89,683 research outputs found

    Learning Deep Representations of Appearance and Motion for Anomalous Event Detection

    Full text link
    We present a novel unsupervised deep learning framework for anomalous event detection in complex video scenes. While most existing works merely use hand-crafted appearance and motion features, we propose Appearance and Motion DeepNet (AMDN) which utilizes deep neural networks to automatically learn feature representations. To exploit the complementary information of both appearance and motion patterns, we introduce a novel double fusion framework, combining both the benefits of traditional early fusion and late fusion strategies. Specifically, stacked denoising autoencoders are proposed to separately learn both appearance and motion features as well as a joint representation (early fusion). Based on the learned representations, multiple one-class SVM models are used to predict the anomaly scores of each input, which are then integrated with a late fusion strategy for final anomaly detection. We evaluate the proposed method on two publicly available video surveillance datasets, showing competitive performance with respect to state of the art approaches.Comment: Oral paper in BMVC 201

    Developing a robust framework to reduce the size of a recorded video surveillance systems

    Get PDF
    Most of the video surveillance strategies take a significant amount of space for storage as surveillance camera's unexceptionally recorded everything during camera – on time. Whereby, it leads to consuming the storage capacity of the device of the system. In fact, many algorithms have been proposed solving in the dilemma to object recognition and compress the video to reduce the size whenever it save's data. Nevertheless, the technology deprived efficient methods to reducing the storage of space for consummation. The Idea of this paper is to propose a framework on how to possibly can be reduce the size of a recorded video of the surveillance system via recording only the part of the video that contains the motion, and ignore the other parts based on the motion detection. The result shows that the framework give an outstanding results on the uncompressed surveillance video recorded from a single fixed camera. The proposed framework enables to save 30% more of playback time and can provide more than 50% of storage of space saving

    An intelligent surveillance platform for large metropolitan areas with dense sensor deployment

    Get PDF
    Producción CientíficaThis paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform’s control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coveraMinisterio de Industria, Turismo y Comercio and the Fondo de Desarrollo Regional (FEDER) and the Israeli Chief Scientist Research Grant 43660 inside the European Eureka Celtic project HuSIMS (TSI-020400-2010-102)

    Optimal Control of MDPs with Temporal Logic Constraints

    Full text link
    In this paper, we focus on formal synthesis of control policies for finite Markov decision processes with non-negative real-valued costs. We develop an algorithm to automatically generate a policy that guarantees the satisfaction of a correctness specification expressed as a formula of Linear Temporal Logic, while at the same time minimizing the expected average cost between two consecutive satisfactions of a desired property. The existing solutions to this problem are sub-optimal. By leveraging ideas from automata-based model checking and game theory, we provide an optimal solution. We demonstrate the approach on an illustrative example.Comment: Technical report accompanying the CDC 2013 pape

    Quadrotor control for persistent surveillance of dynamic environments

    Full text link
    Thesis (M.S.)--Boston UniversityThe last decade has witnessed many advances in the field of small scale unmanned aerial vehicles (UAVs). In particular, the quadrotor has attracted significant attention. Due to its ability to perform vertical takeoff and landing, and to operate in cluttered spaces, the quadrotor is utilized in numerous practical applications, such as reconnaissance and information gathering in unsafe or otherwise unreachable environments. This work considers the application of aerial surveillance over a city-like environment. The thesis presents a framework for automatic deployment of quadrotors to monitor and react to dynamically changing events. The framework has a hierarchical structure. At the top level, the UAVs perform complex behaviors that satisfy high- level mission specifications. At the bottom level, low-level controllers drive actuators on vehicles to perform the desired maneuvers. In parallel with the development of controllers, this work covers the implementation of the system into an experimental testbed. The testbed emulates a city using physical objects to represent static features and projectors to display dynamic events occurring on the ground as seen by an aerial vehicle. The experimental platform features a motion capture system that provides position data for UAVs and physical features of the environment, allowing for precise, closed-loop control of the vehicles. Experimental runs in the testbed are used to validate the effectiveness of the developed control strategies
    corecore