
On the
Summarization of
Complex Networks

Isac Daniel de Figueiredo
Novo
Mestrado em Engenharia de Redes e
Sistemas Informáticos
Departamento de Ciência
de Computadores
2022

Supervisor
Pedro Ribeiro, Professor Auxiliar
Faculdade de Ciências da Universidade do
Porto

Co-supervisor [if applicable]
Supervisor’s Name, Category, Institution

Sworn Statement
I, Isac Daniel de Figueiredo Novo, enrolled in the Master’s Degree in Network and

Information Systems Engineering at the Faculty of Sciences of the University of Porto

hereby declare, in accordance with the provisions of paragraph a) of Article 14 of the

Code of Ethical Conduct of the University of Porto, that the content of this dissertation

reflects perspectives, research work and my own interpretations at the time of its

submission.

By submitting this dissertation, I also declare that it contains the results of my own

research work and contributions that have not been previously submitted to this or any

other institution.

I further declare that all references to other authors fully comply with the rules of

attribution and are referenced in the text by citation and identified in the bibliographic

references section. This dissertation does not include any content whose reproduction

is protected by copyright laws.

I am aware that the practice of plagiarism and self-plagiarism constitute a form of

academic offense.

Isac Daniel de Figueiredo Novo

30/9/2022

Abstract

Complex Networks have ubiquitous applications to a variety of different scenarios, ranging from the
ever growing inter-connectivity of the modern world, to the representation of complex molecular
structures. As the name entails, its complexity is an innate characteristic, often detrimental
to the retrieval of useful information. Graph mining algorithms, that toil to provide a suitable
means of doing so, achieve that with an adequate measure, commonly in a non-deterministic way
and always with a high computational cost.

Since complex real world networks, tend to exhibit statistically relevant patterns, whose
properties are inherited by the large network. As such, their detection and classification tend to
be the subject of much attention by part of the network science and data mining communities. A
graph’s relational nature, is the basis for much of its prevalence as abstract data type. Frequently
being adopted as part of the implementation of another structure, or being abstracted into a
completely different structure for a particular use. Nevertheless, since it also exists primarily as
a pure mathematical concept, its properties remain the same no matter from which angle you
choose to look at them. And, therefore, discoveries made in one field of study can usually be
transferred to another, when they pertain to graph theory at its core. In the process, yielding
novel ways to look at old problems.

A complete summarization of a graph, if ever possible, would allow to bypass many of the
setbacks that arise when dealing with such complex structures. The goal of moving a step
forward towards such possibility, if ever so slightly, is what is being proposed in this work. The
summarization by compression of a complex network, via its motifs, can potentially be used to
derive meaning from it. At the same time, providing a simpler and quintessential representation.

Keywords: Complex Networks, Graph Compression, Graph Mining, Graph Summarization,
Isomorphism Class, Minimum Description Length, Network Motifs, Vocabulary of Graphs,
Subgraph

vii

Contents

Abstract vii

Contents xi

List of Tables xiii

List of Figures xvi

Listings xvii

1 Introduction 1

1.1 Goals and Motivation . 2

1.2 Thesis Organization . 3

2 Notions on Graph Theory 5

2.1 Graph Definition and Terminology . 6

2.1.1 Fundamental Notions . 6

2.1.2 Graph Characterisation . 9

2.2 Graphs as Abstract Data Types . 12

2.2.1 Implementation and Operations . 12

2.2.2 Adjacency Lists Versus Adjacency Matrices 13

2.3 Subgraphs and Network Motifs . 14

2.3.1 Graph Isomorphism . 15

2.3.2 Subgraphs . 16

ix

2.3.3 Network Motif . 16

3 Related Work 21

3.1 Graph Compression . 22

3.1.1 SlashBurn . 24

3.1.2 Vocabulary of Graphs . 25

3.2 Quick Discovery of Network Motifs . 28

3.2.1 G-Trie Definition . 28

3.2.2 G-Trie Creation . 29

3.2.3 Counting Subgraph Frequencies . 29

4 Design & Development 31

4.1 Graph description by Network Motif Compression 32

4.2 Building a Graph for Compression . 34

4.2.1 Handling Edge Deletion and Update . 36

4.2.2 Workload Sorting and Contraction Validation 39

4.2.3 The Folding Problem . 42

4.2.4 Compressing the Graph . 43

4.3 Restoring the Uncompressed Graph . 44

4.3.1 The Execution Pipeline . 46

5 Testing and Analyzing Graph Compression 53

5.1 Test Case Networks . 53

5.1.1 American Revolution . 53

5.1.2 A Song of Ice and Fire . 54

5.1.3 Euroroads . 55

5.1.4 Air Traffic Control . 56

5.1.5 Network Science . 57

5.1.6 Pretty Good Privacy . 58

x

5.2 Obtaining and Analyzing Results . 59

5.2.1 Overall Compression Ratios . 60

5.2.2 Further Experimentation and Scalability 64

5.3 Relating Results to Network Metrics . 69

6 Conclusion 73

6.1 Summarization Through Compression . 74

6.2 Future Work . 75

Bibliography 77

xi

List of Tables

5.1 Compression ratios for the tested networks. 60

5.2 Compression ratios after removing repeated edges and self-loops. 61

5.3 Frequency measures of isomorphism classes for the tested networks 62

5.4 Comparison between the best compression heuristics and compressed metrics . . 63

5.5 Comparison between the worst compression heuristics and compressed metrics . 63

5.6 Composite heurisitc results . 64

5.7 Compression results for differently sized motifs. 66

xiii

List of Figures

1.1 Example graph with coappearance network of the novel Les Miserables 1

2.1 Example small undirected graph . 7

2.2 Example of a path and a cycle . 8

2.3 Example of induced and non induced subgraphs 8

2.4 Example of caveman communities . 9

2.5 Example of a prefix tree . 11

2.6 Example of graph isomorphism . 15

2.7 The concept of a network motif . 17

2.8 An example g-trie . 19

3.1 Compression of a bipartite graph into two nodes 23

3.2 SlashBurn decomposition . 25

4.1 Novel Graph Description. 33

4.2 Upstream and Downstream nodes. 35

4.3 Single edge contraction. 36

4.4 Edge contraction over a network motif. 37

4.5 Node contraction implementation. 38

4.6 Toy network compression. 40

4.7 Toy network compression. 41

5.1 The American Revolution network. 54

xv

5.2 The A Song of Ice and Fire network. 55

5.3 The Euroroads network. 56

5.4 The Air Traffic Control Network. 57

5.5 The Network Science network. 58

5.6 The Pretty Good Privacy network. 59

5.7 Heuristic execution time . 68

5.8 Logarithmic heuristic execution time . 68

5.9 Motif size execution time . 69

xvi

Listings

4.1 Java method for graph compression . 47
4.2 Java method for subgraph node permutation . 48
4.3 Java method for validating edge contraction . 49
4.4 Java method for generating output - first half . 50
4.5 Java method for generating output - second half 51

xvii

Chapter 1

Introduction

Graphs are a powerful abstraction capable capturing the entities involved in a system and
the relationships between them. Recently, Network Science has been emerging as promising
multidisciplinary field, integrating areas such as graph theory, statistical mechanics, data mining
and information visualization, aiming precisely to study as a whole graphs that emerge from real
life systems [3, 34].

Figure 1.1: An example graph modelling the coappearance weighted network of characters in the
novel Les Miserables. Made with Gephi [6] with data from Stanford GraphBase [19].

Network Science has a vast applicability [13] and has allowed researchers to study networks
from a multitude of areas, such as biology [5] (e.g. protein interaction [26] or brain networks [11]),
economics [32] (e.g. trade [14] or stock networks [37]), sociology [10] (e.g. friendship [17] or
co-authorsiph networks [27]) or urban science [28] (e.g. road [33] or crime networks [36]).

1

2 Chapter 1. Introduction

Many of the studied networks have non trivial topological characteristics and a scale that
does not make it easy to task of analyzing them. Because of that, since early there have has
been research on how a graph could be compressed, while keeping its essential characteristics,
trying for instance to speedup computations [16] or improving its visualization [15]. While
summarization of other data types is older, graph summarization [23] is a much younger field,
aiming precisely to provide methods to condense and simplify network based data. Methods
for compressing graphs have thus emerged, exploiting characteristics such as the existence of
"hub-like" nodes with many connections [22] or pre-defined subgraph structures [20].

1.1 Goals and Motivation

This work aims precisely to tackle graph summarization and compression, providing an initial
proof of concept approach aiming towards a general compression scheme able to automatically
use subgraph patterns to provide a "vocabulary" adapted to the specificity of any given networks.

Our goals are twofold. Firstly, we want to provide an alternative, straightforward, and
compressed definition of a graph, other than a list of edges, which, in accordance to the minimum
description length principle, provides a better description of it. Secondly, while doing so, we
want to be able to use the detection of network motifs, used in the creation of that definition, as
a means to infer important characteristics concerning the network.

The main motivation was exploring the premise that, at a conjectural maximum level of
compression by motif detection, a putative vocabulary of its subgraphs would be able fully convey
a semantic description of the graph. However, while the first goal was fully achieved, to a degree,
the second remains the subject of future work.

The graph definition proposed by this work, is not only comprised of an unordered edge
list, as it also includes elements which define a compressed network motif, and a dictionary of
isomorphism classes for such motifs.

Compression of network motifs is done by initially detecting and capturing information
regarding subgraphs on the large network, and then collapsing the nodes of non-overlapping
subgraphs into a single one. In a manner analogous to consecutive edge contractions for all the
edges on a subgraph. Moreover, by compressing the exact isomorphism class of subgraphs, and
not induced subgraphs derived from the nodes in them, the method accounts for networks which
are multigraphs or contain loops.

Since only edges between compressed motifs need to be explicit, the final definition saves
memory. And, since network motifs become explicit, deriving meaning from them becomes easier.
The compression is lossless, so restoring the graph to its exact original form is always possible.

An algorithm for quick discovery of network motifs by means of a novel data structure - the
g-trie - as proposed by Pedro Ribeiro and Fernando Silva, was used for detecting subgraphs of
a given size, which are compression candidates in the large networks. The adjacency matrix

1.2. Thesis Organization 3

categorizing the isomorphism class of each subgraph, is given as a canonical lexicographically
larger adjacency string, which prevents dictionary repetitions of symmetrical subgraphs, on the
final compressed definition.

Before compression, an heuristic sorts the list of candidate subgraphs, in an attempt to
maximize the compression rate. The algorithm then iterates over each element on the sorted
compression candidate list, collapsing the first occurrence of each non-overlapping subgraph into
a single node. In the process, removing all edges whose permutation of nodes, is in conformity
with that subgraph’s canonical definition.

Of the heuristics used for sorting the compression candidate’s list, there are two distinct
approaches, both applied in ascending and descending order. One approach sorts the list by the
frequency of each occurring subgraph type, while the other sorts by the frequency of edges on
the subgraph.

The application of this method was able to produce a compressed graph for every one of the
large networks tested. With the information regarding compressed motifs being readily available
for frequency count and classification, directly from the raw description of the compressed graph,
without any sort of preprocessing being required.

1.2 Thesis Organization

The rest of this document is organized in the following manner:

• Chapter 2 provides some important background regarding graph theory. It describes not
only fundamental notions regarding graphs, as well as a more in-depth description of the
concepts which are most relevant to this work. It clearly defines isomorphism, subgraphs,
and network motifs. As well as provides an overview of the problems and proposed solutions
concerning the detection of motifs.

• Chapter 3 describes related work, which served as both basis as well as inspiration for the
method implement in this work. It also describes the algorithm used for detecting network
motifs, a preliminary step to the compression done.

• Chapter 4 provides an in-depth description of the implementation of programs Compress
and Restore which, as the name so eloquently imply, compress and restore a network,
respectively. It also clarifies the full structure and principles, behind the proposed graph
description.

• Chapter 5 shows the results of testing the proposed compression algorithm, over real world
networks. It provides an analysis of the results. Evaluating the level of compression of the
method, its shortcomings, and potential improvements, as suggested by the resulting data.

4 Chapter 1. Introduction

• Lastly, chapter 6 offers conclusions regarding the proposed compression method. Going
into further analysis regarding its strengths and weaknesses. Putting forth ways in which
it can be improved in future work.

Chapter 2

Notions on Graph Theory

Simply put, graph theory is the study of the mathematical structures known as graphs.

On the most rudimentary of definitions, a graph is a collection of vertices paired by a given
number of edges. It is often a visual representation, that can be thought of as a diagram, depicted
by a series of dots or circles connected by lines that can be either straight or curved. And given
that we humans are predominantly visual creatures, in the sense that we innately assimilate data
in that manner, graphs can be meaningful representations of it - up to a certain size scale.

As data structures, they are versatile, being able to be applied to any type of relational data,
even when the existence of that relation is not self-evident. In fact, several other forms of either
representing or grouping data can be summed up as being a graph - e.g., a genealogical tree, or
any tree (data structure) for that matter, or a simple linked list, that is nothing more than a
path graph.

For that flexibility, graphs can be used to represent any network of people, objects, tasks,
etc. And, the relation between those elements it represents, can be as varied as being social,
filial, conceptual, spatial, temporal, and so on and so forth. Their usage ranges from representing
social groups to finite-state machines, and everything in between.

The myriad of purposes to which a graph can be applied to, unfurls its manifold applications.
Several of its metrics can be applied with varied intentions and results, such as the shortest path
between two vertices being used to determine the degree of separation between two people (e.g.,
Bacon level), generate a routing table, or simply the actual shortest euclidean distance between
two points.

Ideally, a graph would thus be analogous to a pictogram. A semiotic image from which a
simple, undeniable meaning could be promptly inferred. Unfortunately, while that interpretation
may hold as true for a select few simpler and smaller networks, the same cannot be stated - and is
far from being the case - for the large and complex networks for which graphs are are frequently
applied to. Furthermore, the relational nature of a graph, which still makes it a paramount
data structure for several computations on networks of all sizes, further draws it away from that

5

6 Chapter 2. Notions on Graph Theory

quasi-idyllic notion of a condensed yet substantial and straightforward visual depiction of data.

This last point, serves as the basis for what is the major ambition of this work. The notion
that a lossless compression of a complex data structure, is not purely intended as a means of
saving memory space, but also as a mechanism through which meaningful patterns can emerge
and more easily be detected. Hopefully, thus providing insights regarding the data and the
relationships therein.

2.1 Graph Definition and Terminology

Formally, on the field of discrete mathematics, a graph is a structure containing an object set
and its relational data. It models pairwise relations between those objects, often called edges or
links. The objects themselves, thus related, in turn being designated as vertices or nodes - used
interchangeably throughout this report. It is a pair G = (V, E), where V is the set of vertices
and E the set of edges pairing them.

Two vertices v and u are said to be endpoints of an edge that pairs them, which is said to
be incident to each of those two vertices. The given vertex v is said to be adjacent to u, and
vice-versa. This reciprocity holds true for undirected graphs only1, since the adjacency matrix of
an undirected graph is not necessarily symmetric, as further detailed below.

Due to its discrete nature, the set V , an by extension E, are assumed to be finite. And, while
infinite graphs depicting some sort of special binary relation can be sometimes considered, they
are not the subject of this work.

2.1.1 Fundamental Notions

For a mathematical structure which, at first glance, deceptively appears to be a very basic
construct, graphs can actually become quite complex. And not just as a consequence of their
pervasiveness and multitude of applications.

Graph theory encompasses diverse nomenclature, not all of which is relevant for this work.

Relevant concepts include graph isomorphism which, as the name suggests, refers to having
the same form or shape; or subgraphs, which are smaller graphs within larger graphs. These
more pertinent topics will be delved into on section 2.3. Suffice to say, that on the matter
of isomorphism, the ground principle behind the concept is that graphs which apparently are
different, can in fact be equivalent. They share all the same properties.

Thus, one way to look at what constitutes a graph’s property is that it is something that
remains invariable throughout every possible isomorphism - hence, why it is also called an
invariant. Accordingly, a graph’s properties are the quintessential form of categorizing it.

1more information on graph characterization on section 2.1.2

2.1. Graph Definition and Terminology 7

Given all of the above, the following are some of the basic relevant concepts regarding graph
theory, starting with its properties.

• Order - The total number of vertices |V | for graph G.

• Size - Commonly, the total number of edges |E| for graph G. In some particular situations,
however, it may instead correspond to |V |+ |E|.

• Degree - The number of incident edges to a node, also called valency. Nodes with self-loops
are counted twice for undirected graphs, once for directed ones.

Figure 2.1: An example undirected graph with order 7 and size 8.
For instance, node A as degree 2 and node G has degree 4.

• Volume - The sum of the degrees on a set of vertices.

• Self-Loop - Also, simply loop. An edge connecting a vertex to itself. On an undirected
graph, a loop adds two the vertex degree. On a directed graph it adds one to both the in
degree, and the out degree of its incident vertex.

• Path - Sequence of edges joining a given sequence of vertices, finite or infinite. In the
most universal of senses, every path is also a walk. Where, for G = (V, E, ϕ), with ϕ

being a group of functions with range P2(V) and domain E, there is a composition Pi

with vn vertices and en−1 edges, given the sequences (v1, v2, ..., vn) and (e1, e2, ..., en−1), for
which there exists a ϕ(ei) = {vj , vj+1} with i = 1, 2, ..., n− 1. If v1 = vn, then the walk is
considered closed, and open otherwise.

A trail is a walk where all edges are distinct while, strictly speaking, a path is a trail
in which all vertices are also distinct. For the latter case, some authors prefer the clear
distinction of a simple path, when not considering every path to have all vertices be distinct
from one another.

Walks, trails, and paths, can be directed for directed graphs.

• Cycle - A non-empty closed trail where only the first and last nodes are the same. Can
be directed or undirected, for directed or undirected graphs, respectively. Any non-empty
closed trail is a circuit, therefore cycles are circuits where all vertices are distinct - with
the above mentioned exception for the node closing the trail.

8 Chapter 2. Notions on Graph Theory

Figure 2.2: An example of a simple path and a cycle on a directed graph.

• Hamiltonian Path - A path, in either an undirected or directed graph, that visits each
vertex exactly once. By extension, a Hamiltonian cycle is a cycle that does the same as the
above. As such, removing a single edge from a Hamiltonian cycle, produces a Hamiltonian
path.

• Distance - The number of edges on the shortest path between two vertices.

• Diameter - The longest distance between two vertices on a graph or, in other words, the
maximum eccentricity of any vertex v ∈ V . Given diameter d, in which d = maxv∈V ϵ(v) =
maxv∈V maxu∈V d(v, u), with eccentricity ϵ(v) defined as ϵ(v) = maxu∈vd(v, u). The radius
r can, therefore, be defined as r = minv∈V ϵ(v) = minv∈V maxu∈V d(v, u). A central vertex
is one which eccentricity equals the radius. While a peripheral vertex has at least one
distance to another vertex that is equal to the graph’s diameter.

• Betweenness/Closeness Centrality - Distinct approaches to measure the centrality in
a graph, both centered on measuring the length of the shortest paths between all nodes.
Centrality, in this sense, being an indication of how well connected a node is to the rest of
the network, and thus a means of ascertaining its importance.

• Subgraph - Of a given graph, is another graph formed from a subset of its vertices and
edges. The vertex subset must include all the endpoints for edges present on the edge
subset. But, the edge subset does not necessarily need to include all the edges from the
original graph, that are incidents to the vertices on the vertex subset. If it does, then the
subgraph is called an induced subgraph.

More on subgraphs in section 2.3.

Figure 2.3: An example of an induced and a non-induced subgraph.
For the second subgraph to be induced, it would have to include the (A, E) edge.

• Adjacency - Two vertices are said to be adjacent, if there exists an edge that is incident
to them both - i.e., that connects them.

2.1. Graph Definition and Terminology 9

• Neighbourhood - Pertaining to the adjacency of a vertex v, its neighbourhood is the
subgraph comprised of v and all the nodes that are adjacent to it, with the edges connecting
them - induced subgraph of v.

The other nodes are said to be neighbors of v.

• Edge Contraction - The operation of removing an edge from the graph, resulting in
merging the two vertices that it was incident to, while keeping the neighbors of those
vertices as neighbors of the merged one.

• (Giant) Connected Component - Of an undirected graph, by definition a subgraph that
is not part of a larger subgraph. Giant connected components, are connected components
that take up a significant fraction of the entire vertices on the graph, and are of a given
size much larger than that of the vast majority of other components on the graph.

• Clique - A complete subgraph, i.e., one where all distinct vertices are adjacent to each
other.

• Maximum/Maximal Clique - A maximum clique is any clique with the largest number
of vertices, on the graph. A maximal clique, is one that cannot possibly be further extended
by including another vertex.

• Clique Number - The largest order of a complete subgraph. Specifically defined as the
number of vertices present in the maximum clique.

• Caveman Communities - Said of two or more tightly knit subgraphs - e.g., cliques -
that are sparsely connected to one another, usually by a small number of edges.

Figure 2.4: An example of a network exhibiting three different caveman communities.

• Clustering Coefficient - A measure of the clustering tendency of nodes. Given the local
clustering coefficient of a vertex as the measure of how close its neighbourhood is to form
a clique, the average clustering coefficient is simply that, the average of local clustering
coefficients for every vertex on the graph. There exists also a global clustering coefficient
measured in triplets of nodes - connected components of three nodes either as a closed
triplet (cycle) or open triplet (open trail) - and the ratio between them.

2.1.2 Graph Characterisation

Different types of networks have been compressed, studied, and analyzed. From the aforemen-
tioned invariants, graphs can be classified in several ways, as described below.

10 Chapter 2. Notions on Graph Theory

These classifications provide immediate knowledge regarding certain characteristics of those
graphs, that distinguishes them from graphs of a different classification and, like with the
previously mentioned properties from which they derive, need to be accounted for during
compression.

• Undirected or Simple - Usually simply called graph, can be seen as the standard or
basic form of everything that was stated above. In it, the set of E edges is an unordered
pair of vertices from V . Which is to say, a link between vertices v and u can either be edge
(v, u) or (u, v). Or, in other words, if u is adjacent to v, then v is adjacent to u.

• Directed, Mixed, and Oriented - Unlike simple graphs, directed graphs - or digraphs -
have orientated edges, and therefore the set of edges contains ordered pairs of vertices. For
that reason, it is necessary to distinguish whether an incident edge is incoming or outgoing.
Visually, this is accomplished by representing the edge as an arrow, with its tail on the
starting node and the head on the destination node.

In simple terms, for there to be a symmetrical direct path of length one between v and u,
there needs to be both an edge (v, u) as well as an edge (u, v).

This causes the vertices of directed graphs to have two types of degrees that needed to be
taken into consideration. In degree, from incoming edges; and, out degree, from outgoing
edges. A vertex with only outgoing edges, is also called a source, while a vertex with only
incoming edges is called a sink - occurring in flow networks, for example.

Graphs can be mixed. With both directed and undirected edges.

An oriented graph is a directed graph where for each possible pair of vertices, only one
ordering of that pair can exist as an edge, at most. An undirected graph, where each of its
edges receives an orientation - i.e., a specific order for that pair of vertices - produces an
oriented graph.

• Weighted - A graph is said to be weighted if it has a numeric value associated to its edge.

• Bipartite - Is a classification given to a graph whose vertices can be divided into two
disjoint and independent sets, with each edge only occurring between a vertex from a
different set.

• Connected - A graph is said to be a connected one if there is at least one edge incident
to every possible pair of vertices. The opposite is a disconnected graph, where at least
one pair of vertices isn’t joined by an edge.

By definition, a graph is said to be connected if it contains a path between v and u, for
any v ∈ V and u ∈ V .

On the case of a directed graph G, direct paths are considered and, if replacing all directed
edges with undirected ones would result in a connected graph, then G is said to be weakly
connected. Otherwise, if it conforms with the general definition - there exists a direct path
ϕ(v, u), for any v ∈ V and u ∈ V - then it is said to be strongly connected. On the other

2.1. Graph Definition and Terminology 11

hand, if for every missing direct path ϕ(v, u) there exists a path ϕ(u, v), it is said to be
unilaterally connected.

• Multigraph - A multigraph is a graph which is specifically permitted to contained multiple
edges joining the same pair or vertices - which are called parallel edges. Not to be confused
with a hypergraph, in which an edge can connect more than one pair of vertices.

For graph G = (V, E), E is a multiset, rather than a set, of either unordered or ordered
vertices, for undirected or directed graphs, respectively. Some multigraphs can contain
edges with their own identity, for which G = (V, E, r), with r : E → {{v, u} : v, u ∈ V }
assigning a specific identifier to each edge.

• (Search/Prefix) Tree - A tree is generally an undirected graph for which any pair of
vertices is connected by precisely one path. Some tree data structures can, however, be
directed.

Tree data structures are hierarchical. This hierarchy defining a topmost root node, parent
nodes, children nodes, and terminal leaf nodes. All nodes on the path from a given node to
the root node of a tree, are its ancestors, while all nodes on every path towards all leaf
nodes are its descendants. The concept of sub-trees is also well-defined as being subgraphs
of the original tree, in which a child node serves as root to that sub-tree.

A search tree is a tree data structure used for locating specific keys within a set and
retrieving a value tied to it. Nodes of a search tree are connected and ordered according
to a specific design, such as all left children nodes of a binary search tree having smaller
values than right children nodes.

A prefix tree or trie, is a k-ary search tree where nodes do not store the associated keys,
but instead it is the position of that node on the tree that defines it. With all the children
nodes of a given node, sharing a common prefix string to the parent node, all the way to
the empty string of the root.

Figure 2.5: An example of a prefix tree containing six words.

12 Chapter 2. Notions on Graph Theory

2.2 Graphs as Abstract Data Types

As abstract data types, graphs are a finite set of vertices linked by a finite set of edges. Each
edge can have an associated weight value, and either be directed or not. Nodes are identified by
an assigned label, often simply numbered or identifying a particular trait. Edges are perfectly
characterized by the nodes that they pair up, but may be labeled as well.

2.2.1 Implementation and Operations

A graph is usually implemented as either an adjacency list or an adjacency matrix, depending on
the purpose for which the data structure is intended. Both implementations having their unique
advantages and drawbacks, which will be further discussed on section 2.2.2.

Regardless of its implementation, a graph must provide common basic operations, which
usually include, but are not restricted to:

• Add Vertex- Adding a new node to the graph;

• Add Edge - Adding a new edge, connecting two nodes, to the graph;

• Remove Vertex - Removing a vertex from the graph, if it exists, also removing any
incident edge;

• Remove Edge - Removing an edge pairing two nodes, if present;

• Get/Set Vertex Value - Retrieving or setting the value of an existing node;

• Get/Set Edge Value - Retrieving or setting the value of an existing edge, for graphs
which support them;

• Adjacent - Determine whether two nodes are adjacent, i.e., there exists at least one edge
connecting them;

• Neighbors - Return the list of all neighbours of a node, that is, of all nodes which are
adjacent to it - corresponding to returning the adjacency list of a node.

Evidently, aside from the aforementioned operations, any number of other operations may be
implemented depending on the algorithm for which the graph is being used. The most common
ones being searches for a specific node or edge, upon which the majority of more complex
algorithms rely upon - such as computing distance metrics or sorting algorithms.

The implementation of all these operations may - and in fact, should - take into account the
nature of the mathematical graph which the abstract data type represents.

For example, whether it is directed or undirected, contains loops or cycles, is a multigraph
or not, and so on and so forth. Not accounting for the attributes made explicit by these

2.2. Graphs as Abstract Data Types 13

categorizations, can affect the correctness of an implementation. On the other hand, by taking
advantage of them, the implementation of many of these operations can be vastly simplified
and made more efficient - e.g., by knowing that a graph is a tree, we can account for it being
acyclical, and therefore not have to worry about causing the occurrence of an endless loop while
traversing it.

Lastly, it is important to mention that these data types often take as input a list of edges
and, by adding it they also add the nodes it connects, if they aren’t already present.

And, while an edge list is most likely the lightest way of storing the complete definition of
a graph in memory, it lacks any sort of useful applicability. It must first be processed into a
data type that allows the easy manipulation of information it contains, such as for determining
neighbors of a node, and so forth.

As stated, a major goal of this work was to transform this compact definition - a straightforward
list of edges - into an even more compact one, while still adding pertinent information to it -
namely, the subgraphs that were detected and compressed, as well as their isomorphic classes.

2.2.2 Adjacency Lists Versus Adjacency Matrices

As mentioned on the previous section, graph data structures are commonly stored in one of two
ways: as an adjacency list, or an adjacency matrix.

An adjacency list is a collection of unordered lists of nodes, connected to another node.
Whereas an adjacency matrix, is a square matrix whose elements indicate the existence of an
edge between a vertex pair as given by the row and column of the matrix.

Adjacency matrices of undirected graphs are therefore always symmetric, while those of
directed graphs can be asymmetric. On a simple graph, with no loops, the diagonal elements of
its adjacency matrix do not denote the existence of an edge. And, if the adjacency matrix only
contains binary elements, it cannot be used to represent multigraphs. This can be remedied by
employing a count for the number of edges between two nodes, as elements of the matrix.

The trade-offs between an adjacency list and matrix, lie between both space and time
complexity. The main purpose of these representations is the retrieval of adjacencies between
nodes, an operation for which a matrix offers much faster computations given the direct relation
between a position on a 2-dimension array and its indices.

In opposition, adjacency lists are usually much more efficient memory-wise, especially for
sparse networks. This is true, despite matrices being able to store information in a more compact
way, while promoting locality of reference - e.g., a single bit for each entry in a continuous
allocated memory space, as opposed to a pointer to another variable or object in memory.

This is due to the fact that the creation of an adjacency matrix usually implies that the
entire structure be placed in memory, which can be costly for graphs with several nodes but few

14 Chapter 2. Notions on Graph Theory

edges. In summation, the space occupied by an adjacency list in memory, is proportional to the
number of edges and vertices in the graph, while the one occupied by an adjacency matrix is
proportional to the square number of vertices.

Furthermore, despite matrices being faster at retrieving individual edges - taking constant
time, an operation that for an adjacency list, in the worst case, is equal to a node’s degree -
retrieving all neighbours of a node has an asymptotic complexity proportional to the number of
vertices in the graph, since all possible pairings must be checked. Which is much more costly.

For that reason, and due to most algorithms employed on graphs requiring the retrieval of all
nodes adjacent to a given node, an adjacency lists is usually the preferred implementation for
such cases. With the time complexity of such operation, being proportional only to the degree of
the given node.

Other aspects can be taken into account, when choosing whether to employ and adjacency
list or matrix, such as the amount of additions and removals of vertices, which is much more
demanding for the latter implementation than the former. Seeing as it can imply having to
recreate an entirely new matrix and copy every single element from the old matrix to the new
one, in the event of the old matrix not having enough allocated memory to support the new
node(s) - while also wasting memory space by keeping memory reserved for nodes that have been
removed from the graph.

All these aspects were taken into consideration, when coding the compression program for
this work. Which ultimately led to an implementation via adjacency lists - expressly, due to the
concomitant removal and addition of nodes, associated with subgraph compression.

2.3 Subgraphs and Network Motifs

Once again, the first and foremost goal of this project, was to compress networks by reducing
subgraphs to a single node, while still retaining all the information regarding the nodes and edges
of the original network. Done in such a way, as to be possible to later recreate it. Furthermore,
by means of this compression, it aimed to make it easier to identify not simply central - i.e.,
important or relevant - nodes on the network, but even entire connected components or clusters.

Therefore, considering that these two subjects are the main focus of the work done, this
subsection is dedicated to deepening the notions of subgraphs and motifs, after the brief mentions
to them on previous sections.

In a nutshell, a network motif is a statistically significant subgraph pattern of a larger graph
- often the whole network. And, in a cursory description that is made self-evident by the name
itself, a subgraph is a smaller graph contained within a larger one.

However, before delving into those two definitions, it is important to first define what
constitutes graph isomorphism.

2.3. Subgraphs and Network Motifs 15

2.3.1 Graph Isomorphism

Briefly put, a graph isomorphism is said to occur between two graphs G and G′, if a bijection
f : V (G) → V ′(G′) is present. Strictly, v and u are adjacent, for v, u ∈ V , if and only if f(v)
and f(u) are adjacent with f(v), f(u) ∈ V ′.

In layman’s terms, what this translates to, is that graphs that appear to be distinct either
because, for example, their nodes are dissimilarly labeled or their drawings (visual representation)
are distinct, can actually contain the same exact structure. These graphs are said to belong to
the same isomorphism class, and the bijection notation given as G ∼ G′.

Figure 2.6: An example of two isomorphic graphs.

A reminder that for the graph G = (V, E, ϕ)2, V is the set of vertices, E the set of edges,
and ϕ a set of P2 functions. The functions ϕ(ei) = {vi, vi+1} given i = 1, 2, ..., n − 1, defines
a sequence e1, e2, ..., en−1 of distinct e ∈ E edges, called a path, for which there is a sequence
v1, v2, ..., vn of distinct vertices v ∈ V , called the vertex sequence of the path. Then, essentially,
two graphs G = (V, E, ϕ) and G′ = (V ′, E′, ϕ′) belong to the same isomorphism class if the pairs
V and V ′, E and E′, and ϕ and ϕ′, are all equivalent.

Properly and succinctly, given the above definitions of G and G′, everything that was stated
can be summed up in the following manner:

G ∼ G′ is true, if there is a bijection ν : V → V ′ such that {v, u} ∈ E if and only if
{ν(v), ν(u)} ∈ E′. For ν : V → V ′ and ϵ : E → E′, with ϕ′(ϵ(e)) = ν(ϕ(e)) for all e ∈ E, and
ν({x, y}) defined as {ν(x), ν(y)}.

One final and brief note, without delving too much into the subject, and regarding the
detection of isomorphism between two graphs, is that the complexity of such task still remains
an unsolved problem in computer science to this day.

It is uncertain whether the proposed task belongs to the P, NP-complete, or NP-intermediate
complexity classes. However, its generalization, the subgraph isomorphism problem, is known to
be NP-complete.

2See section 2.1.1

16 Chapter 2. Notions on Graph Theory

2.3.2 Subgraphs

As already stated, subgraphs G′ of a larger graph G, are formed from a subset of vertices and
edges of G. The vertex subset must include all vertices for which the edges on the subset subset
are incident to, while being allowed to contain additional vertices.

Formally, a graph G′ = (V ′, E′, ϕ′) is a subgraph of G = (V, E, ϕ), if V ′ ⊆ V , with ϕ′ being
the restriction of ϕ to E′ in range P2(V ′), so that ϕ(e′)P2(V ′) for all e′ ∈ E′. And, by restriction
ϕ′ of ϕ to E′, it is meant a function ϕ′ with domain E′ such that E′ ⊆ E, which satisfies
ϕ′(x) = ϕ(x) for all x ∈ E′.

Subgraph isomorphism, previously discussed, is of importance to the matter of locating
specific subgraphs on a network, since what is basically being done is finding a subgraph that
belong to the same isomorphism class as another - the goal of the search. This, accordingly,
extends to finding motifs on large networks.

Several problems related to finding specific maximal subgraphs of a certain isomorphism
class, are well-known to be NP-complete problems. Such as the clique problem, which deals
with finding cliques in a graph, and of which common formulations involve finding maximum
or maximal cliques of any given size. Another example, is that of finding induced subgraphs
belonging to a specific isomorphism class.

This subgraph isomorphism problem, is a generalization of both the maximum clique problem
- finding a maximum clique - and the Hamiltonian cycle problem - that of determining whether a
Hamiltonian cycles occurs on a graph. Both NP-Complete.

2.3.3 Network Motif

Reinstating the already mentioned definition, a network motif is simply a relevant repeating
pattern on a large network. In other words, it is a statistically significant subgraph, belonging to
a given isomorphism class, that occur at much higher rates in real world networks than in similar
random ones. The term network motif as here stated was first introduced by Milo et al. [25],
and Figure 2.7 explains it visually. Being subgraphs of a specific isomorphism class important to
a given network, detecting them on complex networks is a computationally demanding task.

2.3. Subgraphs and Network Motifs 17

Figure 2.7: The concept of a network motif. The small three node motif (a feed forward loop)
appears five times in the original network but only once or never on the similar randomized

networks that preserve the same degree sequence. Taken from [25].

The concept behind the importance of detecting network motifs, is that large networks often
inherent properties from those motifs and, as such, its detection can provide important insights
that are often otherwise obscured by the size and complexity of the large network.

Since this work revolves around compressing such motifs, resorting to an efficient detection
method was of utmost importance.

2.3.3.1 Motif Detection Algorithms

Several algorithms have been proposed as solutions for the subgraph isomorphism problem,
roughly in the last twenty years - since 2004. But, prior to that, the only available method was
the rigorous brute-force count proposed by Milo et al [25].

The following is a brief breakdown of some of those algorithms in chronological order, up until
the method that was used in this work. It serves as an account on the evolution of approaches
and occasional paradigm shifts, with the prospect of providing greater insight into the problem.

• mfinder - Starting from the standpoint that network motifs predominantly occur in
biological and engineered networks, as opposed to randomized ones; mfinder, published in
2004 by Kashtan et al. [18], was the first implementation of a sampling method for the
estimation of subgraph concentrations and detection of motifs, asymptotically independent
of network size.

The algorithm was based on a random sampling of connected edges, until a subgraph of
a designated size n was found. At which point, that subgraph would be expanded to all
the edges between those n nodes. At each iteration, the selection bias for non-uniform
sampling of a new connected edge among the available candidates, was affected by a given
weight attached to any specific subgraph isomorphism class.

18 Chapter 2. Notions on Graph Theory

After each sample, a weight of score W = 1/P was added to update the current score of the
relevant subgraph type, with P being the calculated probability of sampling a particular
subgraph on the network. After repeating the sampling procedure for a given number of
steps, the concentration of all subgraph types was calculated in accordance with their final
scores.

However, in order to calculate the probability P for a subgraph of size n, all possible
ordered sets of n−1 edges that could lead to sampling that subgraph, needed to be checked.
This further taxed the computational work being done.

• FPF - Also based on the axiom that biological processes form large complex networks,
in which motifs potentially underlie relevant properties, Schreiber and Schwöbbermeyer
proposed the flexible pattern finder (FPF) algorithm in 2005 [31].

The algorithm constructs a pattern tree consisting of nodes representing different subgraph
types, which expanded in accordance to the tree’s depth analogously to a prefix tree. That
is to say, in which the parent of each node constitutes a subgraph of its children nodes.
The patterns in nodes are the ones supported by the target subgraph being searched, and
the search algorithm transverses the tree.

The algorithm is based on applying different concepts for determining the frequency of a
pattern in a target graph, defined as the maximum number of different matches for that
pandattern. Concepts ranged from counting every possible match, to restricting the reuse
of graph elements shared by different matches of a pattern.

The search space was reduced for these latter frequency concepts, by pruning the tree given
the application of the downward closure property for the frequency of descending patterns.
Which states that the frequency of a subgraph decreases monotonically to the increase in
its size.

• ESU - Following the previous trends of finding meaningful motifs in large biological
networks, Wernicke proposed ESU in 2006 [35], a faster algorithm for subgraph sampling
than the previously proposed mfinder.

ESU, yielded an unbiased sampling algorithm by efficiently enumerating all subgraphs of
size k, and then randomly skipping over a portion of these subgraphs during execution.

• G-Tries - Proposed by Ribeiro and Silva in 2010 [29], the method presents a novel data
structure for storing a collection of subgraphs, for which it is named after. A G-trie is a
prefix tree of graphs, with each node representing a directed graph, and the graph of a
parent node sharing common substructures with the graph of its children nodes.

The search tree can be further augmented by giving each node symmetry breaking conditions.
It is still the fastest subgraph detection method available to this date.

2.3. Subgraphs and Network Motifs 19

Figure 2.8: An example g-trie storing six subgraphs. Adapted from [30].

The next chapter focus on related work, in which this one is based and built upon. Particularly,
the above mentioned g-trie algorithm as well as the VoG algorithm, which served as partial
inspiration for the work that was done.

Chapter 3

Related Work

As stated numerous times throughout the previous chapters, a foremost objective of this work was
to find a more compact description for a graph, that could easily be imported into an abstract
data type in memory. While, at the same time, already displaying pertinent information as is.

This was achieved by detecting network motifs, compressing them, and outputting a new
graph file which contained three distinct types of entries:

• An isomorphism class dictionary;

• An unordered list of subgraphs belonging to one of the isomorphism classes on the above
dictionary;

• An unordered list of edges, not belonging to any of the subgraph entries.

The aim of this representation is not only to be able to save memory space by reducing the
number of lines and characters used; as it is also to offer the ability to directly read, identify,
and count, any and all subgraphs detected and compressed while generating the definition. Even
before or without processing any of the other nodes or edges on the network.

The second, and more audacious goal, is that this compression might bring to light recurring
motifs and patterns on a large network, that might be helpful into ascertaining relevant properties
regarding the large network, that would otherwise be too demanding or maybe even impossible
to directly determine.

This notion, having its inception on the VoG algorithm proposed by Koutra et al. [20], has the
ultimate ambition of being a stepping stone into the complete formulation of a graph vocabulary.
Allegorically stated, the creation of a formulation in which nodes can be seen as letters, motifs
as words, and the complex network a text from which substance can be directly derived.

VoG’s approach, served as the inception for the approach taken in this work for achieving a
novel graph description. Nevertheless, it evolved into something entirely different.

21

22 Chapter 3. Related Work

As shown by Koutra et al. on VoG, Lim et al. on SlashBurn [22], and several other authors [9],
the goal of compressing a large network oftentimes goes hand-in-hand with that of mining and
summarizing its characteristics.

Ever so slightly going on a tangent, the principle of Occam’s razor - which pop culture has
probably transformed into the second most pervasive scientific term, coming in second place only
to Schrödinger’s cat - can be summed up as the principle that ’entities should not be multiplied
beyond necessity’.

And, like Schrödinger’s cat, it is also often inaccurately portrayed. Being simplified as ’the
simplest answer is usually the right one’, it actually attempts to convey the notion that when
presented with rivaling theories, the simpler one is usually preferred. That is to say, for example,
the one whose models have the fewer parameters or lemmas. It is not, in any way, shape, or
form, intended as a means of selection between models offering different predictions. But, rather,
that when selecting amongst models concerning the same prediction, the simpler one should be
the favored one.

It is also not, in the least, an irrefutable principle of logic. Nevertheless, it hold some appeal,
particularly when juxtaposed to the falsifiability criterion of the scientific method.

Going back to the subject at hand, the minimum description length (MDL) principle, can
be succinctly described as the mathematical application of Occam’s razor. Applied to model
selection, it states that the best model constitutes the shortest description of the data. Its
perspective, is therefore that compressing data is tantamount to learning from it [8]. And
supports the aforementioned notions of mining data through compressing it.

As mentioned, several approaches to graph compression have been made, not all pertaining
to identifying and compressing subgraphs, and for that reason those will not be covered on this
chapter.

3.1 Graph Compression

Assuming an unweighted graph G = (V, E), there exists a representation G′ = (S, C), consisting
of a summary S = (VS , ES ,) and edge correction C [7]. Formally, for every v ∈ V of G, it
holds that v ∈ V ∈ VS of G′. And, in turn, every edge Eij = (Vi, Vj) ∈ ES . In other words,
regular nodes on the original subgraph, are included on supernodes of the compressed graph,
and its superedge contains the set of all edges previously connecting those original nodes that
now connect the supernodes.

This notation is trivial for a bipartite graph which is compressed into two nodes Vi and Vj ,
with C containing information for recreating the original edges between nodes (see Figure 3.1
for a visual depiction). The cost of such representation can be defined as cost(R) = |ES |+ |C|,
ignoring the cost regarding the mapping of nodes, which is negligible when compared to that of
mapping edges.

3.1. Graph Compression 23

Figure 3.1: Compression of a bipartite graph into two nodes.

For any Vi and Vj , Π expresses all possible edges between all pair of nodes (v, u), v ∈ Vi, u ∈ Vj ,
and |Πij | = |Vi| ∗ |Vj |. Then, for Aij = Πij ∩ E being the set of actual edges between Vi and
Vj , there exists two possible representations. Either all existing edges are added to C, resulting
in an encoding cost of |Aij |. Or, one edge is added between the supernodes while C stores
all non-existing ones, which yields a cost of 1 + |Πij | − |Aij |. The former is better for loosely
connected supernodes, while the latter for for those with a dense connection.

As per the MDL principle, the best representation is the one with the lowest cost. Therefore,
determining this cost implies choosing, for each possible pair of Vi and Vj , the smaller cost
cij = min{|Aij |, 1+|Πij |−|Aij |}. Altogether, finding the best set of supernodes is computationally
expensive as it depends on the chosen set. As an alternative, a certain amount of error could be
allowed, that sees a portion of the data being lost, in an attempt to minimize the work being
performed.

Two problems immediately arise from the previous general definition, in regards to this work’s
proposed goal.

Firstly, by compacting a graph to such an extent, all network motifs are lost, and there is no
meaningful information that can be immediately inferred.

Secondly, due to the need to calculate all possible combinations of the Vi and Vj sets, the
approach is clearly unfeasible for large networks, and the alternative of a lossy compression is
not the desired outcome.

There is obviously merit to the demonstration, and the notation serves as a general basis for
what is intended and performed by this work. Concretely, the fact that analogous supernodes,
containing the nodes of the compressed subgraph, are created. However, there is no need for a
correction or error sets to be considered, as all the edges of the original graph are either present
or easily inferred by the network motif’s description.

In other words, the proposed method of compression, involves performing edge contractions
to all edges of our (non-induced) subgraph. Furthermore, by clearly identifying the isomorphism
class of all compressed subgraphs, it becomes trivial to fully restore those edges and vertices
when and if needed.

Compared to the absolute compression described on this section, the proposed method of
compressing non-overlapping network motifs is far from being a minimum description of a graph.
Nevertheless, it is a shortest description of one that, at the same time, manages to express

24 Chapter 3. Related Work

relevant information in a concise manner.

To tackle the problem of describing a graph with recourse to compressing network motifs,
three algorithms from related work were focused on, as detailed on the following sections of this
chapter. The first two, also consisting of compression algorithms: SlashBurn and VoG.

The third, already outlined on section 2.3.3.1, and being regarded as the preferred method
for performing the computationally expensive task that is detecting network motifs, was the
g-trie algorithm.

3.1.1 SlashBurn

Lin et al. proposed SlashBurn [22], a compression algorithm that approaches graphs as a
collection of structures named hubs connecting spokes. It recursively splits the graph into those
hubs and spokes, connected only by the hubs.

The proposed algorithm also put forth selection methods for the hubs, that work for real world
graphs, gives better compression than other methods at the time, and led to faster execution
times for matrix-vector operations.

Since real world graphs tend to contain few nodes with high degree, while the remaining
ones have very low degree, attempting a cut tends to extract homogeneous regions. SlashBurn
bypasses that problem by locating novel communities, different to those traditionally considered.
It concentrates the edges on the top, left, and diagonal lines of the matrix, leaving the remainder
of it empty. Compression can then be achieved, for example, by increasing the size of those zero
elements to cover a larger portion of the matrix.

The SlashBurn compression produces adjacency matrices with the distinctive appearance of
an arrow pointing to the top-left. With the larger empty spaces on the resulting matrix allowing
for better compression.

For the preliminary sorting step, the algorithm starts by defining a permutation of the
graph so that nonzero elements of the adjacency matrix are grouped together. It achieves that
by removing the nodes with the highest centrality and their incident edges and, as a result,
decomposes all nodes on the graph into three groups:

• k-hubset, of top k highest centrality scoring nodes;

• GCC, or nodes belonging to the giant connected component of the decomposed graph;

• spokes to the k-hubset, which are basically nodes not belonging to any of the other two
groups.

3.1. Graph Compression 25

Figure 3.2: SlashBurn decomposition into k-hubset, GCC, and spokes. Adapted from [22]

After the initial iteration, the hub is labeled with the lowest id, the spokes with the highest id
in decreasing order of the size of their connected components, while the GCC nodes get assigned
the remaining middle-range of ids. The procedure is then recursively applied to the nodes in the
GCC group. On the event of there existing more than one giant connected component with the
same size, one is chosen at random.

The demanding computational steps can as such be defined as being: selecting the k-hubset,
and ordering the remaining connected components. Still, the algorithm has shown to be near-
linear to the number of edges on real world graphs. Which is the reason for it being used as part
of the algorithm described on the next section.

3.1.2 Vocabulary of Graphs

The article published in 2014 by Koutra et al., VoG: Summarizing and Understanding Large
Graphs, is not coy regarding its intent of advancing VoG as a means of constructing a ’vocabulary’
of commonly occurring subgraph motifs.

The vocabulary of graphs algorithm views a set of network motifs as vocabulary terms, which
in turn it uses to find the most succinct description of said graph. It measures its degree of
succinctness with recourse to the MDL principle, where subgraphs belonging to the established
vocabulary that would shorten the graph’s summary are added to it.

It presents a three-fold contribution:

• A formulation of the encoding scheme used to choose vocabulary subgraphs;

• The VoG algorithm itself, which efficiently minimizes the description cost, near-linear on
the number of edges;

• And, experimental results of this algorithm, performed on multi-million-edge real world
graphs, the results of which support its applicability by not only compressing as well as
detecting the emergence of interesting patterns.

As elements to the subgraph vocabulary set, the authors selected six of the most commonly

26 Chapter 3. Related Work

occurring network motifs in real graphs. Namely, full cliques and near-cliques (ensuring that the
method works for ’caveman’ graphs), stars, chains, and full and near bi-partite cores.

3.1.2.1 Encoding Graph Summarization

Given the vocabulary Ω, each structure s ∈ µ describes an adjacency matrix A, with possibly
overlapping nodes and non-overlapping edges, with µ being the description model of ordered s

structures. The structures s describe an area of edges (i, j) ∈ A, area(s, µ, A) or, simply area(s),
for brevity.

Let C = ∪xCx be the union of all set Cx containing all possible x ∈ Ω structures, model µ ∈M

an ordered list of structures, then the model family M is composed of all possible permutations
of all subsets of C. Relevant to the MDL principle, the goal is to find the permutation µ ∈M

which best balances the complexity of encoding A and µ.

Since µ is an approximation of the matrix A, and the desired summarization is intended to
be lossless; error E, taken as the exclusive OR between µ and A, needs to be taken into account.
Therefore, the score for a model µ of graph G is given as L(G, µ) = L(µ) + L(E), in number of
bits that describe the structure.

Depending on the structure being encoded, its description is an optimal prefix code defining
it, followed by the description of its elements in accordance to a specific criterion. Error matrix
E contains the errors on µ’s description of A, seeing as it simpler and more cost-effective to
encode approximate structures as belonging to a vocabulary element plus some minor changes,
rather than either ignore that near-structure or add it to the vocabulary.

There are clear parallels between this and the general approach at compressing a graph,
described at the beginning of this chapter on section 3.1. Explicitly, not also the need to encode
corrections to the general vocabulary but, most importantly, that finding a minimum description
length entails searching for a proper permutation.

Therefore, after encoding all s structures, a problem then arises due to the sheer size of the
search space M , for which an exact solution would need to consider all possible combinations of
all candidate structures. And, for that reason, heuristics are employed.

3.1.2.2 VoG Algorithm

Aside from a method for encoding x ∈ Ω structures, the list of candidate structures C needs to
be instantiated, and the most informative model µ needs to be mined.

Initially, any combination of clustering and community detection algorithms can be applied
in the decomposition of the graph into subgraphs. For their experimental results, the authors
used SlashBurn.

3.1. Graph Compression 27

Following that step, comes the subgraph labelling one. Where the encoding method described
in the last section comes into play, for succinctly yet accurately characterize them. First, a
subgraph is checked for whether it is a perfect vocabulary match, or not. On the latter case, a
new search takes place, for the vocabulary structure that best approximates it, in regards to the
MDL and error encoding.

Lastly, heuristics are used for inducing a desired Model µ from the set of candidates in C.
The heuristics sorts each candidate by an assigned quality measure, given by the number of bits
gained by encoding it rather than noise.

Three heuristics are employed, that evidenced varied results for different networks. So, VoG
applies all of them, and afterwards picks the best result out of the three.

• Plain - Is a baseline approach, for which µ = C.

• Top-k - Selects the best k candidates, in order of decreasing quality.

• Greedy’nForget - Sequentially iterates over each candidate in C, including it in µ if
doing so would not increase the graph’s total encoding cost, otherwise, it is removed. It is
the most computational demanding of the three heuristics.

3.1.2.3 Experimental Results and Scalability

Experiments had the goal of performing both quantitative as well as qualitative analysis. Strictly
speaking, the amount of compression achieved and structural information gained. Moreover, the
algorithm’s scalability was also analyzed.

The aim of VoG is primarily that of identifying network motifs that could lead to a better
understanding of the network and, as such, compression is more of a means to an end, rather
than an important metric.

Depending on network and heuristic chosen, in terms of the number of bits of the compressed
graph in relation to that of the original one - i.e., lower numbers equals better compression - it
achieved compression levels ranging from as low as 99% to as high as 71%. Some heuristics -
namely the top-k one, for k of size 10 and 100 - rarely achieved compressions better than 95%.
While others, produced more varied results depending on the graph that was being compressed.

In terms of graph summarization with VoG, it is simple to output the number of compressed
structures of each type, for each graph and heuristic pairing. This allows to easily quantify
the most predominant detected subgraphs, which by itself gives little information as to the
mindfulness of those network motifs.

Notwithstanding, after pinpointing those structures, the task of locating the most important
among them, on the large network, becomes trivial. And, consequently, so does deriving

28 Chapter 3. Related Work

meaningful interactions or patterns on the graph1

As for the matter of scalability, runtime tests were performed that evidenced a near-linear
complexity for the number of edges on the graph.

3.2 Quick Discovery of Network Motifs

For this work, many of the given principles throughout up until this point on the document,
were applied to the formulation of a shorter description of a large network. One able to impart
self-evident knowledge regarding its relevant network motif composition.

As a basis for such composition, an efficient network motif discovery algorithm was employed
based on a novel data structure - the g-trie.

The algorithm and abstract data type it is inherently based upon, which was briefly described
on section 2.3.3.1, will be further detailed on this section.

3.2.1 G-Trie Definition

As previously stated, the g-trie method for network motif detection is able to outperform existing
algorithms, and it does so by at least an order of magnitude. The data-structure corresponds to
a tree that encapsulates that of the entire graph, while exploiting common topologies akin to
how a prefix tree does for common prefixes. Its name reflects its purpose, Graph reTRIEval.

The search method is thus able to avoid redundancies by breaking symmetries, and saving
both computation time and memory.

Subgraphs on a g-trie are therefore hierarchically organized by the size of common structures,
with structures growing in complexity the deeper down the tree we are. This feature saves memory
by compressing the topological information of the subgraph collection, and computational time
by allowing isomorphism comparison to be performed concurrently while the tree is being built,
while also eliminating the need of having to start from the ground up when searching for another
subgraph.

Each node on the g-trie represent a single vertex, characterized by its connections to the
respective ancestral nodes. In this way, all graphs with common ancestor tree nodes share
common substructures, children of a node provide the different topologies that can emerge from
a given node, and a path through the tree corresponds to a different simple subgraph.

1It might be useful to provide a reminder that VoG fully characterizes each structure, identifying the nodes
and edges that constitute it, as well as (potentially, depending on which heuristic is used) its quality.

3.2. Quick Discovery of Network Motifs 29

3.2.2 G-Trie Creation

In order to construct a g-trie, starting from an empty tree, subgraphs are repeatedly added to it,
one at a time. Comparable to adding a node to a prefix tree, the g-trie must be traversed until
all children nodes are tested for the existence of connections to previous ones, that are similar to
the ones on the subgraph being inserted.

In order to prevent redundancies arising from the several possible unique adjacency matrices
that can belong to the same isomorphism class, a canonical labeling is enforced. The one employed
on g-tries, manages to both serve as an efficient labeling as well as be one that highlights its
main properties. That is, by sorting the adjacency, matrix by lexicographically larger order - in
simple terms, prioritising ’ones’ before ’zeroes’ while sorting - it not only achieves the goal of
being a canonical labeling system, as has been shown to produce more compressed g-tries.

3.2.3 Counting Subgraph Frequencies

The frequency counting algorithm operates by inducing subgraphs of a larger one, on the g-trie.
It backtracks though all possible subgraphs while, at the same time, performing isomorphism
tests, in order to construct candidate subgraphs.

Subgraphs automorphisms - an isomorphism with itself - would cause the same subgraph to
be counted more than once - for each possible automorphism. To prevent this, and the waste of
computational time, a set of symmetry breaking conditions are generated for each subgraph and
used to prevent it from being counted more than once, rather than simply dividing a final count
by the number of automorphism classes at the end. These conditions are in the form of a > b,
for any pair of vertices with a and b indexes.

These symmetry conditions are stored on the g-trie nodes themselves, alongside the respective
subgraphs, and remain true throughout a path. Every time a node expansion is attempted for a
new series of nodes with a new vertex, the algorithm tests whether or not there is at least one
possible subgraph amongst those that still satisfies the symmetry conditions along that path,
before doing so.

However, storing the set of all symmetry conditions for a g-trie node can be costly, memory-
wise. As such, the number of conditions stored on a node are reduced as much as possible, by
applying filters. Filters which, briefly put, are: the application of transitive properties, relevancy
to a particular node, redundancy, or conditions already assured by another one.

On this work, the implementation of this motif detection algorithm, the program gtrieScanner,
was used to detect all subgraphs of size 3, 4, and 5, of a given graph. An information which
was then fed to the designed compression algorithm for contracting all edges of non-overlapping
subgraph nodes, that precisely represent the detected subgraphs.

The complete algorithm and its implementation, is described on the following chapter.

Chapter 4

Design & Development

This chapter will address the design and development of the compression program, and underlying
algorithms, that were written in an attempt to summarize large networks in terms of their
compressed motifs.

The first step in its development, was defining which approach to take for the description of
a large network, in an attempt to solve both the problems of compression and summarization. A
relation clearly exposed by the VoG algorithm.

The implementation involved writing three distinct programs, and a Bash script that pipelines
it with gtrieScanner as well, for ease of use.

The main program, that handles compressing the network by reading the output provided by
gtrieScanner, is called Summarize. The program works by implementing a unique graph data
structure streamlined for the desired compression. The inputs of this program is the plaintext
file containing the graph’s original description - as a series of edges connecting node pairs - and
the subgraph information for that network given by gtrieScanner. The output is the novel, more
succint, graph description.

A second program, called Rebuild, is able to do the opposite. Read the proposed shorter
description given by Summarize, and fully restore the original uncompressed network. It is a
simple and straightforward program, that serves both as support that the compression is lossless
and that reverting it constitutes a trivial matter.

The motivation for developing separate programs to compress and decompress the novel
description, was therefore to ensure that restoring the original graph is an agnostic process to
compressing it, and that anyone can develop a similar program, without any knowledge of the
underlying working of the Summarize algorithm, by simply studying its produced output.

A third separate program called Sorter, simply handles a preprocessing step required by
some networks, for ease of analysing the rebuilding effort. It sorts the original network into a
canonical form - without affecting the information it contains - that matches that of the output
of the Rebuild program. It also eliminates any non-encoding graph characters, such as trailing

31

32 Chapter 4. Design & Development

whitespaces or weight information for weighted networks. That way, verifying that the restored
network exactly matches the useful information on the original network, is as simple as running
any program that searches and displays differences between two files, such as the diff Bash
command.

This sorting is not fundamental to neither summarizing nor rebuilding, and was therefore
written as a separate small program, so it could be executed at any point during the execution
pipeline, in order to just compare and analyze the results of running both aforementioned
programs.

Nevertheless, since on the pipeline given by the written Bash script, Sorter is ran before
Summarize and Rebuild, an option for also removing repeated edges was included in it, to test
for the overhead of compressing networks with self-loops or multiple edges.

The following sections go over each major aspect of the algorithm and the reasonings behind
some of its design choices. Section 4.1 details the structure of the chosen graph description,
section 4.2 describes the Summarize program, and section 4.3 the Rebuild program.

Relevant listings 4.1, 4.2, 4.3, 4.4, and 4.5, can be found at the end of this chapter.

4.1 Graph description by Network Motif Compression

The proposed novel graph description is written to a plaintext file. This is to balance the playing
field when comparing it with the original networks, which were also in plaintext. If compression
was the only desired outcome, then writing the output in the form of a compressed object would
be the desired approach. But that would both require that any program attempting to read
the graph be aware of its data structure, and would inviolate any direct measure in terms of
MDL - which is to say, literally how fewer characters were used to write the novel description in
comparison to the original.

Starting from a graph described by its set of edges and a list of subgraphs described by a
lexicographical ordering of their matrices and node indices, the Summarize program outputs
a new graph description with less edges, while being one that also includes a network motif
identification and dictionary.

Therefore, the final description, rather than containing a list of homogeneous elements - e.g.,
vertex pairs - contains a heterogeneity of three distinct elements, depicted on figure 4.1, and
defined as such:

• Dictionary Entry - Which maps a given key to an adjacency string.

• Network Motif - Which precisely characterizes a subgraph by a dictionary key and its
constituting nodes.

4.1. Graph description by Network Motif Compression 33

• Edge - That indicates the existence of an edge between two nodes, that is not already
expressed in any of the network motifs.

At the head of the network’s description is the list of all dictionary entries mapping an
adjacency string - the canonical definition for a subgraph as given by the g-trie algorithm
- to an arbitrary key. The trade-off of adding the dictionary as a header to the graph’s
description is immensely advantageous, since the adjacency strings that canonically define
subgraph isomorphism classes, are considerably long. Adding them once at the top of the graph’s
description incurs a penalty to the overall description length that is, however, vastly surpassed by
what is gained (literally, reduced) in not having to fully express them on every single occurrence
of a network motif.

Otherwise, there would be no gain in terms of MDL of expressing motifs, if every time we do
it we have to explicitly state the adjacency matrix for that motif. An even shorter description
could be achieved by omitting the dictionary from the graph’s description and either print it to
a different key file or embed it in code. Still, the goal was to study how much could we gain
while still exposing the entire relevant information, and also allowing for anyone to reconstruct
the original graph from a single source, without any knowledge of it or how the summarization
works.

A 0110100110010110
A 1 4 2 3
A 1 7 5 6
4 7

1 2
1 4
1 5
1 7
2 3
3 4
4 7
5 6
6 7

Figure 4.1: Regular graph description on the left, versus novel graph description on the right.
The regular description contains 27 encoding characters, while the novel description 21, not

counting those of the dictionary entry.

This dictionary is in the form of lines containing a < key, value > pair each. The key is used
to identify the motifs, and its value is a canonical form of an isomorphism class, as given by
gtrieScanner, that constitutes an adjacency matrix on a single line.

Following the dictionary, there are lines representing all the compressed motifs. They start
with a dictionary key - a single character - tied to the description of its isomorphism class,

34 Chapter 4. Design & Development

followed by the numbering of nodes that makes up that description.

Finally, the remaining lines represent edges connecting a pair of nodes, same as on the original
network.

Dictionary entries are lexicographically sorted by key, which is simply given by the compression
bias. Motifs are sorted top to bottom by key first, then by natural numerical order, starting
from the leftmost node. Edges are also sorted in natural numerical order, left to right and top to
bottom.

The same sorting of edges, is what both the Sorter and Rebuild program perform over the
original network or when restoring a compressed network, respectively.

Figure 4.1 illustrates the regular versus the novel graph description, which uses less encoding
characters. The dictionary entry obviously incurs a hefty overhead for small networks, and the
amount of clustering on the network directly impacts compression as well.

One important note, is that because motifs are in a canonical form that does not always
match the natural ordering of nodes, the nodes expressed on the motif entries are ordered as to
match the explicit adjacency matrix given by the dictionary entry, instead of being ordered from
lowest to highest.

This entails the computation of a permutation for those subgraph nodes on the network, that
matches the given matrix string. Nevertheless, given that automorphisms can occur in subgraphs,
allowing for an implementation that will stop the matching process as soon as the first suitable
match is found, and that the largest detected subgraph has at most size five, this computation is
never too demanding.

4.2 Building a Graph for Compression

The gtrieScanner program is first run over the network, for subgraphs of size three, four, and
five. Generating dump files containing all detected occurrences of those subgraphs in the already
described manner of adjacency string followed by a series of nodes that, while forming that
subgraph, are not necessarily ordered according to the adjacency string given.

The written program only works for undirected graphs, reading and building the graph one
edge at a time from its description, and then reading the entire output of discovered subgraphs
given by gtrieScanner. For the purposes of the summarization algorithm, the list of subgraphs is
called the workload. Each candidate subgraph is an instance of compression work that could
potentially be done.

The graph data structure is implemented as a hash table based implementation of a map of
nodes, tied to the node key, for constant time retrieval. A node’s label is used to retrieve it from
memory. The graph also contains the workload list of compression candidates, and a subgraph

4.2. Building a Graph for Compression 35

dictionary map with iteratively incremented keys, as new subgraphs are added - but only during
the compression stage.

Also stored in memory, are a set of selection bias attributes measured from the network, that
are used when prioritizing work, and another hash table of already contracted edges. Also present
is a list of repeated edges and self-loops, that are not included in the graph data structure so as
to not affect or be affected by the compression algorithm.

Despite internally, all nodes being the same, they can be split into two groups, lower-level
and higher-level nodes. Higher-level nodes or supernodes, represent higher levels of abstraction,
in which a node is actually a subgraph of other nodes. The lowest-level nodes being those of the
original graph, which haven’t suffered any compression. These nodes are called downstream and
upstream nodes, respectively. With upstream nodes being closer to the source, i.e., the original
uncompressed graph, and downstream nodes being closer to the final compressed graph.

Figure 4.2 illustrates this concept. Of note that while the graph accepts multiple layers of
compression, this is not something that is employed by the compression algorithm on this current
version.

Downstream

Upstream

Figure 4.2: Visual interpretation of compression pointers and the reasoning behind calling them
upstream and downstream pointers. Downstream pointers point to a supernode, while upstream
pointers points to its sub-nodes. The further upstream, the closer we are to the source - i.e., the

original graph. Downstream nodes are higher-level nodes representing compressed motifs,
obtained via what we call node contraction. A code implementation of an edge contraction.

Each node on the graph therefore possesses a string label, which not only identifies it, but
also whether it represents an uncompressed or a compressed node. With the labels of compressed
entries matching the final intended description: a dictionary key, followed by its correct ordering
of sub-nodes. A node can contains a single downstream pointer and an array of upstream pointers.
In that way, the easiest manner for the program to determine if it is looking at a simple or a

36 Chapter 4. Design & Development

compressed node, is to look at its downstream or upstream pointers.

Compressing a subgraph into a node, simply involves adding a new downstream node to the
graph which points to the upstream nodes that it is replacing. And, in turn, setting its upstream
nodes’ downstream pointers to it.

4.2.1 Handling Edge Deletion and Update

At a higher level, compression of a motif is achieved by contracting all the edges on that motif,
as detailed on figures 4.3 and 4.4.

Edge contraction entails merging the nodes to which it was originally incident to. Seeing
that the summarization algorithm performs several edge contractions over entire subgraphs, thus
merging several nodes into one, and that our graph is a hash table of nodes, the focus of our
approach will be on merging nodes and not removing edges.

For this reason, the term node contraction will be used synonymously with motif or node
compression, as well as a counterpart to, and interchangeably with, edge contraction.

Figure 4.3: Illustration of the process of edge contraction, in which an edge is removed from the
network, resulting in the two nodes it previously connected being merged into one. All other

incident edges to those two nodes are now incident to the merged node.

4.2. Building a Graph for Compression 37

At a lower level, what is happening is that a new node is being added to the graph, and
the appropriate upstream and downstream nodes between it and the contracted nodes it now
represents, are set accordingly. Figure 4.5 illustrates the actual procedure taking place.

Contracting a network motif into a single node implies the removal and resetting of several
edges. Contracted edges are removed from the graph, and all incident edges to a contracted node
are now incident to the newly formed supernode.

Actually implementing these modifications at a lower level, is computationally wasteful. The
adjacency lists of every node to be contracted has to be iterated and compared against the edges
to be deleted, so it takes E×e time for E number of total edges in all adjacency lists of candidate
nodes and e edges in the network motif to be compressed. Then, after aggregating what’s left
of those adjacency lists as the adjacencies of the new contracted node, and since the graph is
undirected, we need to visit all of its neighbours and update the edges on their adjacency lists
to now point to the supernode. Which takes E × n, for E being the entire set of edges on all
neighbouring adjacency lists, and n the number of neighbouring nodes.

Furthermore, the above stated is aggravated by the fact that, the original edge incidence
information needs to be stored, if it is ever intended to be restored after compression. For
example, if node w is contracted, amongst others, into supernode W ; saying that node v is now
connected to supernode W instead of w, constitutes a loss of information.

Fortunately, this all becomes superfluous, and therefore trivialized, by taking advantage of
the unique downstream and upstream pointers.

Figure 4.4: Illustration of edge contraction over the entire set of edges of a network motif of size
five. Crossed nodes are merged into the supernode shown on the last step.

38 Chapter 4. Design & Development

Whenever an edge is contracted it is marked as such. Then, fetching the adjacency list of a
supernode is the same as fetching the adjacency lists of all it’s sub-nodes - i.e., upstream nodes.
And, reaching a supernode is the same as reaching one of these upstream nodes.

By simply taking into account whether we are looking at a simple or a supernode, before
retrieving adjacency lists or determining on which node we are on the higher level network, there
is no need whatsoever to update the adjacency lists of any node. Instead, as stated, we simply
add a new node, set pointers to and from it, and mark the edges as being contracted. All done
in constant time.

Since nodes retain adjacency information regarding the simple nodes, and not super ones, it
is possible to both retrieve the incidence to the upstream simple node - the information that is
stored in memory - and the downstream supernode - by following the downstream pointer.

This fact, discards the need to use any sort of error set, to later compute original edge
information when needed.

Figure 4.5: Actual implementation of the edge/node contraction of figure 4.4. No edge or node
is actually removed from the network, and a new supernode is added. Upstream and
downstream pointers, represented as blue bi-directional arrows, are set accordingly.

4.2. Building a Graph for Compression 39

4.2.2 Workload Sorting and Contraction Validation

As mentioned, the workload is the list of network motifs detected by gtrieScanner, that is
then used by the Summarize to compress the network. But because gtrieScanner performs a
comprehensive subgraph search, a single node may be indicated as belonging to several different
subgraphs, several times, in several different structures.

As such, for any given node indicated as being part of multiple subgraphs, a selection of which
of those subgraphs to compress must be made. And, as was already extensively demonstrated
by the related work described on the previous chapter, finding an exact minimum cost for such
compression is no trivial matter.

Explicitly, one would need to generate multiple compressed graphs, one for each possible
combination of non-overlapping subgraphs, and then measure and output the one that produces
the shortest description. This implies an absurd amount of permutations of an immensely
huge number of combinatorial compressions. Since that is clearly not a feasible computation, a
(deterministic) heuristic approach was deemed to be the only valid route to take.

On a naive compression, without any kind of selection process, the program simply looks at
each subgraph as a compression candidate, in the order in which they are read. Every time a
compression candidate is not validated for contraction, it is simply skipped.

The employed heuristic techniques do exactly the same, but attempt to induce a selection
bias on the order in which compression candidates are validated.

An edge cannot be contracted more than once and, as such, the order in which network
motifs are compressed is inducing of the compression effectiveness. Motifs are only compressed
if doing so would reduce the MDL of the final graph, on a case-by-case basis. Therefore, there
is no way of knowing whether performing a good compression now, will block a more lucrative
compression down the line.

With this in mind, three heuristics were tested, each in ascending and descending order,
that sort the entire workload via an established criterion related to a chosen network property.
The chosen properties were purposed to have some relation to the motif prevalence and their
distribution and impact on the network.

The first heuristic approach, sorts the workload by the frequency of motif occurrences, aiming
to determine whether motif prevalence has any impact on compression. The second approach,
sorts them by number of edges inside a subgraph, therefore either prioritizing the largest or
smaller number of contracted edges. The third and final heuristic, sorts the workload by the
prevalence in which every node on a subgraph, also appears on other subgraphs. Therefore,
either prioritizing more or less central nodes.

An initial experiment to quantify the value of compressing only non-overlapping subgraphs
over that of compressing every single one detected by gtrieScanner was performed, and is fully

40 Chapter 4. Design & Development

detailed on section 4.2.3. Suffice to say at this point that - as it pertains to whether or not
to apply a heuristic for non-overlapping edge contraction - the results of that experiment were
graph descriptions that, not only did not possess a shorter description length, as had lost all of
the meaning regarding network motifs.

The conclusion from that previous experiment was that contracting every single node multiple
times, in multiple layers, alongside multiple contractions of the same edges, was not a feasible
approach towards approaching an MDL. Still, we were able to refine a different method that allows
for multiple contractions of the same node, on the same layer, without multiple contractions of
the same edge. This method further reduced the final description length.

1

2

3

5

6

7 4

B 1 7 5 6

B 1 4 2 3 A 1 7 4

011101110: 1 7 4
0110100110010110: 1 7 6 5
0110100110010110: 1 4 3 2

H1a

A 011101110
B 0110100110010110
A 1 7 4
B 1 4 2 3
B 1 7 5 6

Figure 4.6: Example of compression for the given toy network, heuristic (h1a), and motif file.
Since the heuristic prioritizes validating compression on less frequent subgraphs, the motif ’A 1
7 4’ will be compressed first, marking its edges as contracted. Next, compressing motif ’B 1 4 2
3’ produces an equal length description than describing the not contracted edges ’1 5’, ’5 6’, and
’6 7’. Lastly, motif ’B 1 7 5 6’ is also compressed for the same reason. Notice how there is no
edge between supernodes. Instead, they merely overlap in our representation. On the output,

there is no need to specify a connection between those motifs since the edges are implicit in their
description.

4.2. Building a Graph for Compression 41

1

2

3

5

6

7 4

A 1 7 5 6

A 1 4 2 3

011101110: 1 7 4
0110100110010110: 1 7 6 5
0110100110010110: 1 4 3 2

H1d

A 0110100110010110
A 1 4 2 3
A 1 7 5 6
4 7

Figure 4.7: Example of compression for the given toy network, heuristic (h1d), and motif file.
Only difference in input from figure 4.6 is the chosen heuristic, which prioritizes contraction

validation for the most frequent motifs. Motif ’A 1 4 2 3’ and ’A 1 7 5 6’ are both contracted,
in turn. This is because describing both motifs is less costly than describing the individual four
edges for each motif. Finally, motif ’B 1 7 4’ is not validated for compression - and the key and
canonical matrix not added to the output dictionary - since it is less costly to just output the

remaining uncompressed edge ’4 7’ than the entire motif. The resulting network can be
represented as two overlapping supernodes with an edge between them. This heuristic produced

a better compression than that of figure 4.6 for these inputs.

Independently of which sorting method is being applied, contraction is only performed if by
doing so, and given the current state of the network, describing the compressed motif is less or
equally costly than describing the individual uncompressed edges - compression takes priority for
the same cost.

Notice that this method takes into account which edges were already compressed, and excludes
them from the computation. But allows for the repetition of nodes, if doing so leads to a cost
reduction.

42 Chapter 4. Design & Development

Contraction validation, therefore, simply entails summing the cost of describing all yet not
contracted edges and comparing it to the cost of describing the compressed motif. If the latter
has a smaller or equal cost, which is to say produces a shorter or equal description length, then
the motif is compressed and the (not yet contracted) edges marked as having been contracted.

Figures 4.6 and 4.7 depicts the process of contraction validation, as well as how the heuristic
sampling bias works and also how it still affects it. Those figures illustrate an actual execution
and the output produced when running the program with those inputs and chosen heuristics.

4.2.3 The Folding Problem

As mentioned, the nature of the downstream and upstream pointers allows nodes to be able to
continuously point to other nodes further down or up the compression layer. That is to say, a
node that is downstream to another, can be upstream to a third one.

Due to this, a naive brute-force full compression was attempted, in order to verify and analyze
the results. By full compression, it is meant that no entry on the graph’s workload was skipped,
and that a subgraph S can be folded into another subgraph S′, in lieu of one or more of its nodes
and edges that are a part of S′.

Due to the fact that gtrieScanner is extensive on its exploration of subgraph motifs, and without
a bias criterion for discarding some motifs in favor of another, the above-mentioned compression
approach, as was initially suspected, produced graphs with few but heavily compressed nodes.
These nodes, in turn, themselves containing multiple levels of other compressed nodes in multiple
combinations. This resulted in an excessively long subgraph description for every single subgraph,
albeit at a short number of motif and edge entries for the full graph. Number of dictionary
entries remained comparatively the same, surprisingly.

The trade-off between having less lines on the graph’s description, but those lines having
a longer length (by several orders of magnitude), weighted heavily on the side of the longer
lengths. The descriptions produced in this way, not only took up more characters, as they lost
any meaningful interpretation. They consisted of few lines with dozens or hundreds of labels
muddled by several layers of compression, where it was difficult to even understand where one
ended and the other began.

In a sense, reinforcing the relevance of the MDL principle to this work, by opposing it.

This short experiment also served to reinforce the notion that a selection of which structures
to compress, and how to compress them, was more valuable than simply trying to arbitrarily
compress every motif. And regarding future work, if there is any value to be found in allowing
for multiple layers of compression, those most likely need be done iteratively, while still applying
some specific selection principle at each compression layer.

4.2. Building a Graph for Compression 43

4.2.4 Compressing the Graph

The pseudocode 1 details the most important steps of the Summarize algorithm. Some of the
implementation can be reviewed on listings 4.1, 4.2, 4.3, 4.4, and 4.5.

After reading the inputs, the graph is built while storing repeated edges and self-loops on a
separate list, and the workload is built while extracting the network properties that will be used
for the heuristics.

For very large networks, some motif files generated by gtrieScanner are of dozens or even
hundreds of Gigabytes in size and, as such, cannot be loaded into the memory of an average
machine. The Summarize program can be effectively - but never efficiently, due to the bottleneck
of disk read/write operations - run with an external sorter method, that allows for the heuristic
selection bias to be applied to the workload.

On the compression function, the workload is sorted with a given comparator specific for
the chosen heuristic. As stated, each of the three heuristics can sort the workload in either
ascending or descending order. A second different heuristic can also be chosen as tiebreaker
during comparisons. This leads to a total of eighteen possible comparators for sorting.

As described on previous sections, the workload is iterated, at each iteration compression is
validated, and the nodes contracted or not, in accordance with the validation result.

While gtrieScanner outputs the matrix in canonical form, the nodes belonging to a network
motif are not necessarily on the order that matches that canonical string, but in the order that
they were read. Therefore, an additional step of obtaining a correct permutation of nodes that
matches that canonical adjacency matrix description is required.

After iterating through the possible permutations for the given compression candidate nodes,
and returning a valid one as soon as the first match is found, the validation proper can be
performed.

The method for validating compression proceeds as previously described. Edges belonging to
the canonical matrix and a valid permutation of nodes for that motif, are tested whether they
were already contracted or not.

Each not contracted edge adds its characters, including whitespaces, to the description cost.
Then that value is simply compared to the cost, in characters as well, of describing the given
motif. If describing the latter has an equal or lesser cost than describing the former, the nodes
are contracted.

Compressing a motif is simply adding its new node to the graph, with appropriate pointers, as
previously described. Edges are marked as having been contracted as well, for further description
cost calculations involving them.

After the whole workload has been visited, the output is generated. Which is done by visiting

44 Chapter 4. Design & Development

every node, checking whether it represents a motif or a simple node, and adding the motifs to a
list for printing. Every node’s adjacency list - or those of upstream nodes to a supernode - is
checked for edges not yet added to the printing list as well.

Finally, the stored repeated edges and self-loops are added to the entire list and it is then
sorted according to the desired output of the novel graph description, already described in section
4.1, and outputted.

With this algorithm and its implementation, it was possible to create shorter and (hopefully)
more meaningful descriptions of large networks, in relation to their motifs. All the while, ensuring
that the compression was lossless, as demonstrated by the Sorter and Rebuild programs, described
on the following section.

4.3 Restoring the Uncompressed Graph

The Sorter program simply applies the same sorting principle that the output of the Summarize
and Rebuild programs establish. Edges are sorted in ascending numerical order, from left to
right and top to bottom.

It does this by reading the original network file, reading only the first two numerical entries
on each line - thus bypassing weights for weighted graphs - and adding them to a list for printing.

As described, it can also detect and bypass repeated edges, for testing purposes.

The list is then sorted, and outputted.

Neither sorting the list, removing repeated edges and self-loops, nor bypassing weights, is
required for the successful execution of the Summarize program. The Sorter program only exists
to ensure that the original networks is represented on the same fashion as the restored one will,
to accommodate for a simple validation on whether or not the restored network exactly matches
the original one.

The Rebuild program is also very simple and straightforward. It reads the compressed graph’s
description one line at a time. First, storing the dictionary entries to a hash table. Afterwards,
once motifs start appearing, it adds the edges as described by the adjacency matrices on the
stored aforementioned dictionary. Finally, it adds the remaining edges, not described in motifs,
to the list as well.

The list is sorted in the same manner as with the Sorter program, and the whole data it
contains, is outputted.

4.3. Restoring the Uncompressed Graph 45

Algorithm 1 Summarize
Input G = (V, E), W , H. ▷ Graph, Workload, Heuristic
Output G′ = (D, M, E′) ▷ Compressed Graph

1: procedure ValidateEdgeContraction(wMatrix, wSubnodes)
2: ENotContracted ← ∅
3: C ← 0 ▷ Description Cost
4: for e ∈ wMatrix do
5: if e /∈ EContracted then
6: ENotContracted ← e

7: C ← e

8: end if
9: end for

10: if C < CM←wSubnodes
then

11: return false
12: end if
13: for e ∈ ENotContracted do
14: EContracted ← e

15: end for
16: return true
17: end procedure
18: procedure CompressOne(V ′Subnodes)
19: M ← V ′Subnodes

20: G′ ←M

21: end procedure
22: procedure CompressAll(W, H)
23: D ← ∅ ▷ Dictionary
24: W ← Sort(W, H)
25: for w ∈W do
26: V ′Subnodes ← Permutation(wmatrix, wSubnodes)
27: if ValidateEdgeContraction(V ′Subnodes, wMatrix) then
28: D ← wMatrix

29: CompressOne(V ′Subnodes)
30: end if
31: end for
32: end procedure
33: procedure Main
34: EContracted ← ∅
35: CompressAll(W, H)
36: Print(G′ ← (D, e /∈ EContracted))
37: end procedure

46 Chapter 4. Design & Development

4.3.1 The Execution Pipeline

The written bash script, simply automates running one program after the other, and directing
outputs from one as inputs to another. It also runs a series of terminal commands to output
various execution results, such as the sizes of the generated files, execution times, compression
metrics, compression validation, etc.

The main execution pipeline, in terms of the described programs, consists of running
gtrieScanner (or not, if a motif file is already provided) first to generate motifs for compression;
running the Sorter program second, just to preemptively eliminate any noise in the data; directing
sorted network and motifs to the Summarize program; and finally, redirecting its output to the
Rebuild program, and checking if the output of this program matches that of the sorted network.

The next chapter, describes and analyzes the results of running this execution pipeline, with
a variety of different parameters, on a set of test case networks.

4.3. Restoring the Uncompressed Graph 47

� �
1 // . . .
2
3 // method t h a t i t e r a t e s through so r t e d workload and summarizes the network
4 void c o m p r e s s A l l (S t r i n g m o t i f F i l e , int [] h e u r i s t i c , boolean u s e E x t e r n a l S o r t) {
5
6 Comparator<S t r i n g > w o r k l o a d S o r t e r = g e t H e u r i s t i c S o r t e r (m o t i f F i l e , h e u r i s t i c) ;
7
8 if (! u s e E x t e r n a l S o r t) {
9 work load . s o r t (w o r k l o a d S o r t e r) ;

10
11 for (S t r i n g work : work load) {
12 S t r i n g [] l i n e = work . s p l i t (" : ") ;
13 S t r i n g key = l i n e [0] ;
14 S t r i n g [] l i s t = l i n e [1] . s p l i t (" ") ;
15
16 int s i z e = l i s t . l e n g t h ;
17 S t r i n g [] aux = key . s p l i t (" ") ;
18 S t r i n g [] [] ma t r i x = new S t r i n g [s i z e] [s i z e] ;
19 int pos =0;
20
21 for (int i =0; i <s i z e ; i ++){
22 S t r i n g [] row = new S t r i n g [s i z e] ;
23 for (int j =0; j <s i z e ; j++)
24 row [j] = aux [pos ++];
25 mat r i x [i] = row ;
26 }
27
28 Node [] subNodes = g e t C o r r e c t P e r m u t a t i o n (l i s t , ma t r i x) ;
29
30 // easy debug f o r n u l l p o i n t e r caused by permutation not found
31 // p r i n t occurs r i g h t b e f o r e excep t ion i s thrown
32 // shou ld never happen with g t r i eScanner
33 // only on manually crea ted mot i f f i l e wi th i n c o r r e c t mot i f matrix
34 if (subNodes == null)
35 p l (" Th i s shou ldn ’ t have happened \ n p r o b a b l e cause , m o t i f f i l e i s

i n c o r r e c t ") ;
36
37 // compress i f edge con t rac t i on r e s u l t s in l e s s e r c o s t
38 if (v a l i d a t e E d g e C o n t r a c t i o n (matr ix , subNodes)) {
39 // c r e a t e new d i c t i o n a r y e n t r i e s as needed
40 if (! subg raphD ic t . con ta i n sKey (key))
41 subg raphD ic t . put (key , i n d e x++) ;
42
43 compressOne (subg raphD ic t . ge t (key) , subNodes) ;
44 }
45 }
46 }else{
47
48 // . . .
49
50 }
51 }
52
53 // . . .� �

Listing 4.1: Java method for graph compression

48 Chapter 4. Design & Development

� �
1 // . . .
2
3 Node [] g e t C o r r e c t P e r m u t a t i o n (S t r i n g [] l i s t , S t r i n g [] [] ma t r i x) {
4
5 A r r a y L i s t <Node [] > perms = new A r r a y L i s t <>() ;
6 int s i z e = l i s t . l e n g t h ;
7
8 f i n d A l l P e r m u t a t i o n s (l i s t , matr ix , 0 , new boolean [s i z e] , new int [s i z e] , perms) ;
9

10 for (Node [] perm : perms)
11 if (i s C o r r e c t P e r m u t a t i o n (perm , mat r i x))
12 return perm ;
13 return null ;
14 }
15
16 void f i n d A l l P e r m u t a t i o n s (S t r i n g [] l i s t , S t r i n g [] [] matr ix ,
17 int cur , boolean [] used , int [] perm , A r r a y L i s t <Node [] > perms) {
18 int s i z e = l i s t . l e n g t h ;
19 if (cu r == s i z e) {
20 Node [] base = new Node [s i z e] ;
21 for (int i =0; i <s i z e ; i ++)
22 base [i] = nodes . ge t (l i s t [perm [i]]) ;
23 perms . add (base) ;
24 }
25
26 for (int i =0; i <s i z e ; i ++)
27 if (! used [i]) {
28 used [i] = true ;
29 perm [cu r] = i ;
30 f i n d A l l P e r m u t a t i o n s (l i s t , matr ix , cu r +1, used , perm , perms) ;
31 used [i] = false ;
32 }
33 }
34
35 boolean i s C o r r e c t P e r m u t a t i o n (Node [] perm , S t r i n g [] [] ma t r i x) {
36
37 for (int i =0; i <perm . l e n g t h ; i ++)
38 for (int j =0; j <perm . l e n g t h ; j++){
39 if (i != j)
40 if ((ma t r i x [i] [j] . e q u a l s ("1") && ! perm [i] . a d j . c o n t a i n s (perm [j]))) {
41 // | | (matrix [i] [j] . e q u a l s (" 0 ") &&

perm [i] . adj . conta ins (perm [j]))) {
42 return false ;
43 }
44 }
45
46 return true ;
47 }
48
49 // . . .� �

Listing 4.2: Java method for subgraph node permutation

4.3. Restoring the Uncompressed Graph 49

� �
1 // . . .
2
3 boolean v a l i d a t e E d g e C o n t r a c t i o n (S t r i n g [] [] matr ix , Node [] subNodes) {
4
5 S t r i n g snodeForm = "S" ;
6 for (int i =0; i <subNodes . l e n g t h ; i ++)
7 snodeForm += " "+subNodes [i] . key ;
8 int snodeCost = snodeForm . l e n g t h () ;
9

10 S t r i n g edgeForm = " " ;
11 L i n k e d L i s t <S t r i n g > r e l e v a n t E d g e s = new L i n k e d L i s t <>() ;
12
13 for (int i =0; i <m at r i x . l e n g t h ; i ++){
14 for (int j=i ; j <mat r i x . l e n g t h ; j++){
15 if (ma t r i x [i] [j] . e q u a l s ("1")) {
16 Node v = nodes . ge t (" "+subNodes [i] . key) ;
17 for (Node w : v . a d j)
18 if (w. key . e q u a l s (" "+subNodes [j] . key)) {
19 Node l , r ;
20 if (subNodes [i] . key . compareTo (subNodes [j] . key) < 0) {
21 l = subNodes [i] ;
22 r = subNodes [j] ;
23 }else{
24 l = subNodes [j] ;
25 r = subNodes [i] ;
26 }
27 if (! c o n t r a c t e d E d g e s . g e t O r D e f a u l t (l . key+" "+r . key , false)) {
28 S t r i n g r e l e v a n t E d g e = l . key+" "+r . key ;
29 r e l e v a n t E d g e s . add (r e l e v a n t E d g e) ;
30 edgeForm += r e l e v a n t E d g e ;
31 }
32 }
33 }
34 }
35 }
36
37 int edgeCost = edgeForm . l e n g t h () ;
38
39 //no need to compress
40 if (edgeCost < snodeCost)
41 return false ;
42
43 for (S t r i n g r e l e v a n t : r e l e v a n t E d g e s)
44 c o n t r a c t e d E d g e s . put (r e l e v a n t , true) ;
45
46 return true ;
47 }
48
49 // . . .� �

Listing 4.3: Java method for validating edge contraction

50 Chapter 4. Design & Development

� �
1 // . . .
2
3 void pr in tUps t r eamEdges (Node v) {
4
5 if (v . upstream . s i z e () > 0)
6 for (Node w : v . upstream)
7 pr in tUps t r eamEdges (w) ;
8 else

9 for (Node w : v . a d j)
10 p r i n t E d g e (v . key , w. key) ;
11 }
12
13 void p r i n t E d g e (S t r i n g a , S t r i n g b) {
14
15 S t r i n g e = a+" "+b ;
16 if (a . compareTo (b) > 0)
17 e = b+" "+a ;
18 if (! usedEdges . g e t O r D e f a u l t (e , false)) {
19 usedEdges . put (e , true) ;
20 if (! c o n t r a c t e d E d g e s . g e t O r D e f a u l t (e , false)) {
21 so r t edNodes . add (e) ;
22 }
23 }
24 }
25
26 void c r ea t eOutput () {
27
28 usedEdges . c l e a r () ;
29
30 // p r i n t the mot i f d i c t i o n a r y
31 Map<S t r i n g , S t r i n g > keys = new HashMap<>() ;
32 L i s t <S t r i n g > orde redKeys = new A r r a y L i s t <>(subg raphD ic t . s i z e ()) ;
33 for (S t r i n g k : subg raphDic t . keySet ()) {
34 S t r i n g v = " "+subg raphDic t . ge t (k) ;
35 orde redKeys . add (v) ;
36 keys . put (v , k) ;
37 }
38
39 C o l l e c t i o n s . s o r t (o rde r edKeys) ;
40
41 for (S t r i n g k : o rde r edKeys)
42 p l (k+" "+keys . ge t (k)) ;
43
44 // add nodes and edges to p r i n t l i s t f o r s o r t i n g
45 for (S t r i n g k : nodes . keySet ()) {
46 Node v = nodes . ge t (k) ;
47 // compressed node , p r i n t i t s key and every outgo ing edge
48 if (v . upstream . s i z e () > 0) {
49 so r t edNodes . add (v . key) ;
50 pr in tUps t r eamEdges (v) ;
51 }else{
52 // simple node , p r i n t edges
53 for (Node w : v . a d j)
54 p r i n t E d g e (v . key , w. key) ;
55
56 }
57 }
58
59 // . . .� �

Listing 4.4: Java method for generating output - first half

4.3. Restoring the Uncompressed Graph 51

� �
1 // . . .
2
3 // add mul t i edges to p r i n t l i s t
4 so r t edNodes . a d d A l l (mu l t iEdge s) ;
5
6 // p r i n t l i s t s o r t
7 so r t edNodes . s o r t ((k1 , k2) −>
8 (C h a r a c t e r . i s L e t t e r (k1 . charAt (0)) ?
9 (C h a r a c t e r . i s L e t t e r (k2 . charAt (0)) ?

10 (C h a r a c t e r . compare (k1 . charAt (0) , k2 . charAt (0)) != 0 ?
11 C h a r a c t e r . compare (k1 . charAt (0) , k2 . charAt (0)) :
12 A r ra y s . compare (A r r ay s . a s L i s t (k1 . s u b s t r i n g (2 , k1 . l e n g t h ()) . s p l i t (" "))
13 . s t ream () . mapToInt (I n t e g e r : : p a r s e I n t) . t oAr ray () ,
14 A r ra y s . a s L i s t (k2 . s u b s t r i n g (2 , k2 . l e n g t h ()) . s p l i t (" "))
15 . s t ream () . mapToInt (I n t e g e r : : p a r s e I n t) . t oAr ray ())) :
16 −1) :
17 (C h a r a c t e r . i s L e t t e r (k2 . charAt (0)) ?
18 1 :
19 A r ra y s . compare (A r r ay s . a s L i s t (k1 . s p l i t (" "))
20 . s t ream () . mapToInt (I n t e g e r : : p a r s e I n t) . t oAr ray () ,
21 A r ra y s . a s L i s t (k2 . s p l i t (" "))
22 . s t ream () . mapToInt (I n t e g e r : : p a r s e I n t) . t oAr ray ())))) ;
23
24
25 // p r i n t l i s t p r i n t
26 for (S t r i n g n : so r t edNodes)
27 p l (n) ;
28 }
29
30 // . . .� �

Listing 4.5: Java method for generating output - second half

Chapter 5

Testing and Analyzing Graph Com-
pression

With the intention of eliminating bias that could skew the observations towards a specific result,
the Summarize program was tested on six real world networks, semi-picked at random for their
distinct topologies, attributes and classifications. The only information used on their selection
was their size, number of edges, and category. Although the program is not ready to handle
directed graphs, any directed graph can be assumed to be an undirected one with possible
multiple edges, for the purpose of testing compression.

Several other networks were experimented on while writing and debugging the program, none
of them were used on the actual testing stage, and no compression metric was taken during
development. Only algorithm validation was tested during the development stage.

The networks used for testing and analysis, are available online on The KONECT Project [21],
and are described on section 5.1. They are the following: Air Traffic Control [2], American
Revolution [12], A Song of Ice and Fire [24], Euroroads, Network Science [1], and Pretty Good
Privacy [4].

The compression results, are analyzed and discussed on section 5.2. Section 5.3 endeavours
to relate the results to meaningful network metrics.

5.1 Test Case Networks

These real world networks are ordered by size. Following their description and until the end of
this chapter, they will be referred by an assigned label, for brevity, as stated on their descriptions.

5.1.1 American Revolution

• label - revolution.

53

54 Chapter 5. Testing and Analyzing Graph Compression

• Size - n = 141.

• Edges - e = 160.

• Diameter - δ = 6.

• Category - Affiliation Network.

• Node Meaning - Person, organization.

• Edge Meaning - Membership.

• Network Format - Bipartite, undirected.

• Edge Type - Unweighted, no multiple edges.

Figure 5.1: The American Revolution network.

A small network was picked at random to determine the effectiveness (or rather, ineffectiveness)
of the compression algorithm over them, given that the motif dictionary entails a considerable
overhead for smaller networks.

Despite being described as undirected with no multiple edges, repeated edges were found
during compression. Meaning that one or the other of its described attributes is incorrect.

5.1.2 A Song of Ice and Fire

• label - asoiaf.

• Size - n = 796.

• Edges - e = 32,629.

5.1. Test Case Networks 55

• Diameter - δ = 9.

• Category - Miscellaneous.

• Node Meaning - Character.

• Edge Meaning - Co-appearance.

• Network Format - Unipartite, undirected.

• Edge Type - Unweighted, multiple edges, does not contain loops.

Figure 5.2: The A Song of Ice and Fire network.

This network was chosen both due to its size and volume ratio, and the fact that it serves as
a social network of sorts. It was deemed relevant to have a test case where the number of edges
were considerably larger than that of its nodes.

Even though this is the second smallest network in size, it is by far the largest in number of
edges.

5.1.3 Euroroads

• label - euroroads.

56 Chapter 5. Testing and Analyzing Graph Compression

• Size - n = 1,174.

• Edges - e = 1,417

• Diameter - δ = 62.

• Category - Infrastructure network.

• Node Meaning - City.

• Edge Meaning - Road.

• Network Format - Unipartite, undirected.

• Edge Type - Unweighted, no multiple edges, does not contain loops.

Figure 5.3: The Euroroads network.

The network was chosen for its near-similar number of nodes and edges and with the objective
to test compression on a real-world topography network.

5.1.4 Air Traffic Control

• label - air control.

• Size - n = 1,226.

• Edges - e = 2,615.

5.1. Test Case Networks 57

• Diameter - δ = 17.

• Category - Infrastructure network.

• Node Meaning - Airport/service center.

• Edge Meaning - Preferred route.

• Network Format - Unipartite, directed.

• Edge Type - Unweighted, no multiple edges, contains reciprocal edges, self-loops, directed
cycles.

Figure 5.4: The Air Traffic Control Network.

A network with a moderate number of nodes and edges, with several traits that distinguishes
it from the others, namely the prevalence of loops and cycles. As previously stated and contrary
to its description, despite originally being a directed graph, for the purposes of this study it was
treated as an undirected graph with multiple edges.

5.1.5 Network Science

• label - netsci.

• Size - n = 1,461.

• Edges - e = 2,742.

• Diameter - δ = 17.

• Category - Co-authorship network.

• Node Meaning - Author.

58 Chapter 5. Testing and Analyzing Graph Compression

• Edge Meaning - Co-authorship.

• Network Format - Unipartite, undirected.

• Edge Type - Unweighted, no multiple edges, does not contain loops.

Figure 5.5: The Network Science network.

The criteria for selecting this network as a case study were its size, and the near double
number of edges. Similar in size and number of edges to the previous network, but little else, the
goal was to analyze how the differences between these two networks would translate in terms of
summarization.

5.1.6 Pretty Good Privacy

• label - pgp.

• Size - n = 10,680.

• Edges - e = 24,316.

• Diameter - δ = 24.

• Category - Online contact network.

• Node Meaning - User.

5.2. Obtaining and Analyzing Results 59

• Edge Meaning - Interaction.

• Network Format - Unipartite, undirected.

• Edge Type - Unweighted, no multiple edges, does not contain loops, is a snapshot of only
the largest connected component of the original data.

Figure 5.6: The Pretty Good Privacy network.

The pgp network is by far the largest in size, out of all the test network - despite still being
the second largest in terms of edges - and that was the reason for selecting it for the study.

5.2 Obtaining and Analyzing Results

As previously mentioned, with the goal of testing whether it was possible to improve compression
by motif sampling, three heuristic methods were employed for summarization. Each method scans
the network for the frequency of a different given attribute, hypothesized to be strictly related to
its summarization, prioritizing some motifs when attempting MDL-focused compression.

The intention was to determine if a different compression priority would impact the final
compression ratio in a significant way, and whether or not a method would be significantly superior
to the others. Also, if the compression was only related to the heuristic used, independently of
the network it was being applied to, or rather affected by some other network metrics.

Throughout the remainder of this chapter, the heuristics applied for sorting the workload set
of compression candidates are simply abbreviated as h1a, h1d, h2a, h2d, h3a, and h3d. With h1a
and h1b concerning a sorting by ascending or descending frequency of network motifs on the
whole network, respectively. Sorting by ascending or descending order of edges within each motif,
being h2a and h2b, respectively. And, lastly, h3a and h3d comprising a sorting by the frequency

60 Chapter 5. Testing and Analyzing Graph Compression

revolution euroroad air control netsci pgp asoiaf
– 90.61% (75.98%) 88.70% 89.61% (79.44%) 81.44% 85.27% 89.26% (67.55%)

h1a 106.01% (88.90%) 81.23% 78.35% (69.45%) 72.11% 77.77% 78.18% (59.17%)
h1d 87.12% (73.05%) 87.73% 89.90% (79.70%) 72.59% 76.33% 79.00% (59.79%)
h2a 93.62% (78.50%) 89.15% 89.53% (79.36%) 82.21% 85.81% 89.19% (67.51%)
h2d 108.30% (90.81%) 84.07% 81.78% (72.50%) 57.65% 68.34% 68.03% (51.49%)
h3a 96.63% (81.02%) 88.30% 89.13% (79.01%) 78.44% 84.17% 89.21% (67.52%)
h3d 117.68% (98.68%) 91.26% 92.48% (81.98%) 73.25% 75.37% 75.84% (57.40%)

Table 5.1: Compression ratios obtained for each network-heuristic pair, given in percentage, with
the best obtained ratios highlighted in bold. Values are given as a ratio between compressed

network over sorted network . Values in parenthesis are the compressions ratios over the original
networks instead. The revolution and air control source networks had noise in the form of

non-encoding trailing whitespace characters, while the asoiaf network was a weighted one with
additional characters before sorting.

that a given node appears on different detected motifs, also by ascending and descending order,
respectively.

An initial pass with no heuristic was also performed, in order to assess whether the sampling
preference provided by sorting offered any discernible advantage. The motifs were purposefully
feed in an arbitrary order - first were the motifs of size five, followed by those of size three, and
finally motifs of size four - in an attempt to stray away from the heuristic’s sorting criteria.

5.2.1 Overall Compression Ratios

Table 5.1 summarizes the compression ratios for each network-heuristic pair, taken from the
ratios between the character count of the summarized descriptions and that of the original ones.

Analysing the table, and as initially suspected, the revolution network presents itself as an
outlier. With some heuristics actually increasing the number of characters present on the network
summary, due to the motif dictionary overhead.

It is clearly evident that a certain degree of compression was always achieved for each of
the other networks, and not proportional to the network’s size. And while some ratios are
considerable, other networks do not exhibit a significant compression rate. Reiterating what was
stated on section 3.1, this is far from being a superlative network compression algorithm, but
it remains, nevertheless, a compression algorithm - particularly if the motif dictionary is to be
hard-coded in some other file or as part of the graph-reading program.

It was also tested if removing repeated edges and self-loops would significantly improve
compression. In the event that it would, then implementing a formula for accounting for such
edges in future related work, could prove to be an important consideration.

Only two of the tested networks possessed repeated edges, as shown on table 5.2. Although

5.2. Obtaining and Analyzing Results 61

revolution air control
without repeated edges full network without repeated edges full network

– 90.56 (75.58%) 90.61% (75.98%) 88.79% (72.93%) 89.61% (79.44%)
h1a 106.04% (88.49%) 106.01% (88.90%) 76.63% (62.94%) 78.35% (69.45%)
h1d 87.06% (72.65%) 87.12% (73.05%) 89.10% (73.19%) 89.90% (79.70%)
h2a 93.59% (78.10%) 93.62% (78.50%) 88.70% (72.85%) 89.53% (79.36%)
h2d 108.34% (90.41%) 108.30% (90.81%) 80.34% (65.99%) 81.78% (72.50%)
h3a 96.61% (80.62%) 96.63% (81.02%) 88.27% (72.50%) 89.13% (79.01%)
h3d 117.77% (98.28%) 117.68% (98.68%) 91.88% (75.47%) 92.48% (81.98%)

Table 5.2: Compression results after removing all duplicate edges and self-loops, given in
percentage ratios as in table 5.1. Values in bold highlight instances were compression actually

worsen, due to a heightened impact of the dictionary’s overhead cost.

hardly a representative study of the prevalence and importance of edge multiplicity over large
networks, at this time, the results do not support that taking into account the compression of
repeated edges produce considerable improvements for the compression rate. Furthermore, it
might be more adequate and efficient to simply transform multi-edges into weighted ones, and
perform normal compression over the thus transformed graph.

Therefore, the most interesting prospect at this juncture, is to attempt to identify any
existing relationship between the differences in compression rate, the nature and quantity of
contracted motifs, and any number of network properties. Which, might provide insights into
future approaches and optimizations, or even provide a better, yet entirely different method for
graph compression and hopefully summarization, via motif contraction.

For that purpose, on the grounds of summarization, table 5.3 highlights some frequencies
counts of compressed network motifs, that might offer some clues as to how the current method
can be improved, or even what are the aforementioned network properties behind the differences
in compression effectiveness.

One thing that is immediately evident by studying the provided tables is that, disregarding
the revolution network outlier, two heuristics were clearly superior to the rest.

Heuristic h1a, which sorts detected network motifs by their increasing frequency of occurrence
on the overall network, produced the best results for the euroroad and air control networks. On
the other hand, for the larger networks, heuristic h2d produced the best compression results.
Not only when compared to the other heuristics applied to those networks but in terms of overall
compression across all studied networks, as well.

This reinforces the idea that compressing through network motif contraction, might become
more viable the larger the network, due to a prevalence of a greater number of edges and
connected components in those networks.

Heuristic h2d prioritizes contraction of motifs with the higher number of edges. Thus, it

62 Chapter 5. Testing and Analyzing Graph Compression

revolution euroroad air control
3 8 2 3 9 4 12 4 11 6 3 13 3 14 5 14 8 4 21 4 19 # of unique
37 36 38 45 26 49 26 646 236 326 643 226 654 260 1082 364 708 1128 163 1123 383 # of most frequent
4 4 5 4 5 4 5 3 3 5 3 5 3 5 3 3 5 3 5 3 5 size of most frequent

54 49 39 53 36 52 39 670 458 427 647 410 675 442 1175 799 764 1136 661 1192 776 TOTAL # of
– h1a h1d h2a h2d h3a h3d – h1a h1d h2a h2d h3a h3d – h1a h1d h2a h2d h3a h3d isomorphism class(es)
3 13 13 3 21 3 24 6 4 7 4 8 6 8 7 5 7 4 8 7 8 # of unique

884 609 200 631 252 843 178 7245 4749 5657 10484 3681 7683 2857 876 546 794 1283 569 947 345 # of most frequent
3 3 5 3 5 3 5 3 3 4* 3 4* 3 4* 3 3 4* 3 4* 3 4* size of most frequent

1177 855 705 1159 535 1137 691 11742 9691 8027 11522 7258 11898 7896 1369 1075 922 1352 824 1354 922 TOTAL # of
netsi pgp asoiaf

Table 5.3: Different frequency measures of isomorphism classes, for each network-heuristic pair.
Values in bold highlight the highest frequency of compressions of a given category.

will first compress larger and more denser clusters. This difference in best heuristic for different
networks, hints that for networks lacking a high clustering coefficient, simply contracting the less
frequent isomorphism classes first is the best approach.

It seems common sense that the proposed method of compression, focused on reducing
the description of densely connected neighbouring nodes, works best when prioritizing those
structures and for networks where they are prevalent. For networks that do not match this
description, then starting with eccentric motifs and moving towards the most frequent ones
reduces the latter’s description size most likely by reducing the number of times that those motifs
are fully described.

This hypotheses is corroborated by the findings expressed on table 5.3, where more structures
were contracted, even though a fewer number of different isomorphism classes were compressed
in total. Despite the fact that, at first glance, the table does not corroborate anything, due to
lacking any strong relation between the ranking of effectiveness between overall compression and
motif contractions. There is such a strong relation at the extremes.

The netsci network, for example, for which h2d reduced its size by nearly half, showed the
highest number of compressed motifs when no heuristic was even employed. And, as such, in a
cursory manner, nothing can be deduced by analyzing the number of compressed motifs. But
that statement is not entirely true, seeing as two significant pieces of knowledge can actually be
derived from its study.

While there is evidence that there is no direct relation between highest number of compressed
motifs and highest graph compression, or even a direct correlation between the ranking for a
given graph compression and number of compressed motifs. There is however a strict relation
between one heuristic and the fewer number of contracted network motifs during summarization.
Which turns out to be the one that achieves the best overall compression rates. Heuristic h2d,
always compresses the fewer number of motifs, even for networks where it does not achieves the
best compression. This is true even for the outlier revolution network.

Picking up on what was stated on the previous paragraph, this is certainly due to how by
extensively describing overlapping structures, we are actually expending more characters than by
describing fewer key structures and some surplus edges between them.

5.2. Obtaining and Analyzing Results 63

best compression heuristic
best overall
compression

second best
overall compression

lowest total #
of compressed motifs

highest # of unique
isomorphism classes

lowest # for the most
prevalent compressed motif

revolution h1d – h2d h3d h2d/h3d
euroroad h1a h2d h2d h3d h2d

air control h1a h2d h2d h2d h2d
netsci h2d h1a h2d h3d h3d
pgp h2d h3d h2d h2d/h3d h3d

asoiaf h2d h3d h2d h2d/h3d h3d

Table 5.4: Direct comparison between the best compression heuristics, those contracting the
lowest number of motifs, and the highest number of isomorphism classes. Heuristic h2d is

highlighted in bold.

worst compression heuristic
worst overall
compression

second worst
overall compression

highest total #
of compressed motifs

lowest # of unique
isomorphism classes

highest # for the most
prevalent compressed motif

revolution h3d h2d – h1d h3a
euroroad h3d h2a h3a h2a/h3a h3a

air control h3d h1d h3a h2a/h3a h2a
netsci h2a – – –/h2a/h3a –
pgp h2a – h3a h2a h2a

asoiaf – h3a – h2a h2a

Table 5.5: Direct comparison between the worst compression heuristics, those contracting the
highest number of motifs, and the lowest number of isomorphism classes.

It is important to notice that, h2d achieved good compressions, despite the fact that it
contracted a high - often the highest - number of different isomorphism classes. This both denotes
the insignificance of the overhead cost of printing the motif dictionary alongside the actual
network, for large networks, as well as the fact that the compression rates with this heuristic
would be even better if the dictionary was not included.

A summary of the highest results for the above discussed metrics, are summarized on table
5.4 and table 5.5. In them, the relation between best and worst compressions, and most and
least number of motifs compressed, are evidenced.

Worthy of note is that heuristic h3d produced good results for the last two largest networks,
pgp and asoiaf. It, alongside h2d also led to the highest number of isomorphism classes contracted,
and the lowest frequency for the most compressed motif. Which is in line with a more diverse
compression approach; that is to say, more variety in the number of contracted network motifs
and less predominance of a high number of compressions for a single or a few contracted motifs.

Seeing as heuristic h3d gives preference to nodes that occur in multiple detected isomorphism
classes, it is also a good indicator of clustering. Furthermore, it might prove as an indicator of
the distribution of node centrality and the size of large connected components.

In conclusion and if nothing else, it is safe to derive that the summarization algorithm is able
to detect if a network has a high clustering coefficient or not, simply by observing what is the
heuristic that best compresses it.

64 Chapter 5. Testing and Analyzing Graph Compression

tie-breaking
heuristic

Compression
ratios

of unique
isomorphism

classes

of most
compressed

motif

Total # of
compressed

motifs

euroroad h1a2d
81.23% 11 236 458
81.23% 11 236 458

air control h1a2d 78.35% (69.45%) 14 364 799
78.35% (69.45%) 14 364 799

netsci h2d1a 57.80% 22 252 533
57.65% 21 252 535

pgp h2d3a 70.30% 8 3752 7288
68.34% 8 3681 7258

asoiaf h2d3d 73.33% (55.50%) 8 611 888
68.03% (51.49%) 8 569 824

Table 5.6: Results of applying a composite of two heuristics: a second as tiebreaker, after the
best one for each network. Top values for each network are the results for the composite

heuristic, while bottom values the ones for the simple one.

5.2.2 Further Experimentation and Scalability

It is natural to encounter ties when sorting any list. Applying the described heuristics to sort
the workload of compression candidates is no exception. As such, an experiment was performed
in order to determine if applying a second heuristic on top of a main one, in order to solve ties,
would improve the overall compression.

For each test network, the second best compressing heuristic was used as tiebreaker during
sorting comparisons. The results, expressed on table 5.6, shows that there is no improvement in
doing so.

In fact, in most cases the compression rate slightly worsened. The differences in compression,
when present and either way, are relatively negligible. With indicates that there is no strong
relation one side or another, whether it produces better, worst, or equal results. And, any small
non-consistent variance, seems therefore fortuitous.

At most, one can deduce that by using a second heuristic to break a tie, we may be forcing a
new ordering that, in the scope of the entire program execution, disrupts the efficacy of the main
sorting ever so slightly.

If two or more heuristics can ever be employed concomitantly, it must be done with a different
criteria, that allows giving precedence to a given sampling bias, rather than just solve ties.

5.2. Obtaining and Analyzing Results 65

Going back to tables 5.4 and 5.5, and reiterating what was said, a second major observation
is realizing that the juxtaposition of h2a and h2b shows the clear inverse trend between overall
compression and number of isomorphism classes. This is important, seeing that the two sort
approaches only differ in their ordering.

In fact, returning even further back to table 5.3, looking at the size of the most frequently
compressed motif for each heuristic, a pattern is apparent: that the size of the most frequently
compressed motif is only dictated by whether the ordering is ascending or descending.

Independently of sorting by motif frequency (h1a, h1d), number of edges (h2a, h2d), or nodes
occurrences in subgraphs (h3a, h3d), descending orders will always compress with more frequency
a motif of size five, while ascending orders one of size three.

This is self-evident, seeing as motifs of larger size tend to have more edges, have more
variations and therefore appear on more isomorphism classes, and include more nodes and
therefore have more chance of overlapping. This fact, has no bearing on the compression rate or
any other metric, as illustrated on table 5.3.

Two important distinctions need to be made on this point. The revolution network once again
proves to be an outlier and that a small bipartite network is not favored by the summarization
algorithm. And, that the pgp and asoiaf networks only go up to motifs of size 4.

This last point occurs, simply because no list of motifs of size five were provided to the
Summarize program. These networks are so large, that they contain millions of motifs of that
size. The simple plaintext file containing such motifs was approximately 20 GB and 90 GB, for
the pgp and asoiaf networks, respectively. Such big files could not fit into memory, so a buffered
reader and an external sorting method of splitting the large file into smaller fragments, and
externally merge sort them on storage had to be used.

Even so, due to the bottleneck of reading from and writing to disk, coupled with the fast
pace at which the file fragments grew in size, made the approach unpractical on the modest
machine used for testing. A few attempts were successfully made for the smaller network, where
one test took anything between one to three hours and used up nearly 100 GB of storage space.

For the larger network, asoiaf, with dozens of thousands of edges, the process had to be
stopped when there was no more space left on the SSD.

A question could be made whether to attempt to optimize the external sorting in terms of
read/write and merge sort, or whether to upgrade the working machine to a cluster of machines.
However, comparing the nearly identical results obtained on the few successful tests for the
pgp network, it was considered that the sane course of action was simply to entirely forego
compressing motifs of size five for those two networks.

This last point leads to the last exploratory analysis performed. In which all the possible
combinations of differently sized motifs were fed into the compression algorithm alongside the
network to be compressed. And the variances in compression were then compared.

66 Chapter 5. Testing and Analyzing Graph Compression

euroroad
3 4 5 3, 4 3, 5 4, 5 3, 4, 5

h1a 87.40% 78.86% 84.20% 80.83% 83.22% 79.49% 81.23%
h1d 89.01% 78.74% 88.31% 77.98% 87.69% 88.41% 87.73%
h2a 89.01% 78.26% 90.41% 89.15% 89.23% 78.48% 89.15%
h2d 87.40% 76.88% 84.56% 76.18% 83.95% 84.59% 84.07%
h3a 88.28% 77.70% 84.62% 88.62% 88.62% 79.02% 88.30%
h3d 88.86% 79.48% 92.23% 78.44% 91.16% 91.98% 91.26%

air control
3 4 5 3, 4 3, 5 4,5 3, 4, 5

h1a 85.32% 74.90% 80.31% 81.39% 79.75% 76.82% 78.35%
h1d 89.38% 78.73% 90.29% 78.43% 90.11% 90.07% 89.90%
h2a 89.38% 78.77% 90.06% 89.53% 89.61% 79.07% 89.53%
h2d 85.32% 73.33% 81.81% 72.99% 81.70% 81.90% 81.78%
h3a 89.09% 78.37% 88.96% 89.21% 89.12% 80.27% 89.13%
h3d 88.69% 78.82% 92.58% 78.38% 92.42% 92.65% 92.48%

netsci
3 4 5 3, 4 3, 5 4, 5 3, 4, 5

h1a 75.59% 66.83% 75.96% 72.29% 71.72% 68.99% 72.11%
h1d 82.15% 74.55% 79.94% 71.11% 74.76% 76.01% 72.59%
h2a 82.15% 74.99% 83.99% 82.21% 82.26% 76.64% 82.21%
h2d 75.59% 64.27% 64.94% 60.91% 59.67% 60.86% 57.65%
h3a 78.49% 69.40% 74.86% 78.52% 78.51% 70.39% 78.44%
h3d 78.29% 72.41% 81.39% 68.67% 75.23% 76.58% 73.25%

Table 5.7: Compression results of using all possible combinations of selecting differently sized
motifs. Values in bold highlight the best compression ratios for each heuristic.

For consistency of results, out of the pool of six initial test networks the aforementioned two
were not included since, as previously stated, any compression that involved motifs of size five
was unfeasible. The common outlier revolution was also excluded, for the obvious reasons of it
only figuring on these experimentations due to its deviant nature, in the first place.

Table 5.7 depicts all the compression ratios for all the experiments, and a pattern clearly
emerges.

5.2. Obtaining and Analyzing Results 67

There was little to no advantage in using all the motif sizes available, for the majority of
heuristics. Furthermore, decreasing orders show best results when using only motifs of size three
and four. While, increasing orders, showed the best results with using only motifs of size four.

There are only two instances where adding motifs of size five improve the final compression.
And only one of those two instances produce the overall best result amongst the rest - on the
netsci network.

Therefore, it seems plausible to say that the choice of heuristic is both more relevant as well
as more informative. And if the need for further optimization arises, then performing a batch of
compressions including motifs of increasing sizes can be performed.

Important to notice that if we reduce the maximum size of the motifs to be sampled for
the euroroad and air control networks - using only motifs of size three and four - then the best
summarizing heuristic becomes h2d as well, same as what is the case for the larger networks.
This heuristic ran for this combination of motifs, obtains even better compression results that
with h1a ran with motifs of all three possible sizes (size three, four, and five). This seems to
indicate that motif size and network size are strictly correlated in terms of compression efficacy.

The fact that better execution times can be achieved with smaller sized motifs, and these
generally produce the best results, strongly motivates the addition of larger sized motifs only
when deemed necessary. This addition is an exploratory one, seeing as it may or may not produce
better results in the end. So it should either be done because a maximum compression is strictly
necessary, or for networks for which the entire workload can be loaded into memory and therefore
the algorithm be run efficiently.

Overall, execution times were very fast, with pgp being the outlier due to being a single giant
connected component. For all other networks, each heuristic performance was under a minute.
The pgp network took at most nearly three minutes.

The plots of figures 5.7 and 5.8 illustrate this. Showing that heuristics h3a and h3d had the
worst performance of them all, while h1a, h1d, h2a, and h2d where mostly on par with each
other.

Results were also steady between different networks. That is to say, no one network performed
better on some heuristics, and worse on others, in comparison to another network. Borrowing
the expression, each network stuck to their execution time lane.

68 Chapter 5. Testing and Analyzing Graph Compression

Figure 5.7: Plot of the different execution times for the different heuristics across all networks.
Including curve fitting.

Figure 5.8: Logarithmic plot of the different execution times for the different heuristics across all
networks.

5.3. Relating Results to Network Metrics 69

Figure 5.9: Plot of the different execution times for all possible combinations of differently sized
motifs, for a sample network - netsci.

Finally, figure 5.9 shows execution for a single network across all possible variations of running
compression with a given set of differently sized motifs. It comes with no surprise, that providing
motifs of size five to the Summarize algorithm, severely impacts the execution time. This is
noticeable even on a network like netsci, where the worst run time was still less than five seconds.

Overall the algorithm is scalable for very large networks in terms of volume - since, clearly,
the number of edges is more relevant than that of nodes for time complexity, due to a larger
number of detected motifs. The major limitation being the sheer size of the workload for larger
networks, which can safely be bypassed if needed, by reducing the maximum size of the subgraphs
that are fed into the compression algorithm, with little to no impact on the overall compression.

5.3 Relating Results to Network Metrics

The effectiveness of a sorting heuristic is dependent of the network. Sorting by ascending motif
frequency produced the best compression for the euroroad and air control, these networks have a
clustering coefficient of 0.063 and 0.034, respectively.

For the larger networks netsci, pgp, and asoiaf ; the clustering coefficient is, in order, 0.693,
0.378, and 0.209. These networks’ coefficient is higher than that of the previous two by an entire
order of magnitude. This supports the notion that the higher the clustering coefficient the more
compression is achieved by prioritizing motifs with more edges.

70 Chapter 5. Testing and Analyzing Graph Compression

Which, in turn, supports the observation that contracting edges on highly dense networks
leads to the overall best results, while doing so for more sparse networks entail a loss in efficacy.
This is likely linked to the overlapping of multiple motifs on tightly knit clusters, that decreases
the need to fully describe a motif in lieu of a few additional edges not already included in other
motifs present within those clusters.

On the other hand, the size of the largest connected component (LCC) is directly related to
both the amount of compressed motifs and total execution time. Although it does not translate
into a clear determination for which heuristic achieves the best compression for a network, it
seems to indicate that the largest the connected component is, the less effective the compression.

This relation can be observed when comparing the size of the LCC and the total number of
compressed motifs with that network’s best compression heuristic.

The euroroad network has a large connected component with size 1,039 for a network of
size 1,174, with 458 compressed motifs. And the air control network an LCC of size 1,226
for a network of size the same size, and 799 compressed motifs. Both networks achieved best
compressions with the h1a heuristic. Both networks had a high number of compressed motifs, in
particular for their size. And, both networks exhibited a worse compression time for their size
as well - air control even managed to exhibit the second worst time, surpassing even the asoiaf
network.

The netsci network possesses an LCC of only 379 for a network of size 1,461, and 535
compressed motifs. pgp, being a snapshot of the largest connected component of a broader
network, had an LCC of 10,680 having size 10,680, which was the entire network size, and
achieved a number of 7258 compressed motifs. And, finally, the asoiaf network, also with a
matching LCC of size 796 for a network of size 796, presented 824 compressed motifs with the
best compression heuristic.

As stated, the difference in LCC size’s magnitude does not correlate to the difference in
magnitude for the achieved compression rates across all networks. But it does seem to indicate
why the netsci network achieved such good compression, maybe due to opposing features. Namely,
where the larger the volume of the network in relation to its size, the better the compression;
and, the larger the LCC, the worse the compression.

This could account as to why the largest networks, with high clustering coefficients and a
very high volume, achieved moderate compression despite there being a single giant connected
component. And, why the netsci network, with also a high number of edges for its size and high
clustering coefficient, but with lower LCC, achieved the best compression.

It could also account for the difference between the compression results of the netsci and air
control networks, which have a similar number of nodes and edges, but very disparate clustering
coefficient and sizes of LCC.

Compression seems to be independent of other key metrics such as degree distribution,

5.3. Relating Results to Network Metrics 71

diameter, and power law exponent. These metrics were either similar among them or, like in the
case of network diameter, varied but irrelevant to compression.

Unfortunately, correlating centralities with compression would entail a dedicated deeper study,
in order to compare which nodes were contracted, their original centralities, and that of the
contracted supernode.

Initial centralities could be computed for the entire network, and fetched from memory as the
contracted nodes are being added, so as to create a relation between compressed motifs and the
centralities of their original counterparts. Possibly, calculating final centralities for new nodes as
well, after the compression is finished.

That computation is not a part of the program on its current state.

Chapter 6

Conclusion

From a standpoint of learning more about the possibility of summarizing large networks, by
compressing their statistically significant motifs, it was possible to formulate a unique system for
describing graphs. The proposed method, is able to generate descriptions of the graph that are
not only shorter, but that simultaneously are able to convey meaning regarding the network.

The ultimate goal of being able to apply this approach in such a way as to minimize a graph’s
description length, while maximizing the amount of readily available information regarding its
properties, remains just that. A goal.

Graphs, despite appearing as a deceptively simple mathematical and abstract data structure,
can quickly become immensely complex. And not simply by essence of its size, but more so by
its inherent relational quality.

Being able to mine relevant substructures on a network - a computational demanding task by
itself - and, by doing so, at the same time reduce the amount of noise in it, that would make
further mining attempts easier, certainly presents itself as a worthwhile endeavour.

Unfortunately, the difficulty of ever achieving a complete, categorical, and feasible algorithm
of doing so, seems tantamount to that of brute-forcing the solution in the first place.

Several authors proposed unique solutions addressing this problem, with various degrees of
success. The more modest contribution of this work, managed to achieve what it set out to do
and was certain it could do. Albeit, not to the degree to which was hoped that could have been
done.

In a less roundabout way, the hypothesis that the proposed description for a graph, based
not solely on its vertices or edges but rather focusing on its subgraphs, would be a shorter one,
was shown to be true.

The amount of compression it achieved, although not groundbreaking, is still significant and
relevant when it comes to larger and complex networks. Which were the main focus of study to
begin with, and for which a description reduction to nearly half its original size was obtained,

73

74 Chapter 6. Conclusion

in terms of characters. A more modest degree of compression was achieved for smaller-sized
networks with less clustering, not surpassing a description reduction of thirty percent.

Of a group of three heuristic employed to sample the search space of overlapping subgraphs
on a network, one in particular was revealed to be promising, that prioritizes the compression
validation of motifs with a larger volume first. Further refinements made to this heuristic,
potentially over multi-layered compression that would allow to effectively combine another
method for something more than simply breaking sampling ties, could just be the way to move
forward.

6.1 Summarization Through Compression

Compression aside, despite existing a clear relation between the clustering coefficient of the
network and the compression effectiveness of the aforementioned heuristic, little else was
determined in regards to summarization.

The compressed networks contained information regarding compressed motifs. In that sense
alone that constitutes a summarization. Whether that summarization is representative or even
relevant to any network property is still to be determined.

The fact that the best compression was achieved for those instances where the least total
amount of network motifs were compressed while, reciprocally, having the highest variety of
different isomorphism classes, could be significant. It can signify that those better compressions
are in fact displaying a wider and more relevant summarization - less structures, meaning more
meaningful structures.

On the other hand, it can mean nothing at all, other than the fact that largest structures
were compressed first, allowing for the remaining structures on those clusters to be adequately
described by a few edges.

Grimness aside, the application of what can accurately be described as the first iteration of
its method, presented some substantial relevant information, in the sense that it can be used for
improving the algorithm towards a second iteration.

Only possible future work can tell whether a worthwhile summarization can be achieved, by
actively examining the nature of the structures being compressed while they are being so in
search of correlations between compression selection and feature importance. For this purpose,
the proposed subgraph data structure implementation can help, seeing as it achieves a fast
inclusion of supernodes on a network, without destroying the edge connections on the original
network.

6.2. Future Work 75

6.2 Future Work

Whatever the case, the results of the application of the proposed compression method, can and
should be use in its improvement. Such as in the enhancement of its heuristics.

Immediate future work, could be expanding the sampling criterion of the most promising
heuristic. Maybe even composing it alongside another. A feasible implementation of a multi-
layered compression, taking advantage of the upstream and downstream quality of the nodes on
the proposed graph, could be attempted.

One that does not simply brute-force compressions for all candidate subgraphs to maximize
over-lapping, which leads to the folding problem described on section 4.2.3.

On the subject of a shorter description, it was ultimately shown that the trade-off of having
a larger motif dictionary for a smaller number of compressed motifs, leads to better overall
compression.

A possible way of exploiting this, could be expanding the definitions of detected subgraphs
to include near-definitions of them, which would constitute a composition of those structures
over overlapping motifs.

Still in terms of description length and achieving a more refined one, an obvious and
straightforward first step is to include the motif dictionary on a separate file that could be
used for multiple different networks. Another, might be to find a short way to describe the
combination of multiple compressed motifs with overlapping nodes into a new motif description.

And, while counting characters as a measurement of MDL is a well-defined approach, since
the original goal was to not deviate from the original plaintext description, a better rate of
compression can be achieved by encoding the compressed network in another format entirely.
Though this would require that any attempt to read the compressed network be aware of its
encoding.

Finally, the goal of summarizing a network remains a pipe dream. The proposed algorithm
achieved reasonable compressions for what was an exploratory and conceptual experiment, and
the description is more informative that that of the original network. Still, there is no definitive
way at this point to determine if the information summarized through compression is meaningful
in any way.

Further testing is required on a multitude of networks to ascertain if a pattern exists between
network metrics and the nature of the motifs summarized by the proposed compression.

Bibliography

[1] 10th dimacs implementation challenge - graph partitioning and graph clustering.

[2] Research portal: Icahn school of medicine.

[3] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews
of modern physics, 74(1):47, 2002.

[4] Alex Arenas. Alex arenas website.

[5] Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s
functional organization. Nature reviews genetics, 5(2):101–113, 2004.

[6] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an open source
software for exploring and manipulating networks. In Proceedings of the international AAAI
conference on web and social media, volume 3, pages 361–362, 2009.

[7] Edward A Bender and S Gill Williamson. Foundations of combinatorics with applications.
Courier Corporation, 2013.

[8] Peter Bloem and Steven de Rooij. A tutorial on mdl hypothesis testing for graph analysis.
arXiv preprint arXiv:1810.13163, 2018.

[9] Peter Bloem and Steven de Rooij. Large-scale network motif analysis using compression.
Data Mining and Knowledge Discovery, 34(5):1421–1453, 2020.

[10] Stephen P Borgatti, Martin G Everett, and Jeffrey C Johnson. Analyzing social networks.
Sage, 2018.

[11] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature reviews neuroscience, 10(3):186–198, 2009.

[12] Corybrunson. Corybrunson/triadic: Replicable code for "triadic analysis of affiliation
networks".

[13] Luciano da Fontoura Costa, Osvaldo N Oliveira Jr, Gonzalo Travieso, Francisco Aparecido
Rodrigues, Paulino Ribeiro Villas Boas, Lucas Antiqueira, Matheus Palhares Viana, and
Luis Enrique Correa Rocha. Analyzing and modeling real-world phenomena with complex
networks: a survey of applications. Advances in Physics, 60(3):329–412, 2011.

77

https://www.cc.gatech.edu/dimacs10/archive/clustering.shtml
https://icahn.mssm.edu/research/portal?tab=Labs
https://deim.urv.cat/~alexandre.arenas/data/welcome.htm
https://github.com/corybrunson/triadic
https://github.com/corybrunson/triadic

78 Bibliography

[14] Ruijin Du, Ya Wang, Gaogao Dong, Lixin Tian, Yixiao Liu, Minggang Wang, and Guochang
Fang. A complex network perspective on interrelations and evolution features of international
oil trade, 2002–2013. Applied Energy, 196:142–151, 2017.

[15] Tim Dwyer, Nathalie Henry Riche, Kim Marriott, and Christopher Mears. Edge compression
techniques for visualization of dense directed graphs. IEEE transactions on visualization
and computer graphics, 19(12):2596–2605, 2013.

[16] Tomás Feder and Rajeev Motwani. Clique partitions, graph compression and speeding-
up algorithms. In Proceedings of the twenty-third annual ACM symposium on Theory of
computing, pages 123–133, 1991.

[17] Blake Hendrickson, Devan Rosen, and R Kelly Aune. An analysis of friendship networks,
social connectedness, homesickness, and satisfaction levels of international students.
International journal of intercultural relations, 35(3):281–295, 2011.

[18] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):
1746–1758, 2004.

[19] Donald E Knuth. The Stanford GraphBase: a platform for combinatorial computing. ACM,
1993.

[20] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. Vog: Summarizing and
understanding large graphs. In Proceedings of the 2014 SIAM international conference on
data mining, pages 91–99. SIAM, 2014.

[21] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
international conference on world wide web, pages 1343–1350, 2013.

[22] Yongsub Lim, U Kang, and Christos Faloutsos. Slashburn: Graph compression and mining
beyond caveman communities. IEEE Transactions on Knowledge and Data Engineering, 26
(12):3077–3089, 2014.

[23] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods
and applications: A survey. ACM computing surveys (CSUR), 51(3):1–34, 2018.

[24] Mathbeveridge. Mathbeveridge/asoiaf: Character interaction networks for george r. r.
martin’s "a song of ice and fire" saga.

[25] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri
Alon. Network motifs: simple building blocks of complex networks. Science, 298(5594):
824–827, 2002.

[26] Matteo Pellegrini, David Haynor, and Jason M Johnson. Protein interaction networks.
Expert review of proteomics, 1(2):239–249, 2004.

https://github.com/mathbeveridge/asoiaf
https://github.com/mathbeveridge/asoiaf

Bibliography 79

[27] Antonio Perianes-Rodríguez, Carlos Olmeda-Gómez, and Félix Moya-Anegón. Detecting,
identifying and visualizing research groups in co-authorship networks. Scientometrics, 82(2):
307–319, 2010.

[28] Géraldine Pflieger and Céline Rozenblat. Introduction. urban networks and network theory:
the city as the connector of multiple networks, 2010.

[29] Pedro Ribeiro and Fernando Silva. G-tries: an efficient data structure for discovering network
motifs. In Proceedings of the 2010 ACM symposium on applied computing, pages 1559–1566,
2010.

[30] Pedro Ribeiro and Fernando Silva. G-tries: a data structure for storing and finding subgraphs.
Data Mining and Knowledge Discovery, 28(2):337–377, 2014.

[31] Falk Schreiber and Henning Schwöbbermeyer. Frequency concepts and pattern detection for
the analysis of motifs in networks. In Transactions on computational systems biology III,
pages 89–104. Springer, 2005.

[32] Frank Schweitzer, Giorgio Fagiolo, Didier Sornette, Fernando Vega-Redondo, Alessandro
Vespignani, and Douglas R White. Economic networks: The new challenges. science, 325
(5939):422–425, 2009.

[33] Zhao Tian, Limin Jia, Honghui Dong, Fei Su, and Zundong Zhang. Analysis of urban road
traffic network based on complex network. Procedia engineering, 137:537–546, 2016.

[34] Alessandro Vespignani. Twenty years of network science. Nature, 558(7711):528–530, 2018.

[35] Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM transactions on
computational biology and bioinformatics, 3(4):347–359, 2006.

[36] Sarah White, Tobin Yehle, Hugo Serrano, Marcos Oliveira, and Ronaldo Menezes. The
spatial structure of crime in urban environments. In International Conference on Social
Informatics, pages 102–111. Springer, 2014.

[37] M Wiliński, A Sienkiewicz, Tomasz Gubiec, R Kutner, and ZR Struzik. Structural and
topological phase transitions on the german stock exchange. Physica A: Statistical Mechanics
and its Applications, 392(23):5963–5973, 2013.

	Abstract
	Contents
	List of Tables
	List of Figures
	Listings
	1 Introduction
	1.1 Goals and Motivation
	1.2 Thesis Organization

	2 Notions on Graph Theory
	2.1 Graph Definition and Terminology
	2.1.1 Fundamental Notions
	2.1.2 Graph Characterisation

	2.2 Graphs as Abstract Data Types
	2.2.1 Implementation and Operations
	2.2.2 Adjacency Lists Versus Adjacency Matrices

	2.3 Subgraphs and Network Motifs
	2.3.1 Graph Isomorphism
	2.3.2 Subgraphs
	2.3.3 Network Motif

	3 Related Work
	3.1 Graph Compression
	3.1.1 SlashBurn
	3.1.2 Vocabulary of Graphs

	3.2 Quick Discovery of Network Motifs
	3.2.1 G-Trie Definition
	3.2.2 G-Trie Creation
	3.2.3 Counting Subgraph Frequencies

	4 Design & Development
	4.1 Graph description by Network Motif Compression
	4.2 Building a Graph for Compression
	4.2.1 Handling Edge Deletion and Update
	4.2.2 Workload Sorting and Contraction Validation
	4.2.3 The Folding Problem
	4.2.4 Compressing the Graph

	4.3 Restoring the Uncompressed Graph
	4.3.1 The Execution Pipeline

	5 Testing and Analyzing Graph Compression
	5.1 Test Case Networks
	5.1.1 American Revolution
	5.1.2 A Song of Ice and Fire
	5.1.3 Euroroads
	5.1.4 Air Traffic Control
	5.1.5 Network Science
	5.1.6 Pretty Good Privacy

	5.2 Obtaining and Analyzing Results
	5.2.1 Overall Compression Ratios
	5.2.2 Further Experimentation and Scalability

	5.3 Relating Results to Network Metrics

	6 Conclusion
	6.1 Summarization Through Compression
	6.2 Future Work

	Bibliography

