93 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Towards Amyotrophic Lateral Sclerosis Interpretable Diagnosis Using Surface Electromyography

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a fast-progressing disease with no cure. It is diagnosed through the assessment of clinical exams, such as needle electromyography, which measures themuscles’ electrical activity by inserting a needle into themuscle tissue. Nevertheless, surface electromyography (SEMG) is emerging as a more practical and less painful alternative. Even though these exams provide relevant information regarding the electric structures conducted in the muscles, ALS symptoms are similar to those of other neurological disorders, preventing a faster detection of the disease. This dissertation focuses on implementing and analyzing innovative SEMG features related to the morphology of the functional structures present in the signal. To assess the efficiency of these features, a framework is proposed, aiming to distinguish healthy from pathological signals through the use of a classification algorithm. The classification task was performed using SEMG signals acquired from the upper limb muscles of healthy and ALS subjects. The results show the utility of employing the proposed set of features for ALS diagnosis, with an F1 Score higher than 80% in most experimental conditions. The novel features improved the model’s overall performance when combined with other state-of-art SEMG features and also demonstrated efficiency when used individually. These outcomes are of significant importance in supporting the use of SEMG as a complementary diagnosis exam. The proposed features demonstrate promising contributions for better and faster detection of ALS and increased classification interpretabilityA Esclerose Lateral Amiotrófica (ELA) é uma doença incurável de progressão rápida. O seu diagnóstico é feito através da avaliação de exames clínicos como a eletromiografia de profundidade, que mede a atividade elétrica muscular com agulhas inseridas no músculo. No entanto, a eletromiografia de superfície (SEMG) surge como uma alternativa mais prática e menos dolorosa. Embora ambos os exames forneçam informações relevantes sobre as estruturas elétricas conduzidas nos músculos, os sintomas da ELA são semelhantes aos de outras doenças neurológicas, impedindo uma identificação mais precoce da doença. Esta dissertação foca-se na implementação e análise de atributos inovadores de SEMG relacionados com a morfologia das estruturas funcionais presentes no sinal. Para avaliar a eficiência destes atributos, é proposto um framework, com o objetivo de distinguir sinais saudáveis e sinais patológicos através de um algoritmo de classificação. A tarefa de classificação foi realizada utilizando sinais de SEMG adquiridos dos músculos dos membros superiores de indivíduos saudáveis e com ELA. Os resultados demonstram a utilidade do conjunto de atributos proposto para o diagnóstico de ELA, com uma métrica de classificação F1 superior a 80% na maioria das condições experimentais. Os novos atributos melhoraram o desempenho geral do modelo quando combinados com outros atributos de SEMG do estado da arte, e também se comprovaram eficientes quando aplicados individualmente. Estes resultados são de grande importância na justificação da aplicabilidade da SEMG como um exame complementar de diagnóstico da ELA. Os atributos apresentados demonstram ser promissores para um melhor e mais rápido diagnóstico, e facilitam a explicação dos resultados da classificação devido à sua interpretabilidade

    Study of the electromyographic signal dynamic behavior in Amyotrophic Lateral Sclerosis (ALS)

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by motor neurons degeneration, which reduces muscular force, being very difficult to diagnose. Mathematical methods are used in order to analyze the surface electromiographic signal’s dynamic behavior (Fractal Dimension (FD) and Multiscale Entropy (MSE)), evaluate different muscle group’s synchronization (Coherence and Phase Locking Factor (PLF)) and to evaluate the signal’s complexity (Lempel-Ziv (LZ) techniques and Detrended Fluctuation Analysis (DFA)). Surface electromiographic signal acquisitions were performed in upper limb muscles, being the analysis executed for instants of contraction for ipsilateral acquisitions for patients and control groups. Results from LZ, DFA and MSE analysis present capability to distinguish between the patient group and the control group, whereas coherence, PLF and FD algorithms present results very similar for both groups. LZ, DFA and MSE algorithms appear then to be a good measure of corticospinal pathways integrity. A classification algorithm was applied to the results in combination with extracted features from the surface electromiographic signal, with an accuracy percentage higher than 70% for 118 combinations for at least one classifier. The classification results demonstrate capability to distinguish members between patients and control groups. These results can demonstrate a major importance in the disease diagnose, once surface electromyography (sEMG) may be used as an auxiliary diagnose method

    Electrohysterography in the diagnosis of preterm birth: a review

    Full text link
    This is an author-created, un-copyedited versíon of an article published in Physiological Measurement. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at http://doi.org/10.1088/1361-6579/aaad56.[EN] Preterm birth (PTB) is one of the most common and serious complications in pregnancy. About 15 million preterm neonates are born every year, with ratios of 10-15% of total births. In industrialized countries, preterm delivery is responsible for 70% of mortality and 75% of morbidity in the neonatal period. Diagnostic means for its timely risk assessment are lacking and the underlying physiological mechanisms are unclear. Surface recording of the uterine myoelectrical activity (electrohysterogram, EHG) has emerged as a better uterine dynamics monitoring technique than traditional surface pressure recordings and provides information on the condition of uterine muscle in different obstetrical scenarios with emphasis on predicting preterm deliveries. Objective: A comprehensive review of the literature was performed on studies related to the use of the electrohysterogram in the PTB context. Approach: This review presents and discusses the results according to the different types of parameter (temporal and spectral, non-linear and bivariate) used for EHG characterization. Main results: Electrohysterogram analysis reveals that the uterine electrophysiological changes that precede spontaneous preterm labor are associated with contractions of more intensity, higher frequency content, faster and more organized propagated activity and stronger coupling of different uterine areas. Temporal, spectral, non-linear and bivariate EHG analyses therefore provide useful and complementary information. Classificatory techniques of different types and varying complexity have been developed to diagnose PTB. The information derived from these different types of EHG parameters, either individually or in combination, is able to provide more accurate predictions of PTB than current clinical methods. However, in order to extend EHG to clinical applications, the recording set-up should be simplified, be less intrusive and more robust-and signal analysis should be automated without requiring much supervision and yield physiologically interpretable results. Significance: This review provides a general background to PTB and describes how EHG can be used to better understand its underlying physiological mechanisms and improve its prediction. The findings will help future research workers to decide the most appropriate EHG features to be used in their analyses and facilitate future clinical EHG applications in order to improve PTB prediction.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under grant DPI2015-68397-R.Garcia-Casado, J.; Ye Lin, Y.; Prats-Boluda, G.; Mas-Cabo, J.; Alberola Rubio, J.; Perales Marin, AJ. (2018). Electrohysterography in the diagnosis of preterm birth: a review. Physiological Measurement. 39(2). https://doi.org/10.1088/1361-6579/aaad56S39

    시계열 데이터 패턴 분석을 위한 종단 심층 학습망 설계 방법론

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2019. 2. 장병탁.Pattern recognition within time series data became an important avenue of research in artificial intelligence following the paradigm shift of the fourth industrial revolution. A number of studies related to this have been conducted over the past few years, and research using deep learning techniques are becoming increasingly popular. Due to the nonstationary, nonlinear and noisy nature of time series data, it is essential to design an appropriate model to extract its significant features for pattern recognition. This dissertation not only discusses the study of pattern recognition using various hand-crafted feature engineering techniques using physiological time series signals, but also suggests an end-to-end deep learning design methodology without any feature engineering. Time series signal can be classified into signals having periodic and non-periodic characteristics in the time domain. This thesis proposes two end-to-end deep learning design methodologies for pattern recognition of periodic and non-periodic signals. The first proposed deep learning design methodology is Deep ECGNet. Deep ECGNet offers a design scheme for an end-to-end deep learning model using periodic characteristics of Electrocardiogram (ECG) signals. ECG, recorded from the electrophysiologic patterns of heart muscle during heartbeat, could be a promising candidate to provide a biomarker to estimate event-based stress level. Conventionally, the beat-to-beat alternations, heart rate variability (HRV), from ECG have been utilized to monitor the mental stress status as well as the mortality of cardiac patients. These HRV parameters have the disadvantage of having a 5-minute measurement period. In this thesis, human's stress states were estimated without special hand-crafted feature engineering using only 10-second interval data with the deep learning model. The design methodology of this model incorporates the periodic characteristics of the ECG signal into the model. The main parameters of 1D CNNs and RNNs reflecting the periodic characteristics of ECG were updated corresponding to the stress states. The experimental results proved that the proposed method yielded better performance than those of the existing HRV parameter extraction methods and spectrogram methods. The second proposed methodology is an automatic end-to-end deep learning design methodology using Bayesian optimization for non-periodic signals. Electroencephalogram (EEG) is elicited from the central nervous system (CNS) to yield genuine emotional states, even at the unconscious level. Due to the low signal-to-noise ratio (SNR) of EEG signals, spectral analysis in frequency domain has been conventionally applied to EEG studies. As a general methodology, EEG signals are filtered into several frequency bands using Fourier or wavelet analyses and these band features are then fed into a classifier. This thesis proposes an end-to-end deep learning automatic design method using optimization techniques without this basic feature engineering. Bayesian optimization is a popular optimization technique for machine learning to optimize model hyperparameters. It is often used in optimization problems to evaluate expensive black box functions. In this thesis, we propose a method to perform whole model hyperparameters and structural optimization by using 1D CNNs and RNNs as basic deep learning models and Bayesian optimization. In this way, this thesis proposes the Deep EEGNet model as a method to discriminate human emotional states from EEG signals. Experimental results proved that the proposed method showed better performance than that of conventional method based on the conventional band power feature method. In conclusion, this thesis has proposed several methodologies for time series pattern recognition problems from the feature engineering-based conventional methods to the end-to-end deep learning design methodologies with only raw time series signals. Experimental results showed that the proposed methodologies can be effectively applied to pattern recognition problems using time series data.시계열 데이터의 패턴 인식 문제는 4차 산업 혁명의 패러다임 전환과 함께 매우 중요한 인공 지능의 한 분야가 되었다. 이에 따라, 지난 몇 년간 이와 관련된 많은 연구들이 이루어져 왔으며, 최근에는 심층 학습망 (deep learning networks) 모델을 이용한 연구들이 주를 이루어 왔다. 시계열 데이터는 비정상, 비선형 그리고 잡음 (nonstationary, nonlinear and noisy) 특성으로 인하여 시계열 데이터의 패턴 인식 수행을 위해선, 데이터의 주요한 특징점을 추출하기 위한 최적화된 모델의 설계가 필수적이다. 본 논문은 대표적인 시계열 데이터인 생체 신호를 사용하여 여러 특징 벡터 추출 방법 (hand-crafted feature engineering methods)을 이용한 패턴 인식 기법에 대하여 논할 뿐만 아니라, 궁극적으로는 특징 벡터 추출 과정이 없는 종단 심층 학습망 설계 방법론에 대한 연구 내용을 담고 있다. 시계열 신호는 시간 축 상에서 크게 주기적 신호와 비주기적 신호로 구분할 수 있는데, 본 연구는 이러한 두 유형의 신호들에 대한 패턴 인식을 위해 두 가지 종단 심층 학습망에 대한 설계 방법론을 제안한다. 첫 번째 제안된 방법론을 이용해 설계된 모델은 신호의 주기적 특성을 이용한 Deep ECGNet이다. 심장 근육의 전기 생리학적 패턴으로부터 기록된 심전도 (Electrocardiogram, ECG)는 이벤트 기반 스트레스 수준을 추정하기 위한 척도 (bio marker)를 제공하는 유효한 데이터가 될 수 있다. 전통적으로 심전도의 심박수 변동성 (Herat Rate Variability, HRV) 매개변수 (parameter)는 심장 질환 환자의 정신적 스트레스 상태 및 사망률을 모니터링하는 데 사용되었다. 하지만, 표준 심박수 변동성 매개 변수는 측정 주기가 5분 이상으로, 측정 시간이 길다는 단점이 있다. 본 논문에서는 심층 학습망 모델을 이용하여 10초 간격의 ECG 데이터만을 이용하여, 추가적인 특징 벡터의 추출 과정 없이 인간의 스트레스 상태를 인식할 수 있음을 보인다. 제안된 설계 기법은 ECG 신호의 주기적 특성을 모델에 반영하였는데, ECG의 은닉 특징 추출기로 사용된 1D CNNs 및 RNNs 모델의 주요 매개 변수에 주기적 특성을 반영함으로써, 한 주기 신호의 스트레스 상태에 따른 주요 특징점을 종단 학습망 내부적으로 추출할 수 있음을 보였다. 실험 결과 제안된 방법이 기존 심박수 변동성 매개변수와 spectrogram 추출 기법 기반의 패턴 인식 방법보다 좋은 성능을 나타내고 있음을 확인할 수 있었다. 두 번째 제안된 방법론은 비 주기적이며 비정상, 비선형 그리고 잡음 특성을 지닌 신호의 패턴인식을 위한 최적 종단 심층 학습망 자동 설계 방법론이다. 뇌파 신호 (Electroencephalogram, EEG)는 중추 신경계 (CNS)에서 발생되어 무의식 상태에서도 본연의 감정 상태를 나타내는데, EEG 신호의 낮은 신호 대 잡음비 (SNR)로 인해 뇌파를 이용한 감정 상태 판정을 위해서 주로 주파수 영역의 스펙트럼 분석이 뇌파 연구에 적용되어 왔다. 통상적으로 뇌파 신호는 푸리에 (Fourier) 또는 웨이블렛 (wavelet) 분석을 사용하여 여러 주파수 대역으로 필터링 된다. 이렇게 추출된 주파수 특징 벡터는 보통 얕은 학습 분류기 (shallow machine learning classifier)의 입력으로 사용되어 패턴 인식을 수행하게 된다. 본 논문에서는 이러한 기본적인 특징 벡터 추출 과정이 없는 베이지안 최적화 (Bayesian optimization) 기법을 이용한 종단 심층 학습망 자동 설계 기법을 제안한다. 베이지안 최적화 기법은 초 매개변수 (hyperparamters)를 최적화하기 위한 기계 학습 분야의 대표적인 최적화 기법인데, 최적화 과정에서 평가 시간이 많이 소요되는 목적 함수 (expensive black box function)를 갖고 있는 최적화 문제에 적합하다. 이러한 베이지안 최적화를 이용하여 기본적인 학습 모델인 1D CNNs 및 RNNs의 전체 모델의 초 매개변수 및 구조적 최적화를 수행하는 방법을 제안하였으며, 제안된 방법론을 바탕으로 Deep EEGNet이라는 인간의 감정상태를 판별할 수 있는 모델을 제안하였다. 여러 실험을 통해 제안된 모델이 기존의 주파수 특징 벡터 (band power feature) 추출 기법 기반의 전통적인 감정 패턴 인식 방법보다 좋은 성능을 나타내고 있음을 확인할 수 있었다. 결론적으로 본 논문은 시계열 데이터를 이용한 패턴 인식문제를 여러 특징 벡터 추출 기법 기반의 전통적인 방법을 통해 설계하는 방법부터, 추가적인 특징 벡터 추출 과정 없이 원본 데이터만을 이용하여 종단 심층 학습망을 설계하는 방법까지 제안하였다. 또한, 다양한 실험을 통해 제안된 방법론이 시계열 신호 데이터를 이용한 패턴 인식 문제에 효과적으로 적용될 수 있음을 보였다.Chapter 1 Introduction 1 1.1 Pattern Recognition in Time Series 1 1.2 Major Problems in Conventional Approaches 7 1.3 The Proposed Approach and its Contribution 8 1.4 Thesis Organization 10 Chapter 2 Related Works 12 2.1 Pattern Recognition in Time Series using Conventional Methods 12 2.1.1 Time Domain Features 12 2.1.2 Frequency Domain Features 14 2.1.3 Signal Processing based on Multi-variate Empirical Mode Decomposition (MEMD) 15 2.1.4 Statistical Time Series Model (ARIMA) 18 2.2 Fundamental Deep Learning Algorithms 20 2.2.1 Convolutional Neural Networks (CNNs) 20 2.2.2 Recurrent Neural Networks (RNNs) 22 2.3 Hyper Parameters and Structural Optimization Techniques 24 2.3.1 Grid and Random Search Algorithms 24 2.3.2 Bayesian Optimization 25 2.3.3 Neural Architecture Search 28 2.4 Research Trends related to Time Series Data 29 2.4.1 Generative Model of Raw Audio Waveform 30 Chapter 3 Preliminary Researches: Patten Recognition in Time Series using Various Feature Extraction Methods 31 3.1 Conventional Methods using Time and Frequency Features: Motor Imagery Brain Response Classification 31 3.1.1 Introduction 31 3.1.2 Methods 32 3.1.3 Ensemble Classification Method (Stacking & AdaBoost) 32 3.1.4 Sensitivity Analysis 33 3.1.5 Classification Results 36 3.2 Statistical Feature Extraction Methods: ARIMA Model Based Feature Extraction Methodology 38 3.2.1 Introduction 38 3.2.2 ARIMA Model 38 3.2.3 Signal Processing 39 3.2.4 ARIMA Model Conformance Test 40 3.2.5 Experimental Results 40 3.2.6 Summary 43 3.3 Application on Specific Time Series Data: Human Stress States Recognition using Ultra-Short-Term ECG Spectral Feature 44 3.3.1 Introduction 44 3.3.2 Experiments 45 3.3.3 Classification Methods 49 3.3.4 Experimental Results 49 3.3.5 Summary 56 Chapter 4 Master Framework for Pattern Recognition in Time Series 57 4.1 The Concept of the Proposed Framework for Pattern Recognition in Time Series 57 4.1.1 Optimal Basic Deep Learning Models for the Proposed Framework 57 4.2 Two Categories for Pattern Recognition in Time Series Data 59 4.2.1 The Proposed Deep Learning Framework for Periodic Time Series Signals 59 4.2.2 The Proposed Deep Learning Framework for Non-periodic Time Series Signals 61 4.3 Expanded Models of the Proposed Master Framework for Pattern Recogntion in Time Series 63 Chapter 5 Deep Learning Model Design Methodology for Periodic Signals using Prior Knowledge: Deep ECGNet 65 5.1 Introduction 65 5.2 Materials and Methods 67 5.2.1 Subjects and Data Acquisition 67 5.2.2 Conventional ECG Analysis Methods 72 5.2.3 The Initial Setup of the Deep Learning Architecture 75 5.2.4 The Deep ECGNet 78 5.3 Experimental Results 83 5.4 Summary 98 Chapter 6 Deep Learning Model Design Methodology for Non-periodic Time Series Signals using Optimization Techniques: Deep EEGNet 100 6.1 Introduction 100 6.2 Materials and Methods 104 6.2.1 Subjects and Data Acquisition 104 6.2.2 Conventional EEG Analysis Methods 106 6.2.3 Basic Deep Learning Units and Optimization Technique 108 6.2.4 Optimization for Deep EEGNet 109 6.2.5 Deep EEGNet Architectures using the EEG Channel Grouping Scheme 111 6.3 Experimental Results 113 6.4 Summary 124 Chapter 7 Concluding Remarks 126 7.1 Summary of Thesis and Contributions 126 7.2 Limitations of the Proposed Methods 128 7.3 Suggestions for Future Works 129 Bibliography 131 초 록 139Docto

    Review on EMG Acquisition and Classification Techniques: Towards Zero Retraining in the Influence of User and Arm Position Independence

    Get PDF
    The surface electromyogram (EMG) is widely studied and applied in machine control. Recent methods of classifying hand gestures reported classification rates of over 95%. However, the majority of the studies made were performed on a single user, focusing solely on the gesture classification. These studies are restrictive in practical sense: either focusing on just gestures, multi-user compatibility, or rotation independence. The variations in EMG signals due to these conditions present a challenge to the practical application of EMG devices, often requiring repetitious training per application. To the best of our knowledge, there is little comprehensive review of works done in EMG classification in the combined influence of user-independence, rotation and hand exchange. Therefore, in this paper we present a review of works related to the practical issues of EMG with a focus on the EMG placement, and recent acquisition and computing techniques to reduce training. First, we provided an overview of existing electrode placement schemes. Secondly, we compared the techniques and results of single-subject against multi-subject, multi-position settings. As a conclusion, the study of EMG classification in this direction is relatively new. However the results are encouraging and strongly indicate that EMG classification in a broad range of people and tolerance towards arm orientation is possible, and can pave way for more flexible EMG devices

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram
    corecore