1,050 research outputs found

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Low-Shot Learning for the Semantic Segmentation of Remote Sensing Imagery

    Get PDF
    Deep-learning frameworks have made remarkable progress thanks to the creation of large annotated datasets such as ImageNet, which has over one million training images. Although this works well for color (RGB) imagery, labeled datasets for other sensor modalities (e.g., multispectral and hyperspectral) are minuscule in comparison. This is because annotated datasets are expensive and man-power intensive to complete; and since this would be impractical to accomplish for each type of sensor, current state-of-the-art approaches in computer vision are not ideal for remote sensing problems. The shortage of annotated remote sensing imagery beyond the visual spectrum has forced researchers to embrace unsupervised feature extracting frameworks. These features are learned on a per-image basis, so they tend to not generalize well across other datasets. In this dissertation, we propose three new strategies for learning feature extracting frameworks with only a small quantity of annotated image data; including 1) self-taught feature learning, 2) domain adaptation with synthetic imagery, and 3) semi-supervised classification. ``Self-taught\u27\u27 feature learning frameworks are trained with large quantities of unlabeled imagery, and then these networks extract spatial-spectral features from annotated data for supervised classification. Synthetic remote sensing imagery can be used to boot-strap a deep convolutional neural network, and then we can fine-tune the network with real imagery. Semi-supervised classifiers prevent overfitting by jointly optimizing the supervised classification task along side one or more unsupervised learning tasks (i.e., reconstruction). Although obtaining large quantities of annotated image data would be ideal, our work shows that we can make due with less cost-prohibitive methods which are more practical to the end-user

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Visual object category discovery in images and videos

    Get PDF
    textThe current trend in visual recognition research is to place a strict division between the supervised and unsupervised learning paradigms, which is problematic for two main reasons. On the one hand, supervised methods require training data for each and every category that the system learns; training data may not always be available and is expensive to obtain. On the other hand, unsupervised methods must determine the optimal visual cues and distance metrics that distinguish one category from another to group images into semantically meaningful categories; however, for unlabeled data, these are unknown a priori. I propose a visual category discovery framework that transcends the two paradigms and learns accurate models with few labeled exemplars. The main insight is to automatically focus on the prevalent objects in images and videos, and learn models from them for category grouping, segmentation, and summarization. To implement this idea, I first present a context-aware category discovery framework that discovers novel categories by leveraging context from previously learned categories. I devise a novel object-graph descriptor to model the interaction between a set of known categories and the unknown to-be-discovered categories, and group regions that have similar appearance and similar object-graphs. I then present a collective segmentation framework that simultaneously discovers the segmentations and groupings of objects by leveraging the shared patterns in the unlabeled image collection. It discovers an ensemble of representative instances for each unknown category, and builds top-down models from them to refine the segmentation of the remaining instances. Finally, building on these techniques, I show how to produce compact visual summaries for first-person egocentric videos that focus on the important people and objects. The system leverages novel egocentric and high-level saliency features to predict important regions in the video, and produces a concise visual summary that is driven by those regions. I compare against existing state-of-the-art methods for category discovery and segmentation on several challenging benchmark datasets. I demonstrate that we can discover visual concepts more accurately by focusing on the prevalent objects in images and videos, and show clear advantages of departing from the status quo division between the supervised and unsupervised learning paradigms. The main impact of my thesis is that it lays the groundwork for building large-scale visual discovery systems that can automatically discover visual concepts with minimal human supervision.Electrical and Computer Engineerin

    Learning representations in the hyperspectral domain in aerial imagery

    Get PDF
    We establish two new datasets with baselines and network architectures for the task of hyperspectral image analysis. The first dataset, AeroRIT, is a moving camera static scene captured from a flight and contains per pixel labeling across five categories for the task of semantic segmentation. The second dataset, RooftopHSI, helps design and interpret learnt features on hyperspectral object detection on scenes captured from an university rooftop. This dataset accounts for static camera, moving scene hyperspectral imagery. We further broaden the scope of our understanding of neural networks with the development of two novel algorithms - S4AL and S4AL+. We develop these frameworks on natural (color) imagery, by combining semi-supervised learning and active learning, and display promising results for learning with limited amount of labeled data, which can be extended to hyperspectral imagery. In this dissertation, we curated two new datasets for hyperspectral image analysis, significantly larger than existing datasets and broader in terms of categories for classification. We then adapt existing neural network architectures to function on the increased channel information, in a smart manner, to leverage all hyperspectral information. We also develop novel active learning algorithms on natural (color) imagery, and discuss the hope for expanding their functionality to hyperspectral imagery
    • …
    corecore