44,950 research outputs found

    A semantic feature for human motion retrieval

    Get PDF
    With the explosive growth of motion capture data, it becomes very imperative in animation production to have an efficient search engine to retrieve motions from large motion repository. However, because of the high dimension of data space and complexity of matching methods, most of the existing approaches cannot return the result in real time. This paper proposes a high level semantic feature in a low dimensional space to represent the essential characteristic of different motion classes. On the basis of the statistic training of Gauss Mixture Model, this feature can effectively achieve motion matching on both global clip level and local frame level. Experiment results show that our approach can retrieve similar motions with rankings from large motion database in real-time and also can make motion annotation automatically on the fly. Copyright © 2013 John Wiley & Sons, Ltd

    Segmentation and tracking of video objects for a content-based video indexing context

    Get PDF
    This paper examines the problem of segmentation and tracking of video objects for content-based information retrieval. Segmentation and tracking of video objects plays an important role in index creation and user request definition steps. The object is initially selected using a semi-automatic approach. For this purpose, a user-based selection is required to define roughly the object to be tracked. In this paper, we propose two different methods to allow an accurate contour definition from the user selection. The first one is based on an active contour model which progressively refines the selection by fitting the natural edges of the object while the second used a binary partition tree with aPeer ReviewedPostprint (published version

    A framework for improving the performance of verification algorithms with a low false positive rate requirement and limited training data

    Full text link
    In this paper we address the problem of matching patterns in the so-called verification setting in which a novel, query pattern is verified against a single training pattern: the decision sought is whether the two match (i.e. belong to the same class) or not. Unlike previous work which has universally focused on the development of more discriminative distance functions between patterns, here we consider the equally important and pervasive task of selecting a distance threshold which fits a particular operational requirement - specifically, the target false positive rate (FPR). First, we argue on theoretical grounds that a data-driven approach is inherently ill-conditioned when the desired FPR is low, because by the very nature of the challenge only a small portion of training data affects or is affected by the desired threshold. This leads us to propose a general, statistical model-based method instead. Our approach is based on the interpretation of an inter-pattern distance as implicitly defining a pattern embedding which approximately distributes patterns according to an isotropic multi-variate normal distribution in some space. This interpretation is then used to show that the distribution of training inter-pattern distances is the non-central chi2 distribution, differently parameterized for each class. Thus, to make the class-specific threshold choice we propose a novel analysis-by-synthesis iterative algorithm which estimates the three free parameters of the model (for each class) using task-specific constraints. The validity of the premises of our work and the effectiveness of the proposed method are demonstrated by applying the method to the task of set-based face verification on a large database of pseudo-random head motion videos.Comment: IEEE/IAPR International Joint Conference on Biometrics, 201

    Dance-the-music : an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    Get PDF
    In this article, a computational platform is presented, entitled “Dance-the-Music”, that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers’ models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method can determine the quality of a student’s performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures
    corecore