184 research outputs found

    Linking combinatorial and classical dynamics : Conley index and Morse decompositions

    Get PDF
    We prove that every combinatorial dynamical system in the sense of Forman, defined on a family of simplices of a simplicial complex, gives rise to a multivalued dynamical system F on the geometric realization of the simplicial complex. Moreover, F may be chosen in such a way that the isolated invariant sets, Conley indices, Morse decompositions and Conley–Morse graphs of the combinatorial vector field give rise to isomorphic objects in the multivalued map case

    Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems

    Get PDF
    In this paper, we first prove that the property of being a gradientlike general dynamical system and the existence of a Morse decomposition are equivalent. Next, the stability of gradient-like general dynamical systems is analyzed. In particular, we show that a gradient-like general dynamical system is stable under perturbations, and that Morse sets are upper semicontinuous with respect to perturbations. Moreover, we prove that any solution of perturbed general dynamical systems should be close to some Morse set of the unperturbed gradient-like general dynamical system. We do not assume local compactness for the metric phase space X, unlike previous results in the literature. Finally, we extend the Morse decomposition theory of single-valued nonautonomous dynamical systems to the multi-valued case, without imposing any compactness of the parameter spaces

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function

    Conley-Morse-Forman theory for combinatorial multivector fields on Lefschetz complexes

    Get PDF
    We introduce combinatorial multivector fields, associate with them multivalued dynamics and study their topological features. Our combinatorial multivector fields generalize combinatorial vector fields of Forman. We define isolated invariant sets, Conley index, attractors, repellers and Morse decompositions. We provide a topological characterization of attractors and repellers and prove Morse inequalities. The generalization aims at algorithmic analysis of dynamical systems through combinatorialization of flows given by differential equations and through sampling dynamics in physical and numerical experiments. We provide a prototype algorithm for such applications
    corecore