological alterations of living tissue, with the help of which researchers hope to predict (local) therapeutic efficacy early and determine optimal treatment schedule. However, the analysis of qMRI has been limited to ad-hoc heuristic methods. Our research provides a powerful statistical framework for image analysis and sheds light on future localized adaptive treatment regimes tailored to the individual's response. We assume in an imperfect world we only observe a blurred and noisy version of the underlying pathological/physiological changes via qMRI, due to measurement errors or unpredictable influences. We use a hidden Markov random field to model the spatial dependence in the data and develop a maximum likelihood approach via the Expectation--Maximization algorithm with stochastic variation. An important improvement over previous work is the assessment of variability in parameter estimation, which is the valid basis for statistical inference. More importantly, we focus on the expected changes rather than image segmentation. Our research has shown that the approach is powerful in both simulation studies and on a real dataset, while quite robust in the presence of some model assumption violations.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS157 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Diffusion Tensor Imaging Based Tractography of Human Brain Fiber Bundles

    Get PDF
    Tractography is a non-invasive process for reconstruction, modeling and visualization of neural fibers in the white matter (WM) of human brain. It has emerged as a major breakthrough for neuroscience research due to its usefulness in clinical applications. Two types of tractography approaches: deterministic and probabilistic have been investigated to evaluate their performances on tracking fiber bundles using diffusion tensor imaging (DTI). The images are taken by applying pulsed magnetic fields in multiple gradient directions. After removing the non-brain areas from the images, the diffusion tensor indices for each image voxel are calculated. White matter connectivity of the brain, i.e. tractography, is primarily based upon streamline algorithms where the local tract direction is defined by the principle direction of the diffusion tensor. Simulations are performed using three approaches: fiber assignment by continuous tracking (FACT), probability index of connectivity (PICo) and Gibbs tracking (GT). Simulation results show that probabilistic tractography i.e. PICo and GT can reconstruct longer length of fibers compared to the deterministic approach-FACT but with a cost of high computation time. Moreover, GT handles the more complex fiber configurations of crossing and kissing fibers, more effectively and provides the best reconstruction of fibers. In addition, diffusion tensor indices: fractional anisotropy (FA) and mean diffusivity (MD) for a region of interest can be quantified and used to assess several brain diseases. Prospective investigation of DTI based tractography can reveal useful information on WM architecture in normal and diseased brain which will speed up the detection and treatment of various brain diseases

    Optimum Experimental Design Issues in Functional Neuroimaging Studies

    Get PDF
    abstract: Functional magnetic resonance imaging (fMRI) is one of the popular tools to study human brain functions. High-quality experimental designs are crucial to the success of fMRI experiments as they allow the collection of informative data for making precise and valid inference with minimum cost. The primary goal of this study is on identifying the best sequence of mental stimuli (i.e. fMRI design) with respect to some statistically meaningful optimality criteria. This work focuses on two related topics in this research field. The first topic is on finding optimal designs for fMRI when the design matrix is uncertain. This challenging design issue occurs in many modern fMRI experiments, in which the design matrix of the statistical model depends on both the selected design and the experimental subject's uncertain behavior during the experiment. As a result, the design matrix cannot be fully determined at the design stage that makes it difficult to select a good design. For the commonly used linear model with autoregressive errors, this study proposes a very efficient approach for obtaining high-quality fMRI designs for such experiments. The proposed approach is built upon an analytical result, and an efficient computer algorithm. It is shown through case studies that our proposed approach can outperform the existing method in terms of computing time, and the quality of the obtained designs. The second topic of the research is to find optimal designs for fMRI when a wavelet-based technique is considered in the fMRI data analysis. An efficient computer algorithm to search for optimal fMRI designs for such cases is developed. This algorithm is inspired by simulated annealing and a recently proposed algorithm by Saleh et al. (2017). As demonstrated in the case studies, the proposed approach makes it possible to efficiently obtain high-quality designs for fMRI studies, and is practically useful.Dissertation/ThesisDoctoral Dissertation Applied Mathematics 201

    3D shape matching and registration : a probabilistic perspective

    Get PDF
    Dense correspondence is a key area in computer vision and medical image analysis. It has applications in registration and shape analysis. In this thesis, we develop a technique to recover dense correspondences between the surfaces of neuroanatomical objects over heterogeneous populations of individuals. We recover dense correspondences based on 3D shape matching. In this thesis, the 3D shape matching problem is formulated under the framework of Markov Random Fields (MRFs). We represent the surfaces of neuroanatomical objects as genus zero voxel-based meshes. The surface meshes are projected into a Markov random field space. The projection carries both geometric and topological information in terms of Gaussian curvature and mesh neighbourhood from the original space to the random field space. Gaussian curvature is projected to the nodes of the MRF, and the mesh neighbourhood structure is projected to the edges. 3D shape matching between two surface meshes is then performed by solving an energy function minimisation problem formulated with MRFs. The outcome of the 3D shape matching is dense point-to-point correspondences. However, the minimisation of the energy function is NP hard. In this thesis, we use belief propagation to perform the probabilistic inference for 3D shape matching. A sparse update loopy belief propagation algorithm adapted to the 3D shape matching is proposed to obtain an approximate global solution for the 3D shape matching problem. The sparse update loopy belief propagation algorithm demonstrates significant efficiency gain compared to standard belief propagation. The computational complexity and convergence property analysis for the sparse update loopy belief propagation algorithm are also conducted in the thesis. We also investigate randomised algorithms to minimise the energy function. In order to enhance the shape matching rate and increase the inlier support set, we propose a novel clamping technique. The clamping technique is realized by combining the loopy belief propagation message updating rule with the feedback from 3D rigid body registration. By using this clamping technique, the correct shape matching rate is increased significantly. Finally, we investigate 3D shape registration techniques based on the 3D shape matching result. Based on the point-to-point dense correspondences obtained from the 3D shape matching, a three-point based transformation estimation technique is combined with the RANdom SAmple Consensus (RANSAC) algorithm to obtain the inlier support set. The global registration approach is purely dependent on point-wise correspondences between two meshed surfaces. It has the advantage that the need for orientation initialisation is eliminated and that all shapes of spherical topology. The comparison of our MRF based 3D registration approach with a state-of-the-art registration algorithm, the first order ellipsoid template, is conducted in the experiments. These show dense correspondence for pairs of hippocampi from two different data sets, each of around 20 60+ year old healthy individuals
    corecore