844 research outputs found

    Measuring reproducibility of high-throughput experiments

    Full text link
    Reproducibility is essential to reliable scientific discovery in high-throughput experiments. In this work we propose a unified approach to measure the reproducibility of findings identified from replicate experiments and identify putative discoveries using reproducibility. Unlike the usual scalar measures of reproducibility, our approach creates a curve, which quantitatively assesses when the findings are no longer consistent across replicates. Our curve is fitted by a copula mixture model, from which we derive a quantitative reproducibility score, which we call the "irreproducible discovery rate" (IDR) analogous to the FDR. This score can be computed at each set of paired replicate ranks and permits the principled setting of thresholds both for assessing reproducibility and combining replicates. Since our approach permits an arbitrary scale for each replicate, it provides useful descriptive measures in a wide variety of situations to be explored. We study the performance of the algorithm using simulations and give a heuristic analysis of its theoretical properties. We demonstrate the effectiveness of our method in a ChIP-seq experiment.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS466 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Motif Discovery with Compact Approaches - Design and Applications

    Get PDF
    In the post-genomic era, the ability to predict the behavior, the function, or the structure of biological entities, as well as interactions among them, plays a fundamental role in the discovery of information to help biologists to explain biological mechanisms. In this context, appropriate characterization of the structures under analysis, and the exploitation of combinatorial properties of sequences, are crucial steps towards the development of efficient algorithms and data structures to be able to perform the analysis of biological sequences. Similarity is a fundamental concept in Biology. Several functional and structural properties, and evolutionary mechanisms, can be predicted comparing new elements with already classified elements, or comparing elements with a similar structure of function to infer the common mechanism that is at the basis of the observed similar behavior. Such elements are commonly called motifs. Comparison-based methods for sequence analysis find their application in several biological contexts, such as identification of transcription factor binding sites, finding structural and functional similarities in proteins, and phylogeny. Therefore the development of adequate methodologies for motif discovery is of paramount interests for several fields in computational biology. In motif discovery in biosequences, it is common to assume that statistically significant candidates are those that are likely to hide some biologically significant property. For this purpose all the possible candidates are ranked according to some statistics on words (frequency, over/under representation, etc.). Then they are presented in output for further inspection by a biologist, who identifies the most promising subsequences, and tests them in laboratory to confirm their biological significance. Therefore, when designing algorithms for motif discovery, besides obviously aim at time and space efficiency, particular attention should be devoted to the output representation. In fact, even considering fixed length strings, the size of the candidate set become exponential if exhaustive enumeration is applied. This is already true when only exact matches are considered as candidate occurrences, and worsen if some kind of variability (for example a fixed number of mismatches is allowed). Alternatively, heuristics could be used, however without the warranty of finding the optimal solution. Computational power of nowadays computers can partially reduce these effects, in particular for short length candidates. However, if the size of the output is too big to be analyzed by human inspection the risk is to provide biologists with very fast, but useless tools. A possible solution relies on compact approaches. Compact approaches are based on the partition of the search space into classes. The classes must be designed in such a way that the score used to rank the candidates has a monotone behavior within each class. This allows the identification of a representative of each class, which is the element with the highest score. Consequently, it suffices to compute, and report in output, the score only for the representatives. In fact, we are guaranteed that for each element that has not been ranked there is another one (the representative of the class it belongs to) that is at least equally significant. The final user can then be presented with an output that has the size of the partition, rather than the size of the candidate space, with obvious advantages for the human-based analysis that follows the computer-based filtering of the pattern discovery algorithm. Compact approaches find applications both in searching and discovery frameworks. They can also be applied to several motif models: exact patterns, patterns with given mismatch distribution, patterns with unknown mismatch distribution, profiles (i.e. matrices), and under both i.i.d. and Markov distributions. The purpose of this chapter is to describe the basis of compact approaches, to provide the readers with the conceptual tools for applying compact approaches to the design of their algorithm for biosequence analysis. Moreover, examples of compact approaches that have been successfully developed for several motif models (e.g. exact words, co-occurrences, words with mismatches, etc) will be explained, and experimental results to discuss their power will be presented

    Efficient exact motif discovery

    Get PDF
    Motivation: The motif discovery problem consists of finding over-represented patterns in a collection of biosequences. It is one of the classical sequence analysis problems, but still has not been satisfactorily solved in an exact and efficient manner. This is partly due to the large number of possibilities of defining the motif search space and the notion of over-representation. Even for well-defined formalizations, the problem is frequently solved in an ad hoc manner with heuristics that do not guarantee to find the best motif

    Forest Garrote

    Full text link
    Variable selection for high-dimensional linear models has received a lot of attention lately, mostly in the context of l1-regularization. Part of the attraction is the variable selection effect: parsimonious models are obtained, which are very suitable for interpretation. In terms of predictive power, however, these regularized linear models are often slightly inferior to machine learning procedures like tree ensembles. Tree ensembles, on the other hand, lack usually a formal way of variable selection and are difficult to visualize. A Garrote-style convex penalty for trees ensembles, in particular Random Forests, is proposed. The penalty selects functional groups of nodes in the trees. These could be as simple as monotone functions of individual predictor variables. This yields a parsimonious function fit, which lends itself easily to visualization and interpretation. The predictive power is maintained at least at the same level as the original tree ensemble. A key feature of the method is that, once a tree ensemble is fitted, no further tuning parameter needs to be selected. The empirical performance is demonstrated on a wide array of datasets.Comment: 16 pages, 3 figure

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Efficient algorithms for the discovery of gapped factors

    Get PDF
    Background: The discovery of surprisingly frequent patterns is of paramount interest in bioinformatics and computational biology. Among the patterns considered, those consisting of pairs of solid words that co-occur within a prescribed maximum distance-or gapped factors- emerge in a variety of contexts of DNA and protein sequence analysis. A few algorithms and tools have been developed in connection with specific formulations of the problem, however, none can handle comprehensively each of the multiple ways in which the distance between the two terms in a pair may be defined. Results: This paper presents efficient algorithms and tools for the extraction of all pairs of words up to an arbitrarily large length that co-occur surprisingly often in close proximity within a sequence. Whereas the number of such pairs in a sequence of n characters can be Θ(n 4), it is shown that an exhaustive discovery process can be carried out in O(n 2)orO(n 3), depending on the way distance is measured. This is made possible by a prudent combination of properties of pattern maximality and monotonicity of scores, which lead to reduce the number of word pairs to be weighed explicitly, while still producing also the scores attained by any of the pairs not explicitly considered. We applied our approach to the discovery of spaced dyads in DNA sequences. Conclusions: Experiments on biological datasets prove that the method is effective and much faster than exhaustive enumeration of candidate patterns. Software is available freely by academic users via the web interfac

    Bounded Coordinate-Descent for Biological Sequence Classification in High Dimensional Predictor Space

    Full text link
    We present a framework for discriminative sequence classification where the learner works directly in the high dimensional predictor space of all subsequences in the training set. This is possible by employing a new coordinate-descent algorithm coupled with bounding the magnitude of the gradient for selecting discriminative subsequences fast. We characterize the loss functions for which our generic learning algorithm can be applied and present concrete implementations for logistic regression (binomial log-likelihood loss) and support vector machines (squared hinge loss). Application of our algorithm to protein remote homology detection and remote fold recognition results in performance comparable to that of state-of-the-art methods (e.g., kernel support vector machines). Unlike state-of-the-art classifiers, the resulting classification models are simply lists of weighted discriminative subsequences and can thus be interpreted and related to the biological problem

    Detecting seeded motifs in DNA sequences

    Get PDF
    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at

    How threshold behaviour affects the use of subgraphs for network comparison

    Get PDF
    Motivation: A wealth of protein–protein interaction (PPI) data has recently become available. These data are organized as PPI networks and an efficient and biologically meaningful method to compare such PPI networks is needed. As a first step, we would like to compare observed networks to established network models, under the aspect of small subgraph counts, as these are conjectured to relate to functional modules in the PPI network. We employ the software tool GraphCrunch with the Graphlet Degree Distribution Agreement (GDDA) score to examine the use of such counts for network comparison
    • 

    corecore