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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Application of a novel meta-heuristic 
optimiser in machine learning algo-
rithms was assessed. 

• Applied methodology was used to pre-
dict crop yield of four major crop types 
using remote sensing data. 

• Crop yield records were obtained from 
20 European countries over the past 20 
years. 

• Assessing different ensemble algo-
rithms, the Ada-boost shows the highest 
accuracy. 

• Predictive models show better accuracy 
in Wheat compare to Barley, Oats and 
Rye.  
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A B S T R A C T   

CONTEXT: Accurate estimating of crop yield is crucial for developing effective global food security strategies 
which can lead to reduce of hunger and more sustainable development. However, predicting crop yields is a 
complex task as it requires frequent monitoring of many weather and socio-economic factors over an extended 
period. Satellite remote sensing products have become a reliable source for climate-based variables. They are 
easier to obtain and provide detailed spatial and temporal coverage. 
OBJECTIVE: The aim of this study is to assess the effectiveness of implement a novel optimization algorithm, 
called Randomized Search cross validation (RScv), on various machine learning algorithms and measure the 
prediction accuracy enhancement. 
METHODS: Annual yields of four crops (Barley, Oats, Rye, and Wheat) were predicted across 20 European 
countries for 20 years (2000–2019). Two NASA missions, namely GPCP and GLDAS satellites, provided us with 
climate- and soil-based input variables. Those variables were employed as the input of four ensemble Machine 
Learning (ML) algorithms (Ada-Boost (AB), Gradient Boost (GB), Random Forest (RF) and Extra Tree (ET)) which 
are faster and more adoptable compare to classic AI algorithms. 

* Corresponding author. 
E-mail addresses: sbhs1@alu.ua.es (S.B.H.S. Asadollah), ajodar@cebas.csic.es (A. Jodar-Abellan), mpardo@ua.es (M.Á. Pardo).  
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RESULTS AND CONCLUSIONS: Main results show that applying RScv improves the prediction ability of all ML 
models over the four crops. In particular, the RScv-AB reaches the overall highest accuracy for predicting yields 
(R2

max = 0.9). Spatial evaluation of predicting errors depicts that the proposed models were more shifted toward 
underestimation. An uncertainty analysis was also carried out which shows that applying ML algorithms creates 
higher and lowers uncertainty in Barley and Wheat respectively. 
SIGNIFICANCE: Considering the robustness of the optimised ML models and the global coverage of remote 
sensing data, our current methodology demonstrates great transferability and can be applied in other regions 
across the globe with higher temporal extents. In addition, this tool could be beneficial to decision makers in 
various sectors to improve the water allocations, deal with climate change effects and keep sustainable agri-
cultural development.   

1. Introduction 

Food security denotes the access of individuals to safe, nutritious and 
sufficient food, which can satisfy their dietary requirement to preserve a 
healthy and active life style (Van Wart et al., 2013; Boix-Fayos and de 
Vente, 2023; Luo et al., 2023). It is a vital criterion which has been 
directly noted in two disciplines out of seventeen UN’s Sustainable 
Development Goals (SDGs). As a subsection of zero hunger goal of SGDs, 
a strategic plan for food security and agricultural productivity is need to 
be devised so that by 2030 the overall crop yields become double which 
will make the world one step closer to end the hunger (Han and Niles, 
2023; Konefal et al., 2023). Considering the importance of this factor, 
the rapid growth of the world population, increase the need for larger 
amount of food sources is expected to be nearly 100% in the not-distant 
future (Roser et al., 2013; Hu et al., 2019). This significant surge will 
challenge the current statues of food security, and may lead to socio-
economic crises, especially in not developed countries (Fukase and 
Martin, 2020; Cavan et al., 2023). In addition, the climate change 
phenomena imposes higher side effects to agricultural processes as the 
weather extremities, such as floods or droughts, become much more 
frequent which directly affect the crops yields (Challinor et al., 2014; 
Kang et al., 2009; Derdour et al., 2023). Considering all these detri-
mental issues, the development of tools, which can give accurate esti-
mations of crops yields, plays an important role in developing better 
food strategies and aiding decision-makers across the world (Spanaki 
et al., 2022; Alexandridis et al., 2023). 

In the early 20th century, several numerical and mathematical 
regression models were developed to predict the crop yields in different 
parts of the world (Dourado-Neto et al., 1998; Hochmuth et al., 1998; 
Xevi et al., 1996). While these approaches showed a good range of ac-
curacy, they also came with series disadvantages which limited their 
overall application, especially to agricultural-based issues (Hunink 
et al., 2017; Mohamadou et al., 2020). Not only these models could not 
deal with non-linearity or complex data structures (Zhang et al., 2020), 
they also lack the ability to be adapted to large-scale datasets (Khair-
unniza-Bejo et al., 2014; Lencastre et al., 2023). 

As an alternative, in recent years, Artificial Intelligence (AI) models 
have shown their potential as a valuable research tool in various fields, 
including sensitivity evaluation, classification, and regression analysis 
(AghaKouchak et al., 2022; Kumar and Kumar, 2022). These models can 
learn the non-linearity among engaged parameters and reduce the 
associated noises (Asadollah et al., 2023). On the contrary to old models, 
the AI algorithms perform significantly better in term of complexity and 
large size datasets, as they learn more pattern and features (Davenport, 
2019; Lu, 2019). AI models also depict the ability to learn from data and 
improve their performance over time, saving time and resources, 
whereas conventional models are considered static approaches and less 
efficient (Zhang et al., 2020; Sarker, 2022). 

The agricultural sector has also embraced AI and leveraged its ca-
pabilities for a multitude of purposes, being yield estimation the most 
extensively used application (Van Wart et al., 2013; Abbaspour-Gilan-
deh et al., 2022; Poornappriya and Gopinath, 2022). Crop yield calcu-
lation involves many criteria and parameters, making the application of 

AI an effective and reliable analytical technique (Khairunniza-Bejo 
et al., 2014). Researchers have repeatedly used classic AI algorithms, 
such as Artificial neural network (ANN) and Adaptive neuro-fuzzy 
inference systems (ANFIS), as predictive tools for this specific area of 
research (Naderloo et al., 2012; Bi and Hu, 2021; Shastry et al., 2015). 
While AI models outperform the conventional prediction approaches, 
they also represent some challenges which may have a negative impact 
on their final outputs. As the most important issue, the prediction ac-
curacy of these algorithms depends highly on the quantity and quality of 
input data (Weber et al., 2023). Furthermore, the overfitting issue is also 
another concern of AI as the model captures all patterns in a dataset 
which may include the outliers and biased samples (Ying, 2019). All 
these issues, if not addressed properly, may lead to a decrease in model 
robustness and its applicability. This intensifies the role of the pre- 
processing phase in every AI-related simulation so that the prediction 
model can obtain the best and most reliable output as possible (Mo et al., 
2022; Shobha and Nickolas, 2018). 

Researchers have demonstrated that newly developed Machine 
Learning (ML) algorithms are better approaches compared to classic AI 
algorithms. Specifically, ensemble ML algorithms such as Ada-Boost 
(AB), Gradient Boosting (GB) and Random Forest (RF) proved to have 
better accuracy and output reliability as they combine several simple 
algorithms which not only captures more patterns but substantially 
reduce the chances of overfitting (Pede and Mountrakis, 2022). Jeong 
et al. (2016) showed that RF provided more correct predictions of crop 
yields for wheat, maize and potato on both global and regional scales 
compared to several classic AI algorithms. Many studies compared the 
application of ensemble ML models in predicting the yield of different 
crop types. For instance, Keerthana et al. (2021) assessed the perfor-
mance of DT, RF, GB, AB, K-Nearest Neighbour (KNN) and Bagging re-
gressors for predicting crop yields using average ground-based rainfall 
and temperature observations, as well as the value of the pesticide used. 
The above-mentioned studies used ground-based climate variables 
which were usually obtained from hydrological stations. While this data 
sampling approach has very good accuracy, it is time-consuming, costly 
and more importantly covers a limited regional and temporal ranges. To 
overcome these issues, application of Remote Sensing (RS) sources has 
gained significant popularity because of their high temporal extend and 
global coverage (Leo et al., 2023; Zhang et al., 2020). Among various 
remote sensing approaches, researchers consider satellite-based tech-
nology as the most robust and comprehensive (Sakamoto, 2020; Nai-
maee et al., 2024). 

In a related study, Ju et al. (2021) compared the performance of 
seven ML algorithms in prediction of corn, paddy rice and soybean in 
three different countries between 2003 and 2016. Using remote sensing- 
based vegetation indices extracted from Moderate resolution imaging 
spectroradiometer (MODIS), county-level land cover distribution and 
several time-series climate data, the SVM shows higher accuracy 
compare to ANN, DT, RF, Convolutional Neural Network (CNN) and 
Long Short-Term Memory (LSTM). Likewise, Huber et al. (2022) used 
MODIS products time series of parameters such as reflectance bands, 
temperature and vapour pressure to forecast soybean yield in the United 
States (US). The satellite-based image products were processed and 
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subsequently used as inputs for AI algorithms, including CNN, LSTM and 
XGBoost. Dang et al. (2021) employed different indices obtained from 
remote sensing data as inputs for three data-driven models (SV, RF and 
Deep Neural Network). This approach predicted the autumn crop yield 
in China and compared the accuracy of these models. Global Land Data 
Assimilation System (GLDAS), Tropical Rainfall Measuring Mission 
(TRMM) and MODIS were the main remote sensing sources, which, 
based on prediction accuracy evaluators, proven to be excellent inputs 
as it was also stated by Syed et al. (2008) and Asadollah et al. (2023). 
Although the use of MODIS products as an input for predictive methods 
and algorithms has proven to be a beneficial choice (Hunink et al., 2017; 
Sakamoto, 2020), it was not included in the current study as its temporal 
range (2012 ~ present) was not fit with the one chosen here 
(2000–2019). 

Based on the reported studies, several satellite missions (such as 
TRMM and CHIRPS) offer rainfall estimations over the globe. However, 
the products of NASA’s Global Precipitation Climatology Project (GPCP) 
have improved rainfall observation, so this study used the GPCP pre-
cipitation product (Sadeghi et al., 2019; Adler et al., 2020; Kotsias et al., 
2020). For other engaged variables such as soil properties and temper-
ature, the different missions of GLDAS has been employed, an excellent 
example of corresponding ground-based observations (Padhee and 
Dutta, 2020; Wu et al., 2021; Asadollah et al., 2023). 

As one of the major novelties of this study, Randomized Search Cross 
Validation (RScv) has been used to tune the associated hyperparameters 
of employed ML algorithms. RScv is considered as a novel optimization 
algorithm which has shown some successful application in different 
disciplines (Sharma et al., 2023). Priscilla and Prabha (2020) applied the 
RScv on XGBoost ensemble algorithm and shows that this experiment 
improves the ability of fraud detection in credit cards. In a similar study, 
Vishnu et al. (2023) evaluated the application of RScv on GB, RF and DT 
to predict the gastric cancer and shows that this optimization technique 
increases the accuracy especially over RF. 

The aim of this research is to assess the efficacy of employing novel 
RScv optimization algorithm on four machine learning algorithms in 
predicting the annual crop yield of Barley, Oats, Rye and Wheat over the 
past 20 years. To reduce the uncertainties associated with yield pre-
diction, we expanded the study region beyond a single country and 
included 20 countries across Europe. This enables the evaluation of 
various climate and topographic conditions. Also, considering this 
number of countries reduces the chance of spatial autocorrelation, 
which may involves a negative impact on our prediction performance. 
Since a wide range of parameters were potential ML algorithms inputs, 
first a collinearity assessment was performed so that our dataset does not 
affect by such deficiencies. Next, combining these climate variables were 
used as inputs of four ML algorithms and a prediction task was per-
formed before and after application of RScv optimization. Because of 
this study only used remote sensing products, a marginal decrease in 
predictive models’ accuracy is expected because of the bias and the 
measurement-error associated with satellite observations. However, 
using this integration of machine learning and remote sensing ap-
proaches may be significantly helpful for forecasting the annual yield of 
Barley, Oats, Rye and Wheat as four strategic crop types across the globe 
(Van Wart et al., 2013). Therefore, our results could assist national, local 
authorities and farmers in decision-making processes, especially in non- 
cultivated areas where crop yield needs to be estimated in advance. 

2. Materials and methods 

2.1. Dataset description 

In this study, crop yield data for Barley, Oats, Rye and Wheat was 
obtained from the Food and Agriculture Organization Corporate Sta-
tistical Database (FAOSTAT, 2023). This FAOSTAT dataset includes crop 
yields observations from 1965 to 2019. The choice of the 20-years 
ranges from 2000 to 2019 was based on the primary focus of using 

satellite remote sensing products. Only countries with a complete record 
in the chosen annual range were selected for analysis, which resulted in 
20 countries. The crop yields were evaluated in terms of hectogram per 
hectare (hg/ha), and Table 1 lists the selected countries and their sta-
tistical characteristics. 

2.2. Description of satellite sources 

2.2.1. GPCP 
The Global Precipitation Climatology Project (GPCP) is a significant 

contributor to collecting satellite-based observations that aid in under-
standing Earth’s energy and water cycles (Sadeghi et al., 2019; Behrangi 
and Song, 2020). This project operates under the authority of the Global 
Water and Energy Experiment (GEWEX) Data and Assessment Panel 
(GDAP). The latest version of GPCP, version 3.2, uses modern merging 
approaches to gather rainfall records and integrates multiple input 
datasets (Adler et al., 2020; Asadollah et al., 2023). One dataset utilized 
is the Goddard Profiling Algorithm (GPROF), which is combined with 
Special Sensor Microwave Imager/Sounder (SSMI/SSMIS) data for 
calibration. The spatial resolution of GPCP is 0.5◦

× 0.5◦ over the 
longitude and latitude axis, and it covers both a daily and monthly basis 
(NASA, 2023). 

2.2.2. GLDAS 
In this study, the products of Global Land Data Assimilation System 

(GLDAS) version 2 have been used, comprising GLDAS version − 2.0, 
− 2.1 and − 2.2 (Beaudoing and Rodell, 2016). GLDAS v-2.0 is aligned 
with Princeton meteorological data with the temporal range of 1948 to 
2014, while version 2.1 covers from 2000 to the present day (Wu et al., 
2021). These products were extracted from the NASA’s database and 
depict a spatial resolution of 0.25◦

× 0.25◦ (NASA, 2023). The GLDAS 
product used covers a monthly temporal range from 2000 to 2022, 
aligning well with the annual period of the current study. This remote 
sensing source offers a total of 30 climatic and soil variables covering a 
wide range of components of the hydrological cycle which may have an 
effect on crop productivity. To ensure consistency with previous 
research (Syed et al., 2008; Asadollah et al., 2023) and optimise the 
inputs, several elimination criteria were applied to the 30 parameters, 
taking into account both theoretical and practical considerations 
mentioned in the introduction section. As part of imposed restrictions, 
snow- and radiation-based parameters as well as the heat flux variables 
were excluded from consideration because of their overall lack of rele-
vancy with agricultural productivity. Furthermore, we selected all 

Table 1 
Crop yields, in hg/ha, of four major crops calculated in 20 European countries.  

Country Barley 
(hg/ha) 

Oats 
(hg/ha) 

Rye 
(hg/ha) 

Wheat 
(hg/ha) 

Albania 27,476.25 18,795.65 21,334.95 36,469.65 
Austria 49,521.70 38,880.50 40,838.10 51,909.70 
Belgium 77,296.30 54,950.80 44,052.90 85,862.55 
Bosnia 29,822.70 24,843.75 27,864.00 34,204.10 
Bulgaria 35,096.10 18,570.30 17,618.45 37,846.70 
Croatia 38,683.65 28,003.90 29,588.60 48,724.15 
Czech 45,160.70 31,796.70 44,612.15 52,877.75 
Denmark 53,884.30 47,949.35 53,882.00 72,991.00 
France 63,439.10 44,924.20 46,591.65 69,932.10 
Germany 62,309.35 45,942.40 51,609.75 74,945.95 
Greece 26,044.20 19,494.10 21,827.90 26,058.55 
Hungary 39,398.55 24,899.30 25,337.15 43,811.40 
Italy 37,172.35 23,183.65 29,417.70 36,439.10 
Netherlands 64,451.45 53,383.70 42,631.70 85,720.30 
Poland 33,194.90 25,369.50 25,585.15 41,060.20 
Portugal 18,499.80 11,702.30 9248.05 17,212.80 
Slovenia 40,926.75 28,141.90 33,044.90 46,610.50 
Spain 28,404.30 19,265.50 19,181.20 30,003.55 
Sweden 44,087.65 39,399.65 56,461.05 60,788.50 
Switzerland 63,277.65 50,992.00 58,931.60 57,606.25  
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measurements within the depth range of 10 to 40 cm for further analysis 
for soil parameters that involved measurements at different depths 
(Beaudoing and Rodell, 2020). Table 2 shows 15 candidate predictor 
variables and their description obtained from both GPCP and GLDAS 
sources using NASA’s GES DISC platform (NASA, 2023). 

2.3. Description of machine learning algorithms 

2.3.1. Gradient boosting 
Introduced by Friedman (2001), Gradient Boosting Regression (GB) 

is a technique which combines several Weak Learners (WLs), such as 
classic DT, and structures one strong prediction model (Lin et al., 2012). 
In GB, the new WLs are built sequentially aiming to minimise the earlier 
learner’s residual. The GB’s prediction approach can be represented by 
Eq. 1. 

ŷi =
∑K

k=1
hk(xi) (1) 

Where ŷi is the predicted value for ith sample; K is the total number of 
WLs and hk(xi) corresponds to prediction value of kth WL for the ith 

sample. This iterative generation process is referred to as functional 
gradient descent (described in Eq. 2), which involves optimizing the 
simulation at each step by incorporating a new learner if the loss func-
tion (L) is lower than in the previous step (Yang et al., 2020). The update 
of the residuals at each iteration can be described as: 

rim = −

[
∂L(yi,F(xi) )

∂(F(xi) )

]

(2) 

Where rim is the residual which corresponds to ith sample and mth 

iteration. The L measures the difference between observed (yi) and 
prediction (F(xi)) values. 

2.3.2. Ada-boost 
Ada-Boost Regression (AB) is another boosting ensemble machine 

learning approach that, on some basis, operates like GB (Shanmuga-
sundar et al., 2021). While GB considers a forward-staged sequential 
learner-generating approach, AB employs serialization and applied 
weights to each weak learner (Taufiqurrahman et al., 2020; Wang et al., 
2020). Using the Eq. 3, AB method starts by fitting an initial WL to the 
dataset and calculating the residual error by subtracting the yi from ŷi. 

ŷi =
∑T

t=1
wtht(xi) (3) 

Where wt corresponds to weights assigned to tth weak learner. Sub-
sequently, copies of the initial WLs are created and fitted to the dataset 
once more. However, the algorithm assigns weights to these newly 
generated WLs based on the measured residual error as described in Eq. 

4 and 5 (Xiao et al., 2019). 

ϑt =
1
2

ln
(

1 − γt

γt

)

(4)  

wt+1(i) =
wt(i)exp(ϑtyiht(xi) )

Zt
(5) 

In these equations, ϑt and γt are respectively denoting the assigned 
weight and weighted error corresponds to tth weak learner. wt(i) shows 
the weight of ith sample at the tth iteration and Zt is the normalization 
parameter which regulates the wt(i) distribution. This weight-assigning 
procedure continues until the error reaches the desired limit and then 
these corresponding weights are fixated to each developed WL and the 
regression task is performed (Shanmugasundar et al., 2021). 

2.3.3. Random Forest 
Random Forest (RF) is one of the most popular ensemble machine 

learning algorithms employed in both classification and regression tasks 
(Ahmad et al., 2018). Initially proposed by Breiman (2001a), this al-
gorithm operates based on a statistical concept known as bagging, 
achieved through a bootstrap aggregating procedure. In this algorithm, 
the original dataset is divided into several randomly extracted sub-
samples and a forest of decision trees are trained based on these new 
shorter datasets (Sakamoto, 2020). Following the principles of boot-
strapping, each individual WL undergoes training with multiple trials of 
the sample dataset. The main idea of this approach comprises combining 
the trained WLs to build a predictive model that yields improved 
regression results compared to relying on a single WL. The primary 
objective of RF is to minimise variance without significantly altering the 
bias, while maximising prediction accuracy to the greatest extent 
possible (Shanmugasundar et al., 2021). The overall prediction pro-
cedure for RF can be described by the following equation (Eq.6). 

ŷi =
1
B
∑B

j=1
fj(xi) (6) 

In Eq. 6, B corresponds to the total number of trees in the structured 
RF model and fi(xi) shows the prediction result of jth tree over ith 

observation. 

2.3.4. Extra tree 
The Extra Tree (ET), which was proposed by Geurts et al. (2006), is 

considered an extension of RF which operates based on the overall 
principle described by Eq. 6. While RF and ET operate based on the same 
mathematical equation, two major differences may lead to better 
applicability of ET compare to RF (John et al., 2016). First, ET does not 
use the bagging approach to generate sub-samples from the dataset and 
uses the whole original dataset to train the trees in the presumed 
structured forest. Second, in the node split stage, ET chooses the best 
feature and its corresponding value randomly. Taking these two steps 
made ET less prone to over fitting and shows better prediction accuracy 
(Ahmad et al., 2018). 

2.4. Randomized search cross validation (RScv) 

The Randomized Search Cross Validation (RScv) is a novel meta- 
heuristic optimization approach which has become popular in term of 
improving the machine learning prediction ability (Vishnu et al., 2023). 
First step of utilizing the RScv is to determine the wanted hyper-
parameters and their corresponding search ranges. Then the model will 
structure several sets of combination based on the number of engaged 
hyperparameters. After this, RScv will initially pick a random sample of 
hyperparameters from the universe, and then for each hyperparameter 
employs the same sampling method for extracting a random range from 
the defined search range. Using these initial setups, the RScv will 
perform the model training and measures the prediction performance 

Table 2 
Description of the 15 candidate input variables.  

Variable name Description Unit 

Tair Air Temperature K 
ESoil Direct Evaporation from Bare Soil W m− 2 

Evap Evapotranspiration kg m− 2 s− 1 

GwRunOff Baseflow-groundwater runoff kg m− 2 

PotEvap Potential evaporation rate W m− 2 

Precip Precipitation (from GPCP) mm day− 1 

Qair Specific humidity kg kg− 1 

RunOff Storm surface runoff kg m− 2 

SoilMoi Soil moisture at 10 cm depth kg m− 2 

SoilTmp Soil temperature K 
SurPre Surface air pressure Pa 
SurTmp Average surface skin temperature K 
Tprecip Total precipitation rate (from GLDAS) kg m− 2 s− 1 

Tveg Transpiration W m− 2 

Wind Wind speed m s− 1  
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using cross-validation technique. Considering a user-defined number of 
iterations, the RScv will repeat the random extraction of hyper-
parameters and their respective value ranges from the initial universe 
and calculate the performance metrics. Once the iteration is terminated, 
based on the highest accuracy the best value for each hyperparameter is 
extracted and the model is RScv using all samples in the training dataset 
ignoring the cross-validation technique. 

RScv represents some note benefits compare to other similar 
methods for hyperparameters tuning in ML models. It provides effi-
ciency by requiring fewer iterations compared to Grid Search (GS) 
models, making it more scalable for exploring high-dimensional 
hyperparameters spaces or computationally expensive models (Sharma 
et al., 2023). RScv encourages exploration of the entire hyperparameters 
space by randomly sampling hyperparameters, potentially leading to 
better generalization and discovery of promising regions. However, its 
randomness may cause suboptimal configurations, and it sacrifices 
exhaustiveness for efficiency. Despite these limitations, RScv is moti-
vated by its suitability for large hyperparameters spaces, limited 
computational resources, the desire for exploration, and the focus on 
efficiency in hyperparameters optimization tasks (Vishnu et al., 2023). 

2.5. Uncertainty analysis method 

Uncertainty is usually originated from sampling errors, pre- 
processing phase and prediction model structure from which this 
study only focused on the later source (Ramirez-Villegas et al., 2017). In 
order to assess the uncertainties associated with the predictive algo-
rithms, for every single crop, first the average and standard deviation of 
each sample in the testing phase were calculated. Considering these two 
obtained statistics, by applying Monte-Carlo simulation using the 
normal distribution, 1000 new yield values (number of rows) were 
produced for each set of samples (number of columns). After this new 
dataset was created, each column was sorted separately in ascending 
mode. Then, the rows were ranked from 1 to 1000 and their probability 
(P(i)) was calculated using Eq. 7. 

P(i) = (rank (i)/1001 )× 100 (7) 

To perform this uncertainty analysis method, the 95 Percent Pre-
diction Uncertainty (PPU) needs to be determined which is also known 
as 95% prediction confidence interval. Using eq. (1), the nearest prob-
ability to 2.5 and 97.5% were respectively selected as lower and upper 
boundaries of 95 PPU band. The level of uncertainty was determined 
using the R-factor criteria which was calculated using Eq. 8. 

R − factor = γ/σ (8) 

In eq. (8), σ is the standard deviation of original values in the testing 
phase and γ was calculated using Eq. 9. 

γ =
∑n

i=1

(
95PPUi

upper boundary − 95PPUi
lower boundary

)/
n (9) 

In eq. (9), n is the total number of samples in the testing phase so γ 
can be considered as the average between difference of upper and lower 
boundaries. 

2.6. Methodology hierarchy 

The annual crop yields of Barley, Oat, Rye and Wheat for the selected 
20 countries (Table 1) were extracted from the FAO dataset as depen-
dent variables. To predict the behaviour (the values) of these dependent 
variables, several environmental and climate components (described in 
Table 2) were obtained from GPCP and GLDAS satellite sources (NASA, 
2023) and considered as predictor or independent variables. Since GPCP 
has a coarser spatial resolution, its longitude and latitude grid points 
were considered as the data extraction points in each of the 20 European 
countries. This grid-based point extraction procedure was successfully 

applied in Sharafati et al. (2020) for predicting groundwater levels. The 
location of these points is showed in Fig. 1. 

In particular, each point of this grid (Fig. 1) depicts different values 
of the considered climate parameters (Table 2) which were obtained 
through two procedures: i) directly extracted from satellite products; or 
ii) by using interpolation techniques. Likewise, the number of points 
used in each country is noted in Table 3. 

The general flow-chart of the method performed in the present study 
is showed in Fig. 2 and explained within the following three steps. 

Step 1: Pre-processing the data: The Dependent variables (four crop 
yields) and seven independents (satellite products) were processed into 
annual basis. In particular, these independent climate variables, with a 
monthly time resolution, were extracted from GPCP and GLDAS sources 
in each point of the constructed grid across Europe (Fig. 1). Next, these 
predictor variables were averaged for each country obtaining an annual 
basis because of the FAO’s crop yield dataset depicts an annual time 
resolution (Fig. 2). Thus, each of the 20 countries obtained 20 obser-
vations (one per year from 2000 to 2019), resulting in an output data 
frame with 400 rows (samples). Meanwhile, the data frame columns 
were composed by seven predictor variables (which multicollinearity 
was assessed before) and the four mentioned dependent variables. 
Therefore, a dataset with 28 columns was obtained. 

Step 2: The constructed dataset was divided into training and testing 
phases, based on an 80–20 proportion, and then used as the input of four 
different machine learning algorithms once without and once with RScv 
application. 

Step 3: Output accuracies were evaluated over each crop type and 
among four algorithms before and after application of RScv. Particu-
larly, each algorithm underwent optimisation and evaluation using four 
statistical metrics: Coefficient of Determination (R2), Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE) and Variance Score 
(VarS). 

Step 4: Since the real-time simulations were performed over a large 
region and wide temporal ranges, the evaluation of associated predic-
tion uncertainties for each crop was also performed to make the results 
more applicable. 

3. Results 

3.1. Feature selection procedure 

Selecting the best input features is an essential task to have a robust 
AI-based prediction model. Numerous studies were focused on different 
methodologies to extract the best set of features (Mazumder, 2020). For 
example, Belloni et al. (2012) assessed applying Least Absolute 
Shrinkage and Selection Operator (Lasso) and post-Lasso for feature 
engineering purposes. Belloni and Chernozhukov (2013) investigated 
the application of ordinary least squares (OLS) methods for input se-
lection, whereas Hanke et al. (2023) compared the application of for-
ward stepwise selection (FSS) and Best subset selection (BSS) with Lasso 
models. In a more comprehensive research, Hastie et al. (2020) 
employed various sampling alternatives and evaluated the application 
of BSS, FSS and Lasso showing comparisons based on signal-to-noise. As 
these methods usually focus on a linear relationship between input and 
target parameters, this study uses a built-in feature of the proposed 
ensemble ML algorithms, which deals with the parameter selection. 
Because of tree-based ML models, an importance rank could be gener-
ated, which denotes the ability of each specific parameter to perform the 
branch split and sub-branch generation in a decision tree. Fig. 3 shows 
these importance values for each crop type. 

As Fig. 3 shows, in all studied crops Tair, ESoil, Precip, Qair, SoilMoi, 
Tveg and Wind with fluctuating data shows the higher values impor-
tance. Therefore, these seven have been selected as the optimised vari-
ables for future investigations. To avoid further issues in the prediction 
process, it is important to evaluate these optimised inputs for the case of 
multicollinearity (Hunink et al., 2017; Mahato and Gupta, 2022). Thus, 
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Fig. 4 shows the scatter-plot matrix between these variables. 
As Fig. 4 shows, both negative and positive linear association can be 

seen between pairs of variables. While the majority of pairs have low 
level of multicollinearity, some high correlation can be seen in the 
scatter-plot matrix. Qair and Tair (Correlation = 0.81) and Tair and 
SoilMoi (Correlation = − 0.72) respectively present the highest positive 
and negative cases of multicollinearity. The Variance Inflation Factor 
(VIF) method, also noted in Fig. 4, was used to evaluate the effect of 
these pairs on estimation variance because of collinearity. Based on 
previous studies, VIF over 10 is considered as severe case of multi-
collinearity, however, more conservative threshold of 5 was also re-
ported in some literatures (O’brien, 2007; Thompson et al., 2017). As 
Fig. 4 shows, the highest calculated VIF is 2.90 which is far from the 
most restrictive thresholds, so all the considered input parameters were 
used in the prediction phase. 

3.2. Real-time prediction 

In line with the previous section, the input data were evaluated based 

on multicollinearity which led to seven best variables and exclusion of 
eight relatively unimportant parameters. This optimised input dataset 
was then used in four selected machine learning algorithms and the 
yields of four crops were predicted. Next, the RScv was applied to the ML 
algorithms separately and the corresponding hyperparameters were put 
under tunning procedure. For RScv, the number of iterations was set to 
100 epochs and 10-fold cross-validation was utilized to generate 
different subsets of the training dataset. The applied 10-fold cross- 
validation technique, iteratively divides the input dataset into training 
and testing batches with 90 and 10% proportions. Thus, the model can 
perform the learning and validation processes across the entire samples. 
This increases the data diversity and significantly reduces the possibility 
of over-fitting (Breiman, 2001b). In this study, the ML algorithms were 
employed from the Ensemble subcategory of Python’s Scikit-learn 
(Sklearn) library. Table 4 shows the optimised values of each hyper-
parameter for the studied ML algorithms. 

For GB, the “Squared error” loss function was considered being the 
most suitable choice using the trial-and-error procedure. Since weak 
learners in Sklearn’s GB are considered decision trees, the node-splitting 
approach is an important factor, so the Friedman’s Mean Squared Error 
(MSE) was selected to handle this procedure. For AB, the Exponential 
function proved to be the most suitable loss function. Considering the 
parameters proposed by Sklearn to optimise the performance of RF and 
ET, the quality of split in tree nodes was evaluated using the Squared 
Error function (Pedregosa et al., 2011). 

As Table 4 shows, the number of hyperparameters differs from one 
algorithm with another. While based on SKlearn library each of the 
utilized ML algorithm has more defined hyperparameters, only the most 
effective ones was reported in Table 4. Other parameters were excluded 
as they do not improve the accuracy and depict no impact on the dataset 
of this case study. It is noteworthy to mention that the “n_estimators” are 
also considered as a regularization criterion which prevents the occur-
rence of over-fitting in ML algorithms. Since this criterion controls the 
model’s overall complexity, obtaining the highest accuracy (using lower 

Fig. 1. Spatial resolution of the grid points across the 20 studied countries.  

Table 3 
Number of extracted points in each country.  

Number Country Number of 
points 

Number Country Number of 
points 

1 Albania 12 11 Germany 176 
2 Austria 42 12 France 260 
3 Bosnia 23 13 Croatia 26 
4 Belgium 15 14 Hungary 44 
5 Bulgaria 51 15 Italy 135 
6 Switzerland 20 16 Netherlands 19 
7 Denmark 27 17 Poland 163 
8 Spain 209 18 Portugal 37 
9 Greece 59 19 Sweden 316 
10 Czechia 40 20 Slovenia 10  
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rates for “n_estimators”) is the main goal of a proper hyper-parameter 
tuning. Based on Table 4, the range of “n_estimators” for all algo-
rithms are in relatively low ranges, which confirms the applicability of 
RScv. 

Once the hyperparameters were fully tunned, the prediction was 
again performed and the results of RScv application were compared with 
classic algorithms. Table 5 shows the crop-based performance evalua-
tion of ML models before and after the application of RScv using R2 and 
RMSE metrics. 

As Table 5 shows, the RScv could enhance the prediction accuracy 
over all ML models and crops types at different rates. Based on RMSE 
and R2, the highest level of improvement can be seen in RScv-GB with 
nearly 16 and 12% of enhancement over Oats and Barley. Based on the 
table outputs, RScv-AB with the average accuracy of R2 = 0.865 and 

RMSE = 6283.63 has the best prediction performance. RScv-ET is the 
second best algorithm which shows the averaged metrics of R2 = 0.852 
and RMSE = 6685.57. Furthermore, the RScv-GB with R2 = 0.837 and 
RMSE = 7125.87 shows the worst prediction performance. In term of 
crops, Barley obtaining R2 = 0.816 and RMSE = 7795.54 shows the 
lowest overall accuracy, while the highest performance was obtained in 
Wheat with R2 = 0.882 and RMSE = 7549.35.

Fig. 5 depicts the prediction performance of optimised ML algo-
rithms using scatter plots of testing phase. As mentioned before, the 
regression and statistical metrics of R-squared, RMSE, MAE and VarS 
have also been included in the plots. It is worthy to mention that, to have 
better comparable visualization of prediction performances, the values 
have been normalized between 0 and 1. Based on these figures, for 

Fig. 2. Overall flowchart of the developed methodology.  
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Barley the RScv-ET shows the highest accuracy regarding the R2 =

0.84 and VarS = 0.835, but considering the RMSE ( = 0.107) and MAE 
( = 0.083) the RScv-AB takes the upper hand. For Oats, RScv-AB has the 

best values for R2 = 0.875 and VarS = 0.779, however, RScv-RF shows 
better RMSE ( = 0.119) and MAE ( = 0.093) metrics. The prediction 

Fig. 3. Comparison between relevancy of different input parameters using tree-based feature importance values for each crop type.  

Fig. 4. Scatter-plot matrix between the input variables.  
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output of Rye reveals that the RScv-AB with R2 = 0.846,RMSE = 0.111,
MAE = 0.082 and VarS = 0.84 outperform all its alternative in term of 
yield prediction. Same results could be seen in Wheat as RScv-AB 
with R2 = 0.901,RMSE = 0.084,MAE = 0.066 and VarS = 0.88 repre-
sent the highest prediction accuracy. 

While scatterplots visualize the linear relationship between the 
observed and predicted variables, Fig. 6 used Boxplots to show the 
statistical distribution of the mentioned variables. Boxplots are useful 
tools for evaluating the variability among the predictive algorithms and 
their outliers and statistical quartiles. Likewise, the IQR value is an 
important criterion which was calculated from subtraction of 75% and 
25% quartiles and used in this study to compare the similarity of box-
plots. Based on this figure, for Barley (Figure6-a) RScv-AB and RScv-ET 
have nearly same and simultaneously the highest similarity with 
observed samples(IQR = 27017.75). For Oats (Figure6-b), RScv-AB 
(IQR = 23189.56) shows the best approximation of observed (IQR =

23189.56) while RScv-RF (IQR = 18932.31) has the worst estimation. In 
a similar fashion, for Rye (Figure6-c) again the RScv-AB (IQR =

23701.25) mimics the observed samples (IQR = 24901.25) being better 
than its alternative. Similar to two previous crops, RScv-AB predictions 
(IQR = 29724.25) also represent the best estimation of observed data 
(IQR = 37613.75). Based on these graphical and statistical accuracy 
evaluators, the optimised version of AdaBoost is the better predictive 
algorithm over all studied crops, so its outputs have been used for 
further investigations. 

3.3. Spatial distribution of prediction error 

For spatial analysis of RScv-AB predictions, each crop-based dataset 
was sorted in ascending mode using the data column. Since for each year 
from 2000 to 2019 we have a total of 20 countries (Samples), a cross- 
validation approach was carried out which use 20-fold data split 
without considering the shuffling approach. Based on this, the sample 
from each fold (year) was predicted using the pre-trained RScv-AB 
model and the residuals were calculated by subtracting the predicted 
from the actual yields and then the measured residuals were averaged 
over the studied 20 years. Fig. 7 demonstrates the spatial distribution of 
prediction errors (residuals) across the 20 studied European countries. 

Overall, the numerical range of generated errors are much higher in 
Barley compare to other three crops. However, in Barley, majority of 
errors are fluctuating around the [− 500, +500] except for countries like 
Netherlands or Albania and Bosnia. In Oats, the distribution of residuals 
shows more tendency toward negative errors, which denotes higher 
chance of underestimation, especially in countries like Spain, Austria 
and Bosnia. Rye shows completely different error distribution compare 
to Oats, as the trend in errors shift toward positive or overestimation. 
This change of pattern is more apparently manifested in central Euro-
pean countries and the Norway to the north. Wheat also shows more 
negative error values but the rate of underestimation is much higher 
than the obtained in Oats. Overall, based on all four crops, it could be 
understood that while most RScv-AB residuals are near to 0, more ten-
dency toward underestimation is recognised. 

3.4. Uncertainty analysis 

While the proposed RScv-AB shows excellent prediction capability, 
evaluation of uncertainty analysis seems a necessity. First, as described 
in section 2.5, the average and standard deviation of four utilized al-
gorithms for each testing sample (a total of 80 samples) per crop were 
calculated. Next, using the mean and variance of 0 and 1 a total of 1000 
random numbers were generated and then merged with calculated 
average and standard deviation so that 1000 new yields could be pro-
duced. Using the described method, the upper and lower boundary as 
well as the R − factor for each crop have been quantified and depicted in 
Fig. 8. 

From this figure, it can be understood that the values of R − factor are 
nearly in the same numerical range and the observed line is inside the 
95PPU in most of the cases. However, the level of uncertainty in Barley 
(R − factor = 0.549) is slightly higher than its alternatives, while Wheat 
(R − factor = 0.505) has the lowest associated uncertainty rate. Larger 
R − factor denotes wider interval range in which a reference value is 

Table 4 
RSCV-based Optimised hyperparameters for boosting-based models (ABR and 
GBR) as well as tree-based algorithms (ETR and RFR).  

Algorithms Hyperparameters Barley Oats Rye Wheat 

AB 
max_depth 10 10 15 12 
n_estimators 23 92 22 11 
random_state 87 87 45 52 

GB 

max_depth 11 5 9 5 
max_leaf_nodes 12 10 10 12 
min_samples_leaf 21 22 9 22 
n_estimators 118 71 74 54 
random_state 19 6 45 97 

ET 
max_depth 17 16 15 15 
n_estimators 27 11 11 75 
random_state 116 86 68 187 

RF 

max_depth 13 9 14 10 
max_leaf_nodes 32 54 61 96 
n_estimators 44 11 11 84 
random_state 2 75 2 55  

Table 5 
Summary of machine learning prediction performance before and after application for RSCV based on R2 and RMSE accuracy metrics and their level of improvement to 
each crop yield (expressed in tons/ha) and for all the 20 European countries.    

RMSE R2 

Models Crops Before After Improvement Before After Improvement 

AB 

Barley 8067.4 7285.5 9.69% 0.795 0.837 5.21% 
Oats 5780.1 5195.6 10.11% 0.843 0.875 3.77% 
Rye 6955.6 5837.6 16.07% 0.782 0.846 8.17% 
Wheat 8125.2 6815.9 16.11% 0.863 0.901 4.51% 

ET 

Barley 7973.5 7370.2 7.57% 0.806 0.840 4.25% 
Oats 5596.7 5323.5 4.88% 0.851 0.871 2.39% 
Rye 7421.2 6519.0 12.16% 0.748 0.808 8.05% 
Wheat 8100.5 7529.5 7.05% 0.863 0.888 2.88% 

GB 

Barley 9472.1 8100.3 14.48% 0.712 0.795 11.58% 
Oats 6900.1 5824.3 15.59% 0.771 0.836 8.52% 
Rye 6750.1 6527.0 3.30% 0.794 0.807 1.58% 
Wheat 9267.3 8051.9 13.12% 0.810 0.862 6.47% 

RF 

Barley 9107.0 8426.1 7.48% 0.740 0.791 7.01% 
Oats 6005.5 5390.6 10.24% 0.827 0.863 4.33% 
Rye 7033.4 6375.9 9.35% 0.775 0.816 5.23% 
Wheat 8211.3 7800.2 5.01% 0.863 0.876 1.54%  
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probably going to lie, while smaller values reflect narrower intervals 
that encompass more accurate estimation. 

4. Discussion 

Since the primary aim of this research was focused on the utilisation 
of ML to estimate annual yields of four major crops (Barley, Oats, Rye, 
and Wheat) over Europe, it was necessary to compare our results with 

other related approaches. Thus, Cao et al. (2022) predicted the winter 
wheat yield by adopting MLR, Support Vector Regression (SVR), RF and 
XGBoost algorithms in the north of China. Using satellite and observa-
tional climate/atmospheric data, the latter model (with R2 = 0.85) 
proved to be the best predictor. Li et al. (2021) used the RF to predict 
different crop yields in China using soil characteristics, climate variables 
and vegetation indices. The employed RF showed an R2 of 0.56 as the 
highest obtained performance metric. In another study, Gopal and 

Fig. 5. Scatter plot of observed vs. predicted crop yield (hg/ha) using optimised RScv-ABR, − ETR, -GBR and -RFR.  
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Bhargavi (2019) evaluated in India the performance of ANN, SVR, KNN 
and RF and demonstrated that the latter (with R2 = 0.88) was the most 
accurate simulator of crop yield. In China, similar R2 and RMSE metrics 
were reached by Dang et al. (2021) estimating autumn crop yields 
through the SVR, RF, and DNN models along with several vegetation 
indices. In an extend area of United States, formed by 13 adjacent states, 
Huber et al. (2022) predicted annual soybean yields considering 
Extreme Gradient Boosting (XGBoost), CNN and CNN-LSTM among 
other methods. During their studied period (from 2017 to 2021) best 
crop estimations were accomplished by the XGBoost (R2 = 0.79 and 
RMSE = 4.25) followed by the CNN (R2 = 0.66 and RMSE = 5.69) and 
the CNN-LSTM (R2 = 0.61 and RMSE = 6.14). Comparing the applica-
tion of RScv on ML algorithms, which was carried out in this study (with 
a highest R2 of 0.901 and an average R2 of 0.86, Table 5), with the above 
mentioned literatures, as well as other researches such as Nosratabadi 
et al. (2020) and Prasad et al. (2021), it should be highlighted the 
robustness of ML algorithms and the optimisation power of RScv 
improving the estimation of different crop types. Likewise, although last 
years the RScv has been coupled with ML algorithms in certain fields of 
research as econometric assessments or studies of gastric diseases 
(Priscilla and Prabha, 2020; Sharma et al., 2023; Vishnu et al., 2023), 
from the author’s knowledge currently exist a great lack of scientific 
studies covering ML and RScv methods on the cultivars yield topic. 

Additionally, the ANN, KNN and SVR are the two or three main 
competitors of the ensemble ML algorithms as have been included in 
most of the related literatures (Ahmad et al., 2018; Keerthana et al., 
2021). To have a more robust evaluation of the proposed RScv-AB, the 
same dataset was used as the input of these three classic AI algorithms 

which were also optimised by the RScv approach. These three models 
were also employed considering the SKlearn machine learning packages. 
Table 6 tabulated the evaluation of the proposed RScv-AB to these 
counterparts. 

As Table 6 shows, while KNN depicts significant superiority to ANN 
and SVR, the RScv-AB outperforms them all based on R2 and RMSE 
metrics which once again confirms the hybrid models robustness. 
Furthermore, among the four utilized predictors, Ada-Boost was iden-
tified as the best predictive algorithm in our study. Similar trustworthy 
results were obtained in Wang et al. (2020) where authors also 
confirmed the power of the Ada-Boost algorithm compare to various 
number of predictive algorithms such as several linear models, SVR, RF 
and deep neural network (DNN). Keerthana et al. (2021) also showed 
that AB is the supreme predictive method compare to DT, RF, GB, K- 
Nearest Neighbour (KNN) and Bagging regressors. 

The represented approach in this study integrates remote sensing and 
machine learning techniques, which obtained good prediction results 
and therefore can be utilized as a powerful alternative to the existing 
crop yield simulation models (Xevi et al., 1996; Van Wart et al., 2013; 
Zhang et al., 2020). Thus, in line with Ryan (2022), the proposed 
method could imply positive impacts on the agricultural sector within 
various aspects, from which the improvement of crop yield estimation at 
global scale could be the most important. Accurate prediction of crop 
yields over both spatial and regional concepts is also a principal 
component for devising a viable large-scale food security strategy 
(Jeong et al., 2016; Spanaki et al., 2022). Furthermore, the developed 
model can help the policymakers and managers to enhance the current 
allocation of resources such as water and fertilizers which will 

Fig. 6. Descriptive statistical analysis of observed vs. predicted crop yield (hg/ha) using Boxplot.  
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subsequently increase the overall crop growth rates and can aid to 
maintain sustainable agricultural practices (Konefal et al., 2023; Leo 
et al., 2023). Finally, application of satellite-based climate variables 
could be beneficiary to handle climate resilience in case of inevitable 
change in weather patterns because of climate change. 

5. Conclusion 

Ensuring food security, a critical aspect of UN Sustainable Develop-
ment Goals, requires doubling crop yields by 2030. Developing accurate 
crop yield prediction tools is essential for devising effective food stra-
tegies and aiding decision-makers worldwide. Failure to address these 
challenges could lead to socioeconomic crises, particularly in underde-
veloped nations. Thus, there is an urgent need for strategic planning to 
enhance agricultural productivity and to mitigate the impact of climate 
change on crop yields. In this study, the effectiveness of RScv as a novel 
optimisation technique on machine learning algorithms was evaluated 
for predicting crop yield from four major cultivation patterns in Europe. 
The four crops examined were Barley, Oats, Rye and Wheat, widely 
cultivated in the region. In order to have the highest spatial and tem-
poral coverage, satellite products from NASA’s GPCP and GLDAS mis-
sions were considered as inputs of this study. Prediction comparison 
between the classic AB, GB, RF and ET, as four popular machine learning 
algorithms, as well as their optimised versions using RScv was per-
formed using the satellite-based input dataset. By comparing the algo-
rithms before and after the application of RScv, it was found that the 
Ada-Boost (AB) algorithm produced the most accurate predictions of 
crop yield. The outcomes of the study showed that the RScv-AB algo-
rithm achieved a prediction accuracy of over 90% when forecasting crop 

yield. Spatial analysis of the prediction error distribution for RScv-AB 
was also performed for the studied 20 countries in Europe and over 
four crop types. While the overall fluctuation of residuals was around 
zero, the model depicts more tendency toward underestimation. Crop- 
based uncertainty examination shows that the machine learning model 
produces more uncertainty in Barley, while Wheat, which also has the 
highest prediction accuracy, had the least associated uncertainty. While 
the proposed predictive approach has proven its robustness, certain 
limitations were found, which will be considered in future research. For 
instance, whereas this study tries to include the major climate param-
eters, utilizing other weather variables or vegetation indices, which also 
could be obtained from other remote sensing sources, could increase the 
prediction of crop yield accuracy. While, this study only measured the 
impacts of climate-related variables, accompanying socio-economical 
and land cover/use parameters such as cropping areas and manage-
ment methods could also be addressed in future studies. Furthermore, 
this study was regionally limited to 20 countries in the Europe continent, 
but applying the same method to the global scale may lead to higher 
geospatial diversity and more applicability of suggested endeavour. 
Application of remote sensing particularity enables this method to be 
applied in regions which lack the proper recording of historical or real 
time crop yields. Open accessorily to satellite-based soil and weather 
variables in certain areas can aid policy planners to have better ap-
proximations of crops productivity. Similarly, by using a combination of 
AI models and satellite data, farmers can obtain correct predictions of 
crop yield and make informed decisions about how to proceed. 

Fig. 7. Spatial distribution of R2 across the studied European countries.  

S.B.H.S. Asadollah et al.                                                                                                                                                                                                                      



Agricultural Systems 218 (2024) 103955

13

Nomenclature 

AI Artificial Intelligence 
AB Ada-Boost 
ANFIS Adaptive neuro-fuzzy inference systems 
ANN Artificial neural network 
CD Coefficient of Determination 
CHIRPS Climate Hazards Group Infrared Precipitation with Station 

data 
CNN Convolutional Neural Network 
DT Decision Tree 
ECMWF European centre for medium weather forecast 
ET Extra Tree 
GBR Gradient Boost Regression 
GDD Growing degree days 
GDAP Data and Assessment Panel 
GEWEX Global Water and Energy Experiment 
GLDAS Global Land Data Assimilation System 
GPCP Global Precipitation Climatology Project 

GPROF Goddard Profiling Algorithm 
KNN K-Nearest Neighbour 
LAI Leaf Area Index 
LST Land Surface Temperature 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
ML Machine Learning 
MLP Multi-Layer Perceptron 
MLR Multiple linear regressions 
MODIS Moderate Resolution Imaging Spectroradiometer 
MSE Mean Squared Error 
NDVI Normalized difference vegetation index 
NN Neural Networks 
NSE Nash Sutcliffe Efficiency 
RF Random Forest 
RMSE Root Mean Squared Error 
RS Remote Sensing 
SSMI/SSMIS Special Sensor Microwave Imager/Sounder. 
SPI Standardised precipitation index. 
SVM Support Vector Machine 
TRMM Tropical Rainfall Measuring Mission 
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Fig. 8. Crop-based uncertainty analysis of optimised machine learning predictions using Monte-Carlo simulation and R-factor criteria.  

Table 6 
Comparison between RScv-AB and the optimised KNN, ANN and SVR algorithms 
in each studied crop for 20 European countries. Note: RMSE values are expressed 
in tons/ha.  

Metrics Algorithms Barley Oats Rye Wheat 

R2 

RScv-AB 0.837 0.875 0.846 0.901 
RScv-KNN 0.772 0.837 0.756 0.844 
RScv-ANN 0.584 0.674 0.531 0.662 
RScv-SVR 0.510 0.657 0.608 0.622 

RMSE 

RScv-AB 7285 5196 5838 6816 
RScv-KNN 8699 5876 7480 8747 
RScv-ANN 11,252 8043 10,128 12,185 
RScv-SVR 12,138 8297 9264 12,945  
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