37,732 research outputs found

    Fast Multi-frame Stereo Scene Flow with Motion Segmentation

    Full text link
    We propose a new multi-frame method for efficiently computing scene flow (dense depth and optical flow) and camera ego-motion for a dynamic scene observed from a moving stereo camera rig. Our technique also segments out moving objects from the rigid scene. In our method, we first estimate the disparity map and the 6-DOF camera motion using stereo matching and visual odometry. We then identify regions inconsistent with the estimated camera motion and compute per-pixel optical flow only at these regions. This flow proposal is fused with the camera motion-based flow proposal using fusion moves to obtain the final optical flow and motion segmentation. This unified framework benefits all four tasks - stereo, optical flow, visual odometry and motion segmentation leading to overall higher accuracy and efficiency. Our method is currently ranked third on the KITTI 2015 scene flow benchmark. Furthermore, our CPU implementation runs in 2-3 seconds per frame which is 1-3 orders of magnitude faster than the top six methods. We also report a thorough evaluation on challenging Sintel sequences with fast camera and object motion, where our method consistently outperforms OSF [Menze and Geiger, 2015], which is currently ranked second on the KITTI benchmark.Comment: 15 pages. To appear at IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). Our results were submitted to KITTI 2015 Stereo Scene Flow Benchmark in November 201

    Three dimensional transparent structure segmentation and multiple 3D motion estimation from monocular perspective image sequences

    Get PDF
    A three dimensional scene can be segmented using different cues, such as boundaries, texture, motion, discontinuities of the optical flow, stereo, models for structure, etc. We investigate segmentation based upon one of these cues, namely three dimensional motion. If the scene contain transparent objects, the two dimensional (local) cues are inconsistent, since neighboring points with similar optical flow can correspond to different objects. We present a method for performing three dimensional motion-based segmentation of (possibly) transparent scenes together with recursive estimation of the motion of each independent rigid object from monocular perspective images. Our algorithm is based on a recently proposed method for rigid motion reconstruction and a validation test which allows us to initialize the scheme and detect outliers during the motion estimation procedure. The scheme is tested on challenging real and synthetic image sequences. Segmentation is performed for the Ullmann's experiment of two transparent cylinders rotating about the same axis in opposite directions

    Cross Pixel Optical Flow Similarity for Self-Supervised Learning

    Full text link
    We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, competitive results for self-supervision in general, and is overall state of the art in self-supervised pretraining for semantic image segmentation, as demonstrated on standard benchmarks

    Optical Flow in Mostly Rigid Scenes

    Full text link
    The optical flow of natural scenes is a combination of the motion of the observer and the independent motion of objects. Existing algorithms typically focus on either recovering motion and structure under the assumption of a purely static world or optical flow for general unconstrained scenes. We combine these approaches in an optical flow algorithm that estimates an explicit segmentation of moving objects from appearance and physical constraints. In static regions we take advantage of strong constraints to jointly estimate the camera motion and the 3D structure of the scene over multiple frames. This allows us to also regularize the structure instead of the motion. Our formulation uses a Plane+Parallax framework, which works even under small baselines, and reduces the motion estimation to a one-dimensional search problem, resulting in more accurate estimation. In moving regions the flow is treated as unconstrained, and computed with an existing optical flow method. The resulting Mostly-Rigid Flow (MR-Flow) method achieves state-of-the-art results on both the MPI-Sintel and KITTI-2015 benchmarks.Comment: 15 pages, 10 figures; accepted for publication at CVPR 201

    Motion Segmentation from Optical Flow

    Full text link

    Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique

    Get PDF
    Phase variance-based motion contrast imaging is demonstrated using a spectral domain optical coherence tomography system for the in vivo human retina. This contrast technique spatially identifies locations of motion within the retina primarily associated with vasculature. Histogram-based noise analysis of the motion contrast images was used to reduce the motion noise created by transverse eye motion. En face summation images created from the 3D motion contrast data are presented with segmentation of selected retinal layers to provide non-invasive vascular visualization comparable to currently used invasive angiographic imaging. This motion contrast technique has demonstrated the ability to visualize resolution-limited vasculature independent of vessel orientation and flow velocity

    Detection and segmentation of moving objects in video using optical vector flow estimation

    Get PDF
    The objective of this thesis is to detect and identify moving objects in a video sequence. The currently available techniques for motion estimation can be broadly categorized into two main classes: block matching methods and optical flow methods.This thesis investigates the different motion estimation algorithms used for video processing applications. Among the available motion estimation methods, the Lucas Kanade Optical Flow Algorithm has been used in this thesis for detection of moving objects in a video sequence. Derivatives of image brightness with respect to x-direction, y-direction and time t are calculated to solve the Optical Flow Constraint Equation. The algorithm produces results in the form of horizontal and vertical components of optical flow velocity, u and v respectively. This optical flow velocity is measured in the form of vectors and has been used to segment the moving objects from the video sequence. The algorithm has been applied to different sets of synthetic and real video sequences.This method has been modified to include parameters such as neighborhood size and Gaussian pyramid filtering which improve the motion estimation process. The concept of Gaussian pyramids has been used to simplify the complex video sequences and the optical flow algorithm has been applied to different levels of pyramids. The estimated motion derived from the difference in the optical flow vectors for moving objects and stationary background has been used to segment the moving objects in the video sequences. A combination of erosion and dilation techniques is then used to improve the quality of already segmented content.The Lucas Kanade Optical Flow Algorithm along with other considered parameters produces encouraging motion estimation and segmentation results. The consistency of the algorithm has been tested by the usage of different types of motion and video sequences. Other contributions of this thesis also include a comparative analysis of the optical flow algorithm with other existing motion estimation and segmentation techniques. The comparison shows that there is need to achieve a balance between accuracy and computational speed for the implementation of any motion estimation algorithm in real time for video surveillance

    Treating Motion as Option with Output Selection for Unsupervised Video Object Segmentation

    Full text link
    Unsupervised video object segmentation (VOS) is a task that aims to detect the most salient object in a video without external guidance about the object. To leverage the property that salient objects usually have distinctive movements compared to the background, recent methods collaboratively use motion cues extracted from optical flow maps with appearance cues extracted from RGB images. However, as optical flow maps are usually very relevant to segmentation masks, the network is easy to be learned overly dependent on the motion cues during network training. As a result, such two-stream approaches are vulnerable to confusing motion cues, making their prediction unstable. To relieve this issue, we design a novel motion-as-option network by treating motion cues as optional. During network training, RGB images are randomly provided to the motion encoder instead of optical flow maps, to implicitly reduce motion dependency of the network. As the learned motion encoder can deal with both RGB images and optical flow maps, two different predictions can be generated depending on which source information is used as motion input. In order to fully exploit this property, we also propose an adaptive output selection algorithm to adopt optimal prediction result at test time. Our proposed approach affords state-of-the-art performance on all public benchmark datasets, even maintaining real-time inference speed
    • …
    corecore