4,076 research outputs found

    Motif counting beyond five nodes

    Get PDF
    Counting graphlets is a well-studied problem in graph mining and social network analysis. Recently, several papers explored very simple and natural algorithms based on Monte Carlo sampling of Markov Chains (MC), and reported encouraging results. We show, perhaps surprisingly, that such algorithms are outperformed by color coding (CC) [2], a sophisticated algorithmic technique that we extend to the case of graphlet sampling and for which we prove strong statistical guarantees. Our computational experiments on graphs with millions of nodes show CC to be more accurate than MC; furthermore, we formally show that the mixing time of the MC approach is too high in general, even when the input graph has high conductance. All this comes at a price however. While MC is very efficient in terms of space, CC’s memory requirements become demanding when the size of the input graph and that of the graphlets grow. And yet, our experiments show that CC can push the limits of the state-of-the-art, both in terms of the size of the input graph and of that of the graphlets

    When is a Network a Network? Multi-Order Graphical Model Selection in Pathways and Temporal Networks

    Full text link
    We introduce a framework for the modeling of sequential data capturing pathways of varying lengths observed in a network. Such data are important, e.g., when studying click streams in information networks, travel patterns in transportation systems, information cascades in social networks, biological pathways or time-stamped social interactions. While it is common to apply graph analytics and network analysis to such data, recent works have shown that temporal correlations can invalidate the results of such methods. This raises a fundamental question: when is a network abstraction of sequential data justified? Addressing this open question, we propose a framework which combines Markov chains of multiple, higher orders into a multi-layer graphical model that captures temporal correlations in pathways at multiple length scales simultaneously. We develop a model selection technique to infer the optimal number of layers of such a model and show that it outperforms previously used Markov order detection techniques. An application to eight real-world data sets on pathways and temporal networks shows that it allows to infer graphical models which capture both topological and temporal characteristics of such data. Our work highlights fallacies of network abstractions and provides a principled answer to the open question when they are justified. Generalizing network representations to multi-order graphical models, it opens perspectives for new data mining and knowledge discovery algorithms.Comment: 10 pages, 4 figures, 1 table, companion python package pathpy available on gitHu

    The Partial Evaluation Approach to Information Personalization

    Get PDF
    Information personalization refers to the automatic adjustment of information content, structure, and presentation tailored to an individual user. By reducing information overload and customizing information access, personalization systems have emerged as an important segment of the Internet economy. This paper presents a systematic modeling methodology - PIPE (`Personalization is Partial Evaluation') - for personalization. Personalization systems are designed and implemented in PIPE by modeling an information-seeking interaction in a programmatic representation. The representation supports the description of information-seeking activities as partial information and their subsequent realization by partial evaluation, a technique for specializing programs. We describe the modeling methodology at a conceptual level and outline representational choices. We present two application case studies that use PIPE for personalizing web sites and describe how PIPE suggests a novel evaluation criterion for information system designs. Finally, we mention several fundamental implications of adopting the PIPE model for personalization and when it is (and is not) applicable.Comment: Comprehensive overview of the PIPE model for personalizatio
    • …
    corecore