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Abstract. In this paper, we first prove that the property of being a gradient-

like general dynamical system and the existence of a Morse decomposition

are equivalent. Next, the stability of gradient-like general dynamical systems
is analyzed. In particular, we show that a gradient-like general dynamical

system is stable under perturbations, and that Morse sets are upper semi-

continuous with respect to perturbations. Moreover, we prove that any solution
of perturbed general dynamical systems should be close to some Morse set of

the unperturbed gradient-like general dynamical system. We do not assume

local compactness for the metric phase space X, unlike previous results in the
literature. Finally, we extend the Morse decomposition theory of single-valued

nonautonomous dynamical systems to the multi-valued case, without imposing

any compactness of the parameter spaces.

1. Introduction. The theory of Morse decompositions for autonomous and nonau-
tonomous dynamical systems plays an important role in the theory of dynamical
systems; see, for instance [2, 4, 6, 15, 12] and the references therein. Morse de-
compositions in the set-valued context have first been introduced by R. McGehee
in the 1990’s [14]. In recent years, there is an increasing interest in the study of
Morse decompositions for set-valued dynamical systems. The Morse decomposition
theory and the upper semi-continuity of Morse decompositions of attractors for
general dynamical systems were established in [12]. Then the results in [12] were
extended to periodic and nonautonomous general dynamical systems [16, 17]. For
gradient multi-valued semiflows, the existence of a Lyapunov function, the property
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of being a dynamically gradient multi-valued semiflow and the existence of a Morse
decomposition have been proved to be equivalent in [7, 8]. In this paper our aims
here are the following ones.

First, we prove that the property of being a gradient-like general dynamical
system and the existence of a Morse decomposition are equivalent. The results are
similar to the corresponding ones in [7]. However, our definition of gradient-like
general dynamical system imposes weaker conditions than the ones previously used
in the literature for set-valued dynamical systems. For this reason and although
the proofs follow the same lines of the single-valued case, we prefer to include the
proofs or our results stated in this paper just for completeness.

Secondly, we are interested in the stability of gradient-like general dynamical
systems. In particular, we show that a gradient-like general dynamical system
is stable under perturbations, and that Morse sets are upper semi-continuous with
respect to perturbations. Moreover, we prove that any solution of perturbed general
dynamical systems should be close to some Morse set of the unperturbed gradient-
like general dynamical system. The stability of Morse decompositions of attractors
in a complete locally compact metric space has been studied in [12]. It is worth
mentioning that here we do not assume the local compactness for the metric space
X, and the proofs here are much more simpler and direct.

Finally, we extend the Morse decomposition theory of single-valued nonautono-
mous dynamical systems to the multi-valued case. We borrow some ideas from [2]
for nonautonomous Morse decompositions of single-valued gradient-like processes.
For multi-valued nonautonomous general dynamical systems with compact param-
eter spaces, the Morse decomposition theory was established in [17]. Here we use
the concept of multi-valued processes to describe multi-valued nonautonomous dy-
namical systems, so the compactness of parameter spaces is not assumed.

2. Morse decomposition for gradient-like GDSs. Let X be a metric space
with metric d(·, ·). For any nonempty subsets A and B of X, define the Hausdorff
semi-distance and Hausdorff distance, respectively, as

H∗X(A, B) = sup
a∈A

d(a, B),

and

HX(A, B) = max{H∗X(A, B), H∗X(B,A)},
where d(a, B) = infb∈B d(a, b). Given a subset A ⊂ X, the ε-neighborhood of A is
the set Oε(A) := {x ∈ X : d(x, A) < ε}.

Definition 2.1. [10] A set-valued mapping G : R+×X → 2X with nonempty closed
images is said to be a general dynamical system (GDS in short), if the following
axioms hold:

(1) Semigroup property:

G(0, x) = {x}, G(t, G(s, x)) = G(t+ s, x), ∀x ∈ X, s, t ∈ R+;

(2) G(t, x) is continuous in t for each fixed x in the sense of Hausdorff distance;
(3) G(t, x) is upper semi-continuous in x uniformly in t on any compact interval.

For a GDS G(t, x), we will simply write G(t, x) as G(t)x. As usual, we may also
drop x from G(t)x and use the notation G(t) or {G(t)} to denote G(t, x).
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Definition 2.2. A subset A of X is said to be positively invariant (resp. negatively
invariant, invariant), if

G(t)A ⊂ A (resp. G(t)A ⊃ A, G(t)A = A) for all t > 0.

In this section we will always assume that {G(t)} is a GDS in X. Moreover, we
assume that {G(t)} is asymptotically upper-semicompact, that is, {G(t)} satisfies
the following assumption:

(AC) Any sequence yn ∈ G(tn)xn possesses a convergent subsequence in X when-

ever tn
n→∞−−−−→∞, xn ∈ X and ∪n≥1G([0, tn])xn is bounded.

Definition 2.3. Given two subsets A, B of X, we say that A attracts B under the
action of the GDS {G(t)} if limt→∞H∗X(G(t)B, A) = 0, and we say that A absorbs
B under the action of {G(t)} if there is a tB > 0 such that G(t)B ⊂ A for all t > tB .

Let A be a subset of X. The uniform attraction region Ωu(A) of A is defined as:
x ∈ Ωu(A) if and only if A attracts a neighborhood U of x.

Definition 2.4. A subset A of X is said to be a global attractor for a GDS {G(t)}
if it is compact, invariant under the action of {G(t)}, and for every bounded subset
B of X we have that A attracts B under the action of {G(t)}.

Definition 2.5. A global solution for a GDS {G(t)} is a continuous function ξ :
R → X with the property that ξ(t + s) ∈ G(t)ξ(s) for all s ∈ R and t ∈ R+. We
say that ξ : R→ X is a global solution through x ∈ X if it is a global solution with
ξ(0) = x.

Proposition 2.6. Let xn be a bounded sequence of X, and for any sequence τn
n→∞−−−−→

∞, let ξn(·) : R→ X be a sequence of global solutions with

ξn(t) ∈ G(τn + t)xn, t ∈ (−τn,∞).

Then there is a subsequence of ξn that converges to a global solution ξ of {G(t)}
uniformly on any compact interval.

Proof. Since {G(t)} is asymptotically upper-semicompact, then for any fixed t > 0,
there is a subsequence which we again denote by {ξn(t)} and yt ∈ X such that

ξn(t)
n→∞−−−−→ yt. Write ξ(t) = yt for all t > 0. Note that

d(ξ(t), G(t)ξ(0)) 6 d(ξ(t), ξn(t)) + d(ξn(t), G(t)ξn(0)) +H∗X(G(t)ξn(0), G(t)ξ(0)),

and ξn(t) ∈ G(t)ξn(0). Then it follows from the upper semi-continuity of G(t)x that
ξ(t) ∈ G(t)ξ(0) for all t > 0. Proceeding similarly, for any fixed t ∈ [−1, 0], there is a
subsequence of {ξn(t)} (still denoted by {ξn(t)}) that converges to yt. Let ξ(t) = yt
for all t ∈ [−1, 0]. Then we obtain that ξ(0) ∈ G(1)ξ(−1) and ξ(t) ∈ G(t+ 1)ξ(−1)
for all t > −1. Applying the above procedure several times we can construct
ξ(t) ∈ G(t + m)ξ(−m) for all t > −m. Letting m → ∞, we have a global solution
ξ(t) of the GDS {G(t)}, and for any fixed t ∈ R, we can find a subsequence, which we

again denote by {ξn(t)}, such that ξn(t)
n→∞−−−−→ ξ(t). Furthermore, using a diagonal

method one can choose a subsequence of {ξn(·)} (again denoted by {ξn(·)}) such

that ξn(t)
n→∞−−−−→ ξ(t) for all rational numbers t ∈ Q.

It remains to prove that ξn(t)
n→∞−−−−→ ξ(t) uniformly on any compact interval

[T0, T1]. Without loss of generality, we assume that T1 ∈ Q. Assuming the opposite,



4 Y. WANG AND T. CARABALLO

there would exist ε0 > 0, some subsequence {ξnj (·)} and corresponding values
tj ∈ [T0, T1] (j = 1, 2, 3, · · · ) such that

|ξnj (tj)− ξ(tj)| > ε0, ∀j ∈ N. (1)

By the asymptotically upper-semicompactness of {G(t)}, there is a subsequence of
{ξnj (tj)} (relabeled by {ξnj (tj)}) such that

ξnj (tj)
j→∞−−−→ y. (2)

Without loss of generality, we assume that tj
j→∞−−−→ t0 ∈ [T0, T1]. Then (1)-(2) and

the continuity of the global solution t 7→ ξ(t) imply that

|y − ξ(t0)| > ε0. (3)

If t0 < T1, take any fixed rational value τ , t0 < τ 6 T1; if t0 = T1, take τ = T1.
Disregarding a finite number of terms, it may be assumed that tj < τ . Since
ξnj (τ) ∈ G(τ − tj)ξnj (tj) and G(t)x is upper semi-continuous in (t, x), we have that

d(ξ(τ), G(τ − t0)y) 6 d(ξ(τ), ξnj (τ)) + d(ξnj (τ), G(τ − tj)ξnj (tj))
+H∗X(G(τ − tj)ξnj (tj), G(τ − t0)y)

j→∞−−−→ 0,

and thus ξ(τ) ∈ G(τ − t0)y. Therefore,

ξ(t0) = lim
τ→t0

ξ(τ) = lim
τ→t0

G(τ − t0)y = y,

which contradicts (3). The proof is therefore complete. �

Let A ⊂ X. The ω-limit set ω(A) of A is defined as

ω(A) := {y ∈ X : ∃tn →∞ and yn ∈ G(tn)A such that yn → y}.
For a global solution ξ of {G(t)}, the ω-limit set ω(γ) (resp. α-limit set α(γ)) of

γ is defined by

ω(ξ)(resp. α(ξ)) = {x ∈ X : ∃tn → +∞ (resp. −∞) such that ξ(tn)→ x}.
A set M is said to be weakly invariant, if for any x ∈M , there is a global solution

ξ through x with ξ(R) ⊂M .
Note that if M is weakly invariant, then M is negatively invariant.

Proposition 2.7. [11] Let A be a nonempty subset of X, and let ξ be a global
solution. Then

(1) ω(A), ω(ξ) (resp. α(ξ)) are nonempty compact and weakly invariant sets;
(2) ω(A) attracts A, and

lim
t→∞

d(ξ(t), ω(ξ)) = 0 (resp. lim
t→−∞

d(ξ(t), α(ξ)) = 0).

Next we introduce the concept of gradient-like GDSs as an extension of the
corresponding one in the single-valued context (see [1] for the definition of gradient-
like semigroups). It is worth mentioning that the previous definitions for gradient-
like systems in the set-valued framework assumed a stronger condition (see, e.g.
Definition 1 in [7]). First, we need the definition of isolated weakly invariant set.

Definition 2.8. Let {G(t)} be a GDS in X. We say that a weakly invariant set
Ξ ⊂ X for the GDS {G(t)} is an isolated weakly invariant set if there is an ε-
neighborhood Oε(Ξ) of Ξ such that if ξ is a global solution contained in Oε(Ξ),
then ξ(R) ⊂ Ξ.
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A disjoint family of isolated weakly invariant sets is a family {Ξ1, . . . ,Ξn} of
isolated weakly invariant sets with the property that, for some ε > 0,

Oε(Ξi) ∩ Oε(Ξj) = ∅, 1 6 i < j 6 n.

Definition 2.9. Let {G(t)} be a GDS which possesses a disjoint family of isolated
weakly invariant sets Ξ = {Ξ1, . . . ,Ξn}. A homoclinic structure associated with
Ξ is a subset {Ξk1 , . . . ,Ξkp} of Ξ (p 6 n) together with a set of global solutions
{ξ1, . . . , ξp} such that

Ξkj
t→−∞←−−−− ξj(t)

t→∞−−−→ Ξkj+1 , 1 6 j 6 p

where Ξkp+1 := Ξk1 and, if p = 1, ξ1(R) ( Ξk1 , the notations Ξkj
t→−∞←−−−− ξj(t) and

ξj(t)
t→∞−−−→ Ξkj+1

mean that limt→−∞ d(ξj(t), Ξkj ) = 0 and limt→∞ d(ξj(t), Ξkj+1
) =

0, respectively.

Definition 2.10. Let {G(t)} be a GDS with a global attractor A and a disjoint
family of isolated weakly invariant sets Ξ = {Ξ1, . . . ,Ξn}. The GDS {G(t)} is said
to be gradient-like relative to Ξ if

(1) for any global solution ξ : R→ A there are 1 6 i, j 6 n such that

Ξi
t→−∞←−−−− ξ(t) t→∞−−−→ Ξj ,

(2) there is no homoclinic structure associated with Ξ.

Now we will introduce the notion of a Morse decomposition for an attractor A
of a GDS {G(t)}. We start with the notion of attractor-repeller pairs.

Definition 2.11. Let {G(t)} be a GDS with a global attractor A. We say that a
nonempty compact subset A of A is a local attractor for {G(t)} in A if there is an
ε > 0 such that ω(Oε(A) ∩ A) = A. It is a local attractor in X if there is an ε > 0
such that ω(Oε(A)) = A.

The repeller A∗ associated with a local attractor A in A is the set defined by

A∗ := {x ∈ A : H∗X(G(t)x, A) 9 0 as t→∞}.
The pair (A,A∗) is called an attractor-repeller pair for {G(t)} on A.

Proposition 2.12. [7, 12] Let A be a local attractor of {G(t)} in A. Then

(1) A is compact and invariant;
(2) A∗ is compact and weakly invariant.

Remark 2.13. For single-valued dynamical systems (see [6, 15]), the repeller A∗

is defined by

A∗ := {x ∈ A : ω(x) ∩A = ∅}.
Note that if A is a local attractor, then A∗ is compact and invariant.

For the multi-valued case, the repeller A∗ is defined (see [12]) by

A∗ := {x ∈ A : ω(x)\A 6= ∅}.
It is worth noticing that

ω(x)\A = ∅ ⇐⇒ ω(x) ⊂ A⇐⇒ H∗X(G(t)x, A)
t→∞−−−→ 0.

Then, it is easy to see that the two definitions of repeller are equivalent, i.e.,

A∗ := {x ∈ A : H∗X(G(t)x, A) 9 0 as t→∞} = {x ∈ A : ω(x)\A 6= ∅}.
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Definition 2.14. Given an increasing family ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A, of
n+ 1 local attractors, for j = 1, . . . , n, define Ξj := Aj ∩A∗j−1. The ordered n-upla
Ξ := {Ξ1,Ξ2, . . . ,Ξn} is called a Morse decomposition for A.

We will show that local attraction inside A is equivalent to local attraction in the
whole space X. First, we prove the following result which plays a crucial role in the
proof of Lemma 2.16. The similar result in the context of complete locally compact
metric spaces can be found in [12], and also in [7] for multivalued semiflows.

Lemma 2.15. Let {G(t)} be a GDS in X with a global attractor A. If A ⊂ A is a
compact invariant set for {G(t)} and there is an ε > 0 such that A attracts Oε(A)∩A
then, for each δ ∈ (0, ε) there is a δ′ ∈ (0, δ) such that γ+(Oδ′(A)) ⊂ Oδ(A), where
γ+(Oδ′(A)) =

⋃
x∈Oδ′ (A)

⋃
t>0G(t)x.

Proof. Arguing by contradiction, let us assume the opposite. Then, there exists
0 < δ < ε such that for any δ′ ∈ (0, δ), there exist an xδ′ ∈ Oδ′(A) and a tδ′ > 0

such that G(tδ′)xδ′\Oδ(A) 6= ∅. Thus there are x ∈ A, X 3 xn
n→∞−−−−→ x and tn > 0

such that G(tn)xn\Oδ(A) 6= ∅.
Note that there are solutions ξn defined on [0, tn] such that ξn(0) = xn and

d(ξn(tn), A) > δ. We can assume that

ξn([0, tn]) ⊂ Oδ(A),

otherwise we can choose tn as tn = inf{t > 0 : d(ξn(t), A) > δ}. We claim that
tn →∞ as n→∞. Indeed, if this is not the case, then the sequence tn is bounded.
By x ∈ A and Definition 2.1, we have

d(ξn(tn), A) = d(ξn(tn), G(tn)A) 6 H∗X(G(tn)xn, G(tn)x)→ 0

as n→∞, which leads to a contradiction and proves our claim. Now let

ηn(t) = ξn(tn + t) t ∈ [−tn, 0].

By Proposition 2.6, we can extract a subsequence ηnk such that ηnk converges to

some solution η : (−∞, 0]→ Oδ(A) uniformly on any compact interval [t, 0]. Clearly

η(t) ∈ Oδ(A) ∩ A ⊂ Oε(A) ∩ A for all t 6 0 and d(η(0), A) = δ, and consequently
A cannot attract Oε(A) ∩ A. A contradiction which completes our proof. �

Lemma 2.16. Let {G(t)} be a GDS in X with a global attractor A and S(t) :=
G(t)|A, ∀t > 0. Then, {S(t)} is a GDS in A. If A is a local attractor for {S(t)} in
A (that is, there is an ε > 0 with ω(Oε(A)∩A) = A) and K is a compact subset of
A such that K ∩A∗ = ∅, then A attracts K. Furthermore A is a local attractor for
{G(t)} in X.

Proof. The proof is a slight modification of the corresponding one for single-valued
systems in [1]. It is thus omitted. �

Remark 2.17. Let A be a global attractor of {G(t)}, and A ⊂ A be a local
attractor of {G(t)} in X. Then A is also a local attractor of {G(t)} in A.

Indeed, it is clear that ω(Oε(A) ∩ A) ⊂ ω(Oε(A)) = A, and from the invariance
of A and A ⊂ A, we have the converse inclusion A ⊂ ω(Oε(A) ∩ A).

Lemma 2.18. Let {G(t)} be a GDS in X with a global attractor A and (A,A∗) an
attractor-repeller pair for {G(t)}. Then
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(1) If ξ : R→ X is a global bounded solution for {G(t)} through x /∈ A∪A∗, then

ξ(t)
t→∞−−−→ A and ξ(t)

t→−∞−−−−→ A∗.
(2) A global solution ξ : R→ X of {G(t)} with the property that ξ(t) ∈ Oδ(A∗) for

all t 6 0 for some δ > 0 such that Oδ(A∗)∩A = ∅ must satisfy d(ξ(t), A∗)
t→−∞−−−−→

0.

Proof. Part (1) follows from Proposition 3.5 in [12]. Part (2) can be proved in a
similar way of the single-valued case; see [1], Lemma 2.13. We omit the details.

It is worthy mentioning that invariance implies weak invariance for compact sets,
and that if a set Ξ is compact isolated weakly invariant and also invariant, then it
is isolated invariant; that is, there is a δ > 0 such that Ξ is the maximal invariant
set in Oδ(Ξ); see [12], Proposition 2.5.

Lemma 2.19. Let {G(t)} be a GDS with a global attractor A and let Ξ ⊂ A be
a closed isolated weakly invariant set such that Wu(Ξ) = Ξ. Then Ξ is a local
attractor, where

Wu(Ξ) := {x ∈ X : there is a global solution ξ : R→ X
such that ξ(0) = x and lim

t→−∞
d(ξ(t), Ξ) = 0}.

Proof. Since Ξ is weakly invariant, it is negatively invariant. In order to show
that Ξ is invariant, we check that the converse inclusion G(t)Ξ ⊂ Ξ holds true.
Let y ∈ G(t)Ξ be given. Then y ∈ G(t)x for some x ∈ Ξ ⊂ A. Recall that A
is invariant and compact, so it is weakly invariant (see [12], Proposition 2.5), and
consequently there is a global solution ξ3 : R → A such that ξ3(t) = y. Note that
x ∈ Ξ, hence there is also a solution ξ1 such that ξ1(t) ∈ Ξ ∀t 6 0, ξ1(0) = x and
lims→−∞ d(ξ1(s), Ξ) = 0. On the other hand, we can find a solution ξ2 on [0, t]
such that ξ2(0) = x and ξ2(t) = y, and it is clear that ξ2([0, t]) ⊂ A. We define a
global solution ξ : R→ A such that

ξ(s) =

 ξ3(s+ t), ∀s > 0;
ξ2(s+ t), ∀ − t 6 s 6 0;
ξ1(s+ t), ∀s 6 −t.

Then ξ(0) = y and lims→−∞ d(ξ(s), Ξ) = 0, which implies y ∈ Wu(Ξ) = Ξ and
therefore the positive invariance of Ξ follows.

Now it suffices to prove that Ξ is a local attractor, that is, there is a δ > 0 such
that ω(Oδ(Ξ)) = Ξ.

Let δ0 > 0 be such that Ξ is the maximal weakly invariant set in Oδ0(Ξ). Let us
prove that, given δ ∈ (0, δ0), there exists δ′ ∈ (0, δ) such that γ+(Oδ′(Ξ)) ⊂ Oδ(Ξ).
In fact, if the result were not true, there would exist a δ ∈ (0, δ0), a sequence {xl} in

X with d(xl, Ξ)
l→∞−−−→ 0 and a sequence {tl} in (0,∞) such that G(tl)xl\Oδ(Ξ) 6= ∅.

Hence, there is a solution ξl on [0, tl] with ξl(0) = xl and d(ξl(tl), Ξ) > δ. We can
assume that ξl([0, tl]) ⊂ Oδ(Ξ), otherwise we can choose tl as tl = inf{t > 0 :
d(ξl(t), Ξ) > δ}. We claim that tl → ∞ as l → ∞. Indeed, if this were not the
case, then the compactness of Ξ would imply that there would exist a sequence
xn := xln → x0 ∈ Ξ such that the sequence tn := tln is bounded. By the invariance
of Ξ and Axiom (3) in Definition 2.1,

d(ξln(tn), Ξ) = d(ξln(tn), G(tn)Ξ) 6 H∗X(G(tn)xn, G(tn)x0)→ 0
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as n→∞, which leads to a contradiction and proves our claim. Now, let

σl(t) = ξl(tl + t), for t ∈ [−tl, 0].

Then, σl is a solution of G on [−tl, 0]. By Proposition 2.6, we can extract a sub-
sequence σn := σln with ln → ∞ such that σn converges to some solution σ :

(−∞, 0] → Oδ(Ξ) uniformly on any compact interval [t, 0]. Since d(σn(0), Ξ) = δ,
we necessarily have

d(σ(0), Ξ) = δ. (4)

Now we extend σ to a global solution, still denoted by σ. Since α(σ) is weakly
invariant and Ξ is maximal weakly invariant in Oδ0(Ξ), we have α(σ) ⊂ Ξ. Clearly
σ(0) ∈Wu(Ξ) = Ξ, which contradicts (4).

Then it follows from the previous arguments that, for any δ ∈ (0, δ0), there is

a δ′ ∈ (0, δ) such that ω(Oδ′(Ξ)) ⊂ γ+(Oδ′(Ξ)) ⊂ Oδ(Ξ) ⊂ Oδ0(Ξ). Note that Ξ
is an isolated weakly invariant set and ω(Oδ′(Ξ)) is weakly invariant. Hence we
must have that ω(Oδ′(Ξ)) ⊂ Ξ. On the other hand, the invariance of Ξ implies that
Ξ ⊂ ω(Oδ′(Ξ)), and thus Ξ = ω(Oδ′(Ξ)). The proof of this lemma is finished. �

Corollary 2.20. Let {G(t)} be a GDS with a global attractor A and let Ξ ⊂ A be
a closed isolated weakly invariant set. Then, Ξ is a local attractor for {G(t)} if and
only if Wu(Ξ) = Ξ.

Proof. Thanks to Lemma 2.19, it only remains to show that if Ξ is a local attractor
for {G(t)}, then we have Wu(Ξ) = Ξ. Let z ∈ Wu(Ξ) be given. Since Ξ is a local
attractor, there is an ε > 0 such that Ξ attracts Oε(Ξ). By the definition of the
unstable set of the weakly invariant set, we obtain that there exist a global solution
ξ : R→ X and T > 0 such that ξ(0) = z and ξ(t) ∈ Oε(Ξ) for each t 6 −T . Then
we deduce that

d(z, Ξ) 6 d(z, G(−t)ξ(t)) +H∗X(G(−t)ξ(t), Ξ) = H∗X(G(−t)ξ(t), Ξ)→ 0

as t→ −∞. Clearly z ∈ Ξ and thusWu(Ξ) ⊂ Ξ. The converse inclusion Ξ ⊂Wu(Ξ)
follows immediately from the fact that Ξ is weakly invariant. �

Lemma 2.21. Let {G(t)} be a gradient-like GDS with respect to the disjoint family
of closed isolated weakly invariant sets Ξ = {Ξ1, . . . ,Ξn} and let A be its global
attractor. Then, there is a k ∈ {1, . . . , n} such that Ξk is a local attractor for
{G(t)}.

Proof. From a similar proof to that of Lemma 2.16 in [1] for the single-valued
case, we deduce that there is a k ∈ {1, . . . , n} such that Wu(Ξk) = Ξk. Then the
conclusion follows immediately from Lemma 2.19. �

Let {G(t)} be a gradient-like GDS with respect to the disjoint family of closed
isolated weakly invariant sets Ξ = {Ξ1, . . . ,Ξn}. If (after possible reordering) Ξ1 is a
local attractor for {G(t)} let Ξ∗1 = {x ∈ A : ω(x)\Ξ1 6= ∅} be its associated repeller,
so each Ξi, with i > 2, is contained in Ξ∗1. Considering the restriction {G1(t)} of
{G(t)} to Ξ∗1 we have that {G1(t)} is a gradient-like GDS in the space Ξ∗1 with
respect to the disjoint family of isolated weakly invariant sets {Ξ2, . . . ,Ξn}, and we
can assume, thanks to Lemma 2.21, that Ξ2 is a local attractor for the GDS {G1(t)}
in Ξ∗1. If Ξ∗2,1 is the repeller associated with the local attractor Ξ2 for {G1(t)} in
Ξ∗1 we can proceed and consider the restriction {G2(t)} of the GDS {G1(t)} to Ξ∗2,1
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and then {G2(t)} is a gradient-like GDS in Ξ∗2,1 with respect to the disjoint family
of isolated weakly invariant sets {Ξ3, . . . ,Ξn}.

Proceeding in this way until all isolated weakly invariant sets are exhausted we
obtain a reordering of {Ξ1, . . . ,Ξn} in such a way that Ξ1 is a local attractor for
{G(t)}. Setting A =: Ξ∗0,−1 and Ξ∗1,0 := Ξ∗1, for j = 2, . . . , n, we have that Ξj
is a local attractor for the restriction of {G(t)} to Ξ∗j−1,j−2 whose repeller will be
indicated by Ξ∗j,j−1.

With the construction above, if a global solution ξ : R→ A satisfies

Ξi
t→−∞←−−−− ξ(t) t→∞−−−→ Ξj (5)

then i > j. Thanks to Theorem 3.9 in [12], we deduce that the n-upla {Ξ1, . . . ,Ξn},
ordered in the way that we explained above, is a Morse decomposition for the
attractor A of {G(t)}.

The proof of the following theorem will be given here (more closely related to
the gradient-like GDSs and shorter) just for completeness.

Theorem 2.22. Let {G(t)} be a gradient-like GDS with respect to the disjoint
family of closed isolated weakly invariant sets Ξ = {Ξ1, . . . ,Ξn} reordered in such
a way that Ξj is a local attractor for the restriction of {G(t)} to Ξ∗j−1,j−2, as we
have explained above, and let A be its global attractor. Then, Ξ defines a Morse
decomposition on A.

Proof. Set A0 := ∅, A1 := Ξ1 and for j = 2, 3, . . . , n

Aj := Aj−1 ∪Wu(Ξj). (6)

It is clear that An = A. By Lemma 2.21, we see that A1 := Ξ1 is invariant. Then
we proceed by induction, and by slightly modifying the proof of Lemma 2.19, the
invariance of Aj follows immediately for each j. Recall that A1 := Ξ1 is closed. By
using mathematical induction and Barbashin’s compactness theorem, we can prove
that Aj is closed for each j; see Theorem 3.8 in [12] for more details. Thus for each
j, we choose d > 0 such that

Od(Aj) ∩

 n⋃
i=j+1

Ξi

 = ∅. (7)

Step 1. We show that there are δ < d and δ′ < δ such that γ+(Oδ′(Aj) ∩ A) ⊂
Oδ(Aj). If that were not the case, there would exist a sequence {xk} ⊂ A with

d(xk, Aj)
k→∞−−−−→ 0, a sequence {tk} in (0,∞) such that G(tk)xk\Oδ(Aj) 6= ∅. Hence,

for each xk, there is a solution ξk on [0, tk] with ξk(0) = xk and d(ξk(tk), Aj) > δ.
We can assume that ξk([0, tk]) ⊂ Oδ(Aj), otherwise we could choose tk as tk =
inf{t > 0 : d(ξk(t), Aj) > δ}. We claim that tk → ∞ as k → ∞. Indeed, suppose
the opposite, then there would exist a sequence xn := xkn → x0 ∈ Aj such that the
sequence tn := tkn is bounded. By the invariance of Aj and Axiom (3) in Definition
2.1,

d(ξkn(tn), Aj) = d(ξkn(tn), G(tn)Aj) 6 H
∗
X(G(tn)xn, G(tn)x0)→ 0,

as n→∞, which leads to a contradiction and proves our claim. Now, let

σk(t) = ξk(tk + t), for t ∈ [−tk, 0].

It is clear that σk is a solution of G on [−tk, 0]. By Proposition 2.6, we can ex-
tract a subsequence σn := σkn with kn → ∞ such that σn converges to some
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solution σ : (−∞, 0] → Oδ(Aj) ∩ A uniformly on any compact interval [t, 0] and
d(σ(0), Aj) > δ. From (7) and the properties of gradient-like GDSs we must have

that σ(t)
t→−∞−−−−→ Ξl, for some 1 6 l 6 j and, consequently, σ(0) ∈ Wu(Ξl) ⊂ Aj .

This is a contradiction with d(σ(0), Aj) > δ.
Step 2. Let us prove that Aj is a local attractor for each 1 6 j 6 n. By

Proposition 2.7, we see that ω(Oδ′(Aj)∩A) is weakly invariant. Let y ∈ ω(Oδ′(Aj)∩
A) be arbitrary. Then from the weakly invariance of ω(Oδ′(Aj)∩A), there is a global

solution ξ : R → ω(Oδ′(Aj) ∩ A) ⊂ γ+(Oδ′(Aj) ∩ A) ⊂ Oδ(Aj) with ξ(0) = y. By
(7) and the properties of gradient-like GDSs, we have y = ξ(0) ∈Wu(Ξl), for some
1 6 l 6 j and, consequently, y ∈ Aj and thus ω(Oδ′(Aj) ∩ A) ⊂ Aj . On the
other hand, the invariance of Aj implies that Aj ⊂ ω(Oδ′(Aj) ∩ A). Therefore,
ω(Oδ′(Aj) ∩ A) = Aj , and consequently Aj is a local attractor.

Step 3. Finally, it suffices to prove Ξj = Aj ∩ A∗j−1 for all 1 6 j 6 n. Indeed,

if x ∈ Aj ∩ A∗j−1, then from Aj =
⋃j
i=1W

u(Ξi) we can choose a global solution

ξ1 such that ξ1(0) = x and ξ1(t) →
⋃j
i=1 Ξi as t → −∞. On the other hand, by

Proposition 2.12, there is a global solution ξ2 : R → A∗j−1 through x. We define a
global solution ξ : R→ A such that

ξ(s) =

{
ξ2(s), ∀s > 0;
ξ1(s), ∀s 6 0.

Note that A∗j−1 = {z ∈ A : ω(z)\Aj−1 6= ∅}. By the weak invariance of A∗j−1 and
the gradient-like property of {G(t)}, we have

j⋃
i=1

Ξi
t→−∞←−−−− ξ(t) t→∞−−−→

n⋃
i=j

Ξi.

Since {G(t)} is a gradient-like GDS with reordered isolated weakly invariant sets

{Ξ1, . . . ,Ξn}, any global solution ξ : R→ A satisfies Ξl
t→−∞←−−−− ξ(t)

t→∞−−−→ Ξk with
l > k, and we obtain that x ∈ Ξj .

Conversely, if x ∈ Ξj , then there is a global solution ξ : R→ Ξj through x, and
thus, by definition of Aj , we have x ∈ Aj . If x /∈ A∗j−1, then ω(x)\Aj−1 = ∅, and
consequently ω(x) ⊂ Aj−1. Note that ω(ξ) ⊂ ω(x), therefore ω(ξ) ⊂ Ξi for some
1 6 i 6 j − 1, which contradicts ω(ξ) ⊂ Ξj . Thus x ∈ A∗j−1 and Ξj ⊂ Aj ∩ A∗j−1.
The proof is now complete. �

The following theorem shows the relationship between the notions of gradient-like
GDSs and of Morse decomposition for a global attractor.

Theorem 2.23. Let {G(t)} be a GDS with global attractor A. Then, {G(t)} is
a gradient-like GDS with respect to the disjoint family of closed isolated weakly
invariant sets Ξ = {Ξ1, . . . ,Ξn} reordered in such a way that Ξj is a local attractor
for the restriction of {G(t)} to Ξ∗j−1,j−2, if and only if Ξ is a Morse decomposition
on A.

Proof. We only need to prove the necessity. Since Ξ is a Morse decomposition on
A, in a quite similar manner as in the situation of single-valued dynamical systems
(see Chapter 3, Theorem 1.7 in [15] and Theorem 3.7 in [12] for details), we deduce
that Ξ is a family of disjoint compact isolated weakly invariant sets, and for any
global solution ξ : R → A, either ξ(R) ⊂ Ξk for some Morse set Ξk, or else there
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are indices i < j such that

Ξj
t→−∞←−−−− ξ(t) t→∞−−−→ Ξi. (8)

Consequently, {G(t)} is a gradient-like GDS with respect to the disjoint family of
isolated weakly invariant sets Ξ = {Ξ1, . . . ,Ξn}. In fact, if the result were not true,
then there would exist a homoclinic structure associated with Ξ. Hence, there is a
subset {Ξk1 , . . . ,Ξkp} of Ξ, together with a set of global solutions {ξ1, . . . , ξp} such
that

Ξkj
t→−∞←−−−− ξj(t)

t→∞−−−→ Ξkj+1 , 1 6 j 6 p,

where Ξkp+1 := Ξk1 . It follows from (8) that k1 > k2 > · · · > kp > kp+1 := k1, this
is a contradiction. �

Remark 2.24. It is worth recalling that, from the arguments of Theorem 3.4 in
[1] for single-valued dynamical systems, we conclude that if {G(t)} is a semigroup
( single-valued case) with global attractor A and a disjoint family of closed isolated
weakly invariant sets Ξ = {Ξ1, . . . ,Ξn}, then the following assertions are equivalent:

(1) {G(t)} is a gradient semigroup with respect to Ξ in the sense of Definition 3.1
in [1].

(2) {G(t)} is a gradient-like semigroup with respect to Ξ in the sense of Defini-
tion 2.8 in [1].

(3) Ξ is a Morse decomposition on A.

2.1. Stability of gradient-like GDSs under perturbations. Let Λ be a metric
space with metric ρ(·, ·), and let {Gλ(t)} (λ ∈ Λ) be a family of GDSs in X. We
start by recalling the following basic result from [13].

Theorem 2.25. Let λ0 ∈ Λ. Assume the following continuity assumption holds:

(C0) For any ε, T > 0 and bounded set B ⊂ X, there exists δ > 0 such that
whenever ρ(λ, λ0) < δ,

H∗X(Gλ(t)x, Gλ0(t)Oε(x)) < ε, ∀(t, x) ∈ [0, T ]×B.

Assume {Gλ0(t)} possesses a local attractor A. Then

(1) there is a neighborhood B of A with B ⊂ Ωu(A) such that for any ε > 0, there
exist a T0 > 0 and a δ′ > 0 such that when ρ(λ, λ0) < δ′,

H∗X(Gλ(t)B, A) < ε, ∀t > T0;

(2) if {Gλ(t)} is asymptotically upper-semicompact in X, then {Gλ(t)} has a local
attractor Aλ when ρ(λ, λ0) is sufficiently small, and

H∗X(Aλ, A)→ 0 as λ→ λ0; (9)

(3) B is a neighborhood of Aλ with B ⊂ Ωu(Aλ) when ρ(λ, λ0) is sufficiently
small,

where

Ωu(A) = {x ∈ X : A attracts a neighborhood of x under Gλ0},

and

Ωu(Aλ) = {x ∈ X : Aλ attracts a neighborhood of x under Gλ}.

The main result in this subsection is the following theorem.
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Theorem 2.26. Let {Gλ(t)} (λ ∈ Λ) be a family of GDSs in X. Assume {Gλ(t)}
possesses a global attractor Aλ for each λ ∈ Λ, the continuity assumption (C0) in
Theorem 2.25 at λ0 ∈ Λ holds, and Gλ(t)x is upper semi-continuous with respect to
λ and x for each fixed t ∈ R+.

Let {G(t)} = {Gλ0(t)} be a gradient-like GDS with respect to the disjoint family
of closed isolated weakly invariant sets Ξ = {Ξ1, . . . ,Ξn} reordered in such a way
that Ξj is a local attractor for the restriction of {G(t)} to Ξ∗j−1,j−2. Then, when

ρ(λ, λ0) is sufficiently small, {Gλ(t)} is a gradient-like GDS with respect to the
disjoint family of isolated weakly invariant sets Ξλ = {Ξλ1 , . . . ,Ξλn} and consequently

Aλ =
n⋃
j=1

Wu(Ξλj ); moreover, for each 1 6 j 6 n, we have

lim
λ→λ0

H∗X(Ξλj , Ξj) = 0.

Proof. Let A0 := ∅, A1 := Ξ1 and for j = 2, 3, . . . , n

Aj := Aj−1 ∪Wu(Ξj).

Then it follows from Theorem 2.22 that Aj is a local attractor for {G(t)} in X, and

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A,
where A is a global attractor for {G(t)} on X. Thanks to Theorem 2.25, there exist
a δ > 0 and a η > 0 such that when ρ(λ, λ0) < δ, {Gλ(t)} has a local attractor Aλj
and Oη(Aj) ⊂ Ωu(Aλj ) for each j. Note that we can assume δ > 0 is sufficiently
small so that by Theorem 2.25, we have for each fixed k,

Aλj ⊂ Oη(Aj) ⊂ Oη(Ak) ⊂ Ωu(Aλk), for j 6 k.

Combining this with the invariance and compactness of Aλj , we deduce that Aλj ⊂ Aλk
for all j 6 k. Therefore,

∅ = Aλ0 ⊂ Aλ1 ⊂ · · · ⊂ Aλn = Aλ

is an increasing sequence of local attractors of {Gλ(t)}.
Let Ξλj = Aλj ∩ A

λ,∗
j−1. Then Ξλ = {Ξλ1 , . . . ,Ξλn} is a Morse decomposition of

Aλ. It follows from Theorem 2.23 that Ξλ is a family of disjoint isolated weakly

invariant sets, Aλ =
n⋃
j=1

Wu(Ξλj ) and for any global solution ξ : R → Aλ, either

ξ(R) ⊂ Ξλk for some Morse set Ξλk , or else there are indices i < j such that

Ξλj
t→−∞←−−−− ξ(t) t→∞−−−→ Ξλi , (10)

and consequently when ρ(λ, λ0) < δ, {Gλ(t)} is a gradient-like GDS with respect
to the disjoint family of isolated weakly invariant sets Ξλ = {Ξλ1 , . . . ,Ξλn}.

Finally, let us prove that for each 1 6 j 6 n, limλ→λ0
H∗X(Ξλj , Ξj) = 0. We argue

by contradiction. Assume that there exist a j with 1 6 j 6 n, a ε0 > 0, sequences
λn → λ0 and xn ∈ Ξλnj such that

d(xn, Ξj) > ε0. (11)

Recall that xn ∈ Ξλnj = Aλnj ∩ A
λn,∗
j−1 and limn→∞H∗X(Aλnj , Aj) = 0. Hence the

compactness of Aj implies that there is a subsequence of {xn} (which we still denote
by {xn}) such that xn → x0 ∈ Aj . Noting that Ξj = Aj ∩ A∗j−1, we need to
show x0 ∈ A∗j−1. Suppose not. Then by the definition of the repeller, we have
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ω(x0) ⊂ Aj−1. Therefore G(T )x0 ⊂ O η
3
(Aj−1) for sufficiently large T . It follows

from the upper semi-continuity assumption that for all sufficiently large n,

H∗X(Gλn(T )xn, G
λ0(T )x0) <

η

3
.

Hence for sufficiently large n, Gλn(T )xn ⊂ Oη(Aj−1) ⊂ Ωu(Aλnj−1). Since xn ∈ Aλnj
and Aλnj is invariant under the action of Gλn , we have that Gλn(T )xn ⊂ Aλnj and

thus Gλn(T )xn is relatively compact. From the definition of uniform attraction

region, we see that Aλnj−1 attracts Gλn(T )xn, and consequently ω(xn) ⊂ Aλnj−1.

This implies that for sufficiently large n, xn /∈ Aλn,∗j−1 , which contradicts xn ∈ Ξλnj =

Aλnj ∩A
λn,∗
j−1 for each n and proves our claim. Therefore, xn → x0 ∈ Aj∩A∗j−1 = Ξj ,

which leads to a contradiction with (11) and thus the proof of this theorem is
completed. �

Remark 2.27. Let us recall that for single-valued dynamical systems, similar to
Theorem 2.26, we have the following result.

Let {Gλ(t)} (λ ∈ Λ) be a family of semigroups in X. Assume {Gλ(t)} possesses
a global attractor Aλ for each λ ∈ Λ, for any ε, T > 0 and bounded set B ⊂ X,
there exists δ > 0 such that when ρ(λ, λ0) < δ,

H∗X(Gλ(t)x, Gλ0(t)x) < ε, ∀(t, x) ∈ [0, T ]×B,
and Gλ(t)x is continuous with respect to λ and x for each fixed t ∈ R+.

Let {G(t)} = {Gλ0(t)} be a gradient-like semigroup with respect to the disjoint
family of closed isolated invariant sets Ξ = {Ξ1, . . . ,Ξn} reordered in such a way
that Ξj is a local attractor for the restriction of {G(t)} to Ξ∗j−1,j−2. Then when

ρ(λ, λ0) is sufficiently small, {Gλ(t)} is gradient-like semigroup with respect to
the disjoint family of isolated invariant sets Ξλ = {Ξλ1 , . . . ,Ξλn} and consequently

Aλ =
n⋃
j=1

Wu(Ξλj ); moreover, for each 1 6 j 6 n, we have

lim
λ→λ0

H∗X(Ξλj , Ξj) = 0.

Theorem 2.28. Assume the hypotheses in Theorem 2.26. Let {G(t)} = {Gλ0(t)}
be a gradient-like GDS with respect to the disjoint family of closed isolated weakly
invariant sets Ξ = {Ξ1, . . . ,Ξn} reordered in such a way that Ξj is a local attractor
for the restriction of {G(t)} to Ξ∗j−1,j−2. Then, for any ε > 0, there is a δ1 > 0

such that when ρ(λ, λ0) < δ1, for any solution ξ of {Gλ(t)}, there is a Ξj such that

lim
t→∞

d(ξ(t), Ξj) 6 ε.

Proof. From the proof of Theorem 2.26, there is a δ1 > 0 such that when ρ(λ, λ0) <
δ1, {Gλ(t)} has a global attractor Aλ, and there is an increasing sequence

∅ = Aλ0 ⊂ Aλ1 ⊂ · · · ⊂ Aλn = Aλ

of local attractors Aλj of GDS {Gλ(t)} in Aλ such that

Ξλj = Aλj ∩A
λ,∗
j−1, ∀1 6 j 6 n.

Hence when ρ(λ, λ0) < δ1, for any solution ξ of {Gλ(t)}, there is a smallest j such
that

lim
t→∞

d(ξ(t), Aλj ) = 0.
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Clearly j > 0. Since Aλj−1 is a local attractor, there is a δ∗ > 0 such that

ω(Oδ∗(Aλj−1)) = Aλj−1. By Lemma 2.15, we choose δ′ ∈ (0, δ∗) such that

γ+(Oδ′(Aλj−1)) :=
⋃

x∈Oδ′ (Aλj−1)

⋃
t>0

Gλ(t)x ⊂ Oδ∗(Aλj−1).

Now two cases may occur:

(i) there is a t0 > 0 such that ξ(t0) ∈ Oδ′(Aλj−1). In this case we have that

lim
t→∞

d(ξ(t), Aλj−1) = 0,

which contradicts the choice of j.
(ii) d(ξ(t), Aλj−1) > δ′ for all t > 0. When this takes place, we must have that

ω(ξ) ⊂ Aλ,∗j−1. Indeed, if there exist a y ∈ ω(ξ) and a sequence sn → ∞
such that ξ(sn) → y and y /∈ Aλ,∗j−1, then by the definition of repeller,

we have ω(y) ⊂ Aλj−1. Thus, there exists a sufficiently large T > 0 such

that Gλ(T )y ⊂ O δ′
3

(Aλj−1), and consequently for all sufficiently large n,

Gλ(T )ξ(sn) ⊂ O 2δ′
3

(Aλj−1). Therefore, ξ(T + sn) ∈ O 2δ′
3

(Aλj−1) for all suf-

ficiently large n, what contradicts d(ξ(t), Aλj−1) > δ′ for all t > 0. Recall that

limt→∞ d(ξ(t), Aλj ) = 0 and Ξλj = Aλj ∩A
λ,∗
j−1. Hence

lim
t→∞

d(ξ(t), Ξλj ) = 0. (12)

It follows from Theorem 2.26 that for any ε > 0, we can choose δ1, sufficiently
small, such that

H∗X(Ξλj , Ξj) < ε.

Combining this with (12), we deduce that when ρ(λ, λ0) < δ1,

lim
t→∞

d(ξ(t), Ξj) 6 ε,

and thus the proof of this theorem is finished. �

3. Nonautonomous Morse decomposition for gradient-like multi-valued
processes. In this section, we prove that all properties observed for gradient-like
GDSs can be extended also to gradient-like multi-valued processes.

Definition 3.1. A multi-valued mapping T : R × R × X → X with nonempty
closed images is said to be a multi-valued process, if the following axioms hold:

(1) T (t, t)x = {x}, ∀(t, x) ∈ R×X;
(2) T (t, s)T (s, τ)x = T (t, τ)x, ∀t > s > τ , x ∈ X;
(3) T (t, s)x is continuous in t for each fixed (s, x) in the sense of Hausdorff dis-

tance;
(4) T (t, s)x is upper semi-continuous in (s, x) uniformly in t on any interval.

A family of subsets D := {D(t) : t ∈ R} of X is called a nonautonomous set. A
nonautonomous set D is said to be closed (open), if D(t) is closed (open) in X for
each t ∈ R.

Let D := {D(t) : t ∈ R} and B := {B(t) : t ∈ R} be two nonautonomous sets.
If for each t ∈ R, B(t) is a neighborhood of D(t) in X, then B is simply called a
(nonautonomous) neighborhood of D.

Let D be a nonempty class of nonempty subsets family D := {D(t) : t ∈ R} of
X.
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Definition 3.2. A collection D of some families of nonempty subsets of X is said to
be neighborhood closed if for each D := {D(t) : t ∈ R} ∈ D, there exists a positive
number ε depending on D such that the family

{B(t) : B(t) is a nonempty subset of Oε(D(t)),∀t ∈ R} (13)

also belongs to D.
Note that the neighborhood closedness of D implies for each D ∈ D,

{D̃(t) : D̃(t) is a nonempty subset of D(t),∀t ∈ R} ∈ D. (14)

A collection D satisfying (14) is said to be inclusion-closed in the literature, see,
e.g., [9].

Definition 3.3. A family of sets Ξ := {Ξ(t) : t ∈ R} ∈ D is said to be positively
invariant (resp. negatively invariant, invariant), if for all t > s,

T (t, s)Ξ(s) ⊂ Ξ(t) (resp. T (t, s)Ξ(s) ⊃ Ξ(t), T (t, s)Ξ(s) = Ξ(t)).

In this section we will always assume that {T (t, s)} is a multi-valued process
in X. Moreover, we assume that {T (t, s)} is D-pullback asymptotically upper-
semicompact, that is, satisfies the following assumption:

(PAC) For all t ∈ R, any sequence yn ∈ T (t, t− sn)xn has a convergent subsequence

in X whenever sn
n→∞−−−−→∞, xn ∈ B(t− sn) with B = {B(t) : t ∈ R} ∈ D.

Definition 3.4. An invariant family A := {A(t) : t ∈ R} ∈ D is said to be a
(global) pullback attractor for a multi-valued process {T (t, s)} if for each t ∈ R,
A(t) is compact, pullback attracts every member of D; that is,

lim
s→−∞

H∗X(T (t, s)B(s), A(t)) = 0 for each t ∈ R and B := {B(t) : t ∈ R} ∈ D,

and {A(t) : t ∈ R} is minimal among all closed invariant families {e(t) : t ∈ R} ∈ D
with the property that e(t) pullback attracts every member of D for each t ∈ R.

Pullback and forward attractors are suitable concepts to describe the dynamics
of nonautonomous dynamical systems. Simply said, a forward attractor is a family
A := {A(t) : t ∈ R} of nonempty compact subsets of the state space, which is
invariant and forward attracting. For nonautonomous dissipative systems, there are
quite general existence results for pullback attractors, but in general, it is difficult
to establish similar results for forward attractors. It is worth mentioning that due
to the invariance property, a forward attractor, if it exists, necessarily coincides
with the pullback one.

Definition 3.5. A continuous function ξ : R→ X is called a global solution for a
multi-valued process {T (t, s)} if it satisfies

ξ(t) ∈ T (t, s)ξ(s) for all t > s, s ∈ R.

A global solution ξ through x ∈ X at t ∈ R means a global solution with ξ(t) = x.
If, in addition, there exists D := {D(t) : t ∈ R} ∈ D such that ξ(t) ∈ D(t) for

every t ∈ R, then ξ is called a D-global solution for {T (t, s)}.

Definition 3.6. A family of sets Ξ := {Ξ(t) : t ∈ R} ∈ D is said to be weakly
invariant, if for any t ∈ R and x ∈ Ξ(t), there is a D-global solution ξ through x at
t with ξ(s) ∈ Ξ(s) for all s ∈ R.
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Clearly, if Ξ := {Ξ(t) : t ∈ R} is a weakly invariant family, then Ξ is negatively
invariant.

Let B := {B(t) : t ∈ R} ∈ D. The pullback ω-limit set ω(B) = {ω(B)(t) : t ∈ R}
of B is defined, for all t ∈ R, as follows:

ω(B)(t) := {y ∈ X : there exist sn
n→∞−−−−→∞ and yn ∈ T (t, t− sn)B(t− sn)

such that yn
n→∞−−−−→ y}.

Proposition 3.7. Let B := {B(t) : t ∈ R} ∈ D. Then

(1) ω(B)(t) is nonempty compact and pullback attracts B for each t ∈ R.
(2) ω(B) = {ω(B)(t) : t ∈ R} is weakly invariant.

Proof. (1) Let t ∈ R, sn
n→∞−−−−→ ∞ and xn ∈ B(t− sn) be given arbitrarily. Then,

the D-pullback asymptotically upper-semicompactness of {T (t, s)} implies that for
any sequence yn ∈ T (t, t−sn)xn, there exists y ∈ X such that, up to a subsequence,

yn
n→∞−−−−→ y. Hence y ∈ ω(B)(t) and ω(B)(t) is nonempty.

Let {zn}∞n=1 be a sequence in ω(B)(t). Then, there exist sn
n→∞−−−−→ ∞ and

y′n ∈ T (t, t− sn)B(t− sn) such that for all n ∈ N,

d(zn, y
′
n) 6

1

n
. (15)

By the D-pullback asymptotically upper-semicompactness of {T (t, s)}, we find that

there exists y′ ∈ ω(B)(t) such that, up to a subsequence, y′n
n→∞−−−−→ y′, which

together with (15) implies that zn
n→∞−−−−→ y′ ∈ ω(B)(t). Thus ω(B)(t) is compact.

We now prove that for all t ∈ R,

lim
s→∞

d(T (t, t− s)B(t− s), ω(B)(t)) = 0. (16)

Suppose (16) is not true. Then there exist t ∈ R, ε′ > 0, sequences sn
n→∞−−−−→ ∞,

xn ∈ B(t− sn) and yn ∈ T (t, t− sn)xn such that for all n ∈ N,

d(yn, ω(B)(t)) > ε′. (17)

By the D-pullback asymptotically upper-semicompactness of {T (t, s)}, there exists

y ∈ ω(B)(t) such that, up to a subsequence, yn
n→∞−−−−→ y. This contradicts (17).

(2) We first prove that ω(B) is negatively invariant. Let t ∈ R and y ∈ ω(B)(t)

be given arbitrarily. Then, there exist τn
n→∞−−−−→ ∞ and yn ∈ T (t, t − τn)B(t − τn)

such that yn
n→∞−−−−→ y. Let s ∈ R with s 6 t be given arbitrarily. Disregarding

a finite number of terms, it can be assumed that τn > t − s for all n ∈ N. Since
yn ∈ T (t, t− τn)B(t− τn) = T (t, s)T (s, t− τn)B(t− τn), we have for every n, there
exists xn ∈ T (s, t − τn)B(t − τn) such that yn ∈ T (t, s)xn. By the D-pullback
asymptotically upper-semicompactness of {T (t, s)}, taking a subsequence, if neces-

sary, we can assume that xn
n→∞−−−−→ x ∈ ω(B)(s). Then, it follows from Axiom (4)

in Definition 3.1 that

d(y, T (t, s)x) 6 d(y, yn) + d(yn, T (t, s)xn) + d(T (t, s)xn, T (t, s)x)
n→∞−−−−→ 0.

It is clear that y ∈ T (t, s)x ⊂ T (t, s)ω(B)(s), and thus ω(B)(t) ⊂ T (t, s)ω(B)(s).
Let σ ∈ R with σ > t be given arbitrarily. Now we check that T (σ, t)y∩ω(B)(σ) 6=

∅. For each n, take zn ∈ T (σ, t)yn. Since yn ∈ T (t, t − τn)B(t − τn), we see that
zn ∈ T (σ, t)yn ⊂ T (σ, t − τn)B(t − τn). By the D-pullback asymptotically upper-
semicompactness of {T (t, s)}, taking a subsequence if necessary, we can assume that
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zn
n→∞−−−−→ z ∈ ω(B)(σ). From Axiom (4) in Definition 3.1, we deduce that

d(z, T (σ, t)y) 6 d(z, zn) + d(zn, T (σ, t)yn) + d(T (σ, t)yn, T (σ, t)y)
n→∞−−−−→ 0,

and, consequently, z ∈ T (σ, t)y ∩ ω(B)(σ).
Finally, similar to the proof of Proposition 2.9 in [11], by the compactness of

ω(B)(t) for each t ∈ R and the generalized Barbashin’s Theorem for set-valued
processes (see Theorem 3 in [3] for details), we conclude that there is a global
solution ξ through y at t with ξ(s) ∈ ω(B)(s) for all s ∈ R. This shows that ω(B)
is weakly invariant under {T (t, s)}. �

Now we introduce the notions of isolated weakly invariant sets and disjoint fam-
ilies of isolated weakly invariant sets.

Definition 3.8. Let D be a neighborhood closed collection of some families of
nonempty subsets of X, and let Ξ := {Ξ(t) : t ∈ R} ∈ D be a weakly invariant
family for the multi-valued process {T (t, s)}. Ξ is called an isolated weakly invariant
family if there exists a δ > 0 with the property that any D-global solution ξ : R→ X
with ξ(t) ∈ Oδ(Ξ(t)) must satisfy that ξ(t) ∈ Ξ(t) for all t ∈ R.

A set Ξ = {Ξ1, . . . ,Ξn} is said to be a disjoint set of isolated weakly invariant
families if each Ξi, 1 6 i 6 n, is an isolated weakly invariant family and there exists
δ > 0 such that Oδ(Ξi(t)) ∩ Oδ(Ξj(t)) = ∅, for all t ∈ R and for 1 6 i < j 6 n.

Remark 3.9. For the single-valued case, let D be a neighborhood closed collection
of some families of nonempty subsets of X, and let {T (t, s)} be a process in X.
Then, an invariant family Ξ := {Ξ(t) : t ∈ R} is an isolated invariant family for
{T (t, s)} if there exists a δ > 0 such that for any invariant family A := {A(t) : t ∈ R}
with A(t) ⊂ Oδ(Ξ(t)) for all t ∈ R, we have A(t) ⊆ Ξ(t) for all t ∈ R. It is important
to notice that if Ξ := {Ξ(t) : t ∈ R} is a compact isolated weakly invariant family,
further we can show that Ξ is invariant, then Ξ is an isolated invariant family; see
Remark 2.5 in [17] for details.

Definition 3.10. Let {T (t, s)} be a multi-valued process which possesses a disjoint
set of isolated weakly invariant families Ξ = {Ξ1, . . . ,Ξn} ⊂ D. A homoclinic
structure associated with Ξ is a subset {Ξk1 , . . . ,Ξkp} of Ξ (p 6 n) together with a
set of D-global solutions {ξ1, . . . , ξp} such that

lim
t→−∞

d(ξj(t), Ξkj (t)) = 0 and lim
t→∞

d(ξj(t), Ξkj+1
(t)) = 0, 1 6 j 6 p,

where Ξkp+1
:= Ξk1 .

Let us now define the notion of a gradient-like multi-valued process.

Definition 3.11. Let {T (t, s)} be a multi-valued process in X with a pullback
attractor A := {A(t) : t ∈ R} ∈ D and a disjoint set of isolated weakly invariant
families Ξ = {Ξ1, . . . ,Ξn} in {A(t) : t ∈ R}. We say that {T (t, s)} is a gradient-like
multi-valued process relative to Ξ if the following two conditions are satisfied:

(1) Any D-global solution ξ : R→ X in {A(t) : t ∈ R} satisfies

lim
t→−∞

d(ξ(t), Ξi(t)) = 0 and lim
t→∞

d(ξ(t), Ξj(t)) = 0,

for some 1 6 i, j 6 n.
(2) There is no homoclinic structure associated with Ξ.

Let {T (t, s)} be a multi-valued process with a pullback attractor {A(t) : t ∈ R}
which contains a disjoint set of isolated weakly invariant families Ξ = {Ξ1, . . . ,Ξn},
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that is, Ξi(t) ⊂ A(t) for each i and t. Now we can define the concept of pinned-chain
recurrence (see [2, 5, 6]) for similar concepts in the single-valued case).

Definition 3.12. Let δ be as in Definition 3.8 and fix ε0 ∈ (0, δ). For Ξ ∈ Ξ
and ε ∈ (0, ε0), an ε-pinned-chain from Ξ to Ξ is a sequence li, 1 6 i 6 k, in
{1, . . . , n}, a sequence of real numbers ti, σi, τi with τi < σi < ti, a sequence of
points zi ∈ X, 1 6 i 6 k, and a sequence of solutions ξi for {T (t, s)}, 1 6 i 6 k, such
that ξi(τi) = zi ∈ Oε(Ξli(τi)), ξ(σi) /∈ Oε0(

⋃n
i=1 Ξi(σi)) and ξi(ti) ∈ Oε(Ξli+1(ti)),

1 6 i 6 k, with Ξ = Ξlk+1
= Ξl1 . We say that Ξ ∈ Ξ is pinned-chain recurrent if

there is an ε0 ∈ (0, δ) and ε-pinned-chain from Ξ to Ξ for each ε ∈ (0, ε0).

Remark 3.13. It is clear that if {A(t) : t ∈ R} ∈ D has a homoclinic structure,
then there is a pinned-chain recurrent isolated weakly invariant family Ξ ∈ Ξ.

In particular, in the single-valued autonomous dynamical system case, the notion
of pinned-chain recurrence is closely related to the existence of homoclinic structures
(see Lemma 2.10 in [5] for details).

Similar to the single-valued nonautonomous dynamical system case in [2], we
next define the notions of a local attractor and of an attractor-repeller pair for a
multi-valued process {T (t, s)}. Before we define these concepts. Let us begin with
the definition of an unstable set of a weakly invariant family.

Definition 3.14. Let {T (t, s)} be a multi-valued process. The unstable set of a
weakly invariant family Ξ := {Ξ(t) : t ∈ R} ∈ D is the set

Wu(Ξ) := {(t, z) ∈ R×X : there is a D-global solution ξ : R→ X such that
ξ(t) = z and lims→−∞ d(ξ(s), Ξ(s)) = 0}.

Also, Wu(Ξ)(t) := {z ∈ X : (t, z) ∈Wu(Ξ)} for each t ∈ R.

Definition 3.15. Let {T (t, s)} be a multi-valued process in X with a pullback
attractor A := {A(t) : t ∈ R} ∈ D. We say that an isolated weakly invariant family
A := {A(t) : t ∈ R}, with A(t) ⊂ A(t) for all t ∈ R, is a (nonautonomous) local
attractor if Wu(A)(t) = A(t) for all t ∈ R.

If A is a local attractor, we define its associated repeller A∗ := {A∗(t) : t ∈ R}
by

A∗(t) := {z ∈ A(t) : H∗X(T (r + t, t)z, A(r + t)) 9 0 as r →∞}, for each t ∈ R.
The pair (A,A∗) is called an attractor-repeller pair.

Lemma 3.16. Let D be a neighborhood closed collection of some families of nonempty
subsets of X, {T (t, s)} be a multi-valued process with a pullback attractor A :=
{A(t) : t ∈ R} ∈ D, and let Ξ := {Ξ(t) : t ∈ R} be such that for some ε > 0,
ω(Oε(Ξ) ∩ A)(t) = Ξ(t) for all t ∈ R, where

ω(Oε(Ξ) ∩ A)(t) := {y ∈ X : there exist sn
n→∞−−−−→∞ and

yn ∈ T (t, t− sn)(Oε(Ξ(t− sn)) ∩ A(t− sn)) such that yn
n→∞−−−−→ y}.

Then Ξ := {Ξ(t) : t ∈ R} is a local attractor and Ξ is a compact isolated invariant
family.

Proof. Since D is neighborhood closed and {A(t) : t ∈ R} ∈ D, there exists a
ε0 > 0 with ε0 < ε such that {Oε0(Ξ(t)) : t ∈ R} ∈ D. Thanks to Proposition 3.7,
we see that Ξ := {Ξ(t) : t ∈ R} ∈ D is compact weakly invariant and Ξ(t) pullback
attracts {Oε0(Ξ(t)) ∩ A(t) : t ∈ R} for each t ∈ R. Let ξ : R → X be a D-global
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solution with ξ(t) ∈ Oε0(Ξ(t)) for all t ∈ R. Since every D-global solution belongs
to the pullback attractor, by assumption ω(Oε0(Ξ)∩A)(t) = Ξ(t), we deduce that,
for any t ∈ R,

d(ξ(t), Ξ(t)) 6 d(ξ(t), T (t, t− s)ξ(t− s))
+d(T (t, t− s)ξ(t− s), T (t, t− s)(Oε0(Ξ(t− s)) ∩ A(t− s)))
+d(T (t, t− s)(Oε0(Ξ(t− s)) ∩ A(t− s)), Ξ(t))→ 0 as s→∞,

and consequently, ξ(t) ∈ Ξ(t) for all t ∈ R and Ξ := {Ξ(t) : t ∈ R} is a compact
isolated weakly invariant family.

Now we show that Wu(Ξ)(t) = Ξ(t) for all t ∈ R. Let t ∈ R and z ∈ Wu(Ξ)(t).
Then by the definition of the unstable set of the weakly invariant set, we obtain
that there exist a D-global solution ξ : R → X and t′0 > 0 such that ξ(t) = z and
ξ(s) ∈ Oε0(Ξ(s)) ∩ A(s) for each s 6 −t′0. Note that for all s 6 −t′0,

d(z, Ξ(t)) 6 d(ξ(t), T (t, s)ξ(s)) + d(T (t, s)(Oε0(Ξ(s)) ∩ A(s)), Ξ(t))
= d(T (t, s)(Oε0(Ξ(s)) ∩ A(s)), Ξ(t)),

and that Ξ(t) pullback attracts {Oε0(Ξ(t)) : t ∈ R} for each t ∈ R. Therefore
z ∈ Ξ(t) and Wu(Ξ)(t) ⊂ Ξ(t). The converse inclusion Ξ(t) ⊂ Wu(Ξ)(t) follows
from the fact that Ξ := {Ξ(t) : t ∈ R} is weakly invariant.

Finally, we prove that Ξ := {Ξ(t) : t ∈ R} is invariant. Since Ξ := {Ξ(t) : t ∈ R}
is weakly invariant, clearly Ξ is negatively invariant. Now it only remains to check
that T (t, s)Ξ(s) ⊂ Ξ(t) for all t > s and s ∈ R. Let s ∈ R, t > s and y ∈ T (t, s)Ξ(s)
be given arbitrarily. Then y ∈ T (t, s)x for some x ∈ Ξ(s) ⊂ A(s). Since A is a
compact invariant family, in view of Remark 2.5 in [17], there is a D-global solution
ξ3 : R→ A such that ξ3(t) = y. Recall that x ∈ Ξ(s), hence there is also a D-global
solution ξ1 : R → A such that ξ1(s) = x and limτ→−∞ d(ξ1(τ), Ξ(τ)) = 0. On the
other hand, we can find a solution ξ2 on [s, t] such that ξ2(s) = x, ξ2(t) = y and
clearly ξ2(τ) ∈ A(τ) for each τ ∈ [s, t]. We define a D-global solution ξ : R → A
such that

ξ(τ) =

 ξ3(τ), ∀τ > t;
ξ2(τ), ∀s 6 τ 6 t;
ξ1(τ), ∀τ 6 s.

Then we have ξ(t) = y and limτ→−∞ d(ξ(τ), Ξ(τ)) = 0. This implies y ∈Wu(Ξ)(t) =
Ξ(t), and thus T (t, s)Ξ(s) ⊂ Ξ(t).

Thanks to Remark 3.9, since Ξ := {Ξ(t) : t ∈ R} is a compact isolated weakly
invariant family and Ξ is invariant, we obtain that Ξ is a compact isolated invariant
family. The proof of this lemma is therefore finished. �

Indeed, we can also define the (nonautonomous) local attractor in the sense of
pullback attraction, i.e., for some ε > 0, ω(Oε(Ξ))(t) = Ξ(t) for all t ∈ R. This
implies the (nonautonomous) local attractor in the sense of Definition 3.15 due to
Lemma 3.16.

Lemma 3.17. Let {T (t, s)} be a multi-valued process with a pullback attractor A :=
{A(t) : t ∈ R} ∈ D and let A := {A(t) : t ∈ R} be a local attractor with A(t) ⊂ A(t)
for each t ∈ R. Suppose that there exists ε > 0 with A(t)∩Oε(A(t))∩Oε(A∗(t)) = ∅
for all t ∈ R. Then, the repeller A∗ of A is an isolated weakly invariant family and
A∗(t) is compact for each t ∈ R.

Proof. If A∗(t0) is empty for some t0 ∈ R, then it is empty for all t ∈ R and the
proof is obvious. Assume that A∗(t) is nonempty for all t ∈ R.
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Let us first show that A∗(t) is compact for each t ∈ R. Observe that A∗(t) ⊂ A(t)

and A(t) is compact, it is sufficient to prove that A∗(t) is closed. Let yn
n→∞−−−−→ y,

where yn ∈ A∗(t). If y /∈ A∗(t), then we have that

H∗X(T (r + t, t)y, A(r + t))→ 0 as r →∞.

By the assumption, there exists ε > 0 such that A(t)∩Oε(A(t))∩A∗(t) = ∅ for all
t ∈ R. Hence there is a t0 such that

H∗X(T (t0 + t, t)y, A(t0 + t)) <
ε

2
.

By Axiom (4) in Definition 3.1, in view of yn → y, we obtain that there exists n0
such that for all n > n0,

H∗X(T (t0 + t, t)yn, A(t0 + t)) 6 H∗X(T (t0 + t, t)yn, T (t0 + t, t)y)
+H∗X(T (t0 + t, t)y, A(t0 + t)) < ε.

This implies that for all n > n0, T (t0 + t, t)yn ⊂ Oε(A(t0 + t)), and thus we have
x /∈ A∗(t0 + t) for all x ∈ T (t0 + t, t)yn. From the definition of the repeller, the
compactness of T (t0 + t, t)yn and Axiom (4) in Definition 3.1, we deduce that for
all n > n0,

H∗X(T (r+t, t)yn, A(r+t)) = H∗X(T (r+t, t0+t)T (t0+t, t)yn, A(r+t))→ 0 as r →∞,

which contradicts the fact that yn ∈ A∗(t) for all n ∈ N.
We will prove now that A∗ is negatively invariant. Let t > s and w ∈ A∗(t) ⊂

A(t), then the invariance of A implies that there is v ∈ A(s) such that w ∈ T (t, s)v.
In fact, v belongs to A∗(s). If this were not true, then by the definition of repeller,

lim
τ→∞

H∗X(T (τ, s)v, A(τ)) = 0.

Note that T (τ, t)w ⊂ T (τ, t)T (t, s)v = T (τ, s)v. Hence,

lim
τ→∞

H∗X(T (τ, t)w, A(τ)) = 0,

which contradicts the fact that w ∈ A∗(t) and proves that A∗(t) ⊂ T (t, s)A∗(s).
We assume that w ∈ A∗(t). Then by the compactness and negative invariance

of A∗, in view of Theorems 2.2-2.3 in [17], we deduce from the similar proof of
Proposition 2.9 in [11] that there is a solution ξ− on (−∞, t] such that ξ−(s) ∈
T (s, τ)ξ−(τ) for all s 6 t, τ 6 s, ξ−(s) ∈ A∗(s) for all s 6 t and ξ−(t) = w.

To prove that A∗ is weakly invariant, according to Remark 2.5 in [17], it suffices
to verify that for any t > s, s ∈ R and x ∈ A∗(s), T (t, s)x ∩ A∗(t) 6= ∅. Assume
on the contrary that this is not the case. Then there exist s0 ∈ R, t0 > s0 and
x0 ∈ A∗(s0) such that T (t0, s0)x0 ∩ A∗(t0) = ∅. This implies that y /∈ A∗(t0) for
all y ∈ T (t0, s0)x0. Hence, by the definition of the repeller, the compactness of
T (t0, s0)x0 and Axiom (4) in Definition 3.1, we obtain that

H∗X(T (t+s0, s0)x0, A(t+s0)) = H∗X(T (t+s0, t0)T (t0, s0)x0, A(t+s0))→ 0 as t→∞,

which contradicts the fact that x0 ∈ A∗(s0).
Finally, we prove that A∗ is an isolated weakly invariant family. Let ξ : R→ X

be a D-global solution with ξ(t) ∈ Oε(A∗(t)) ∩ A(t) for all t ∈ R. To complete
the proof, it suffices to show that ξ(t) ∈ A∗(t) for all t ∈ R. If that were not the
case, then there would exist a t0 ∈ R such that ξ(t0) /∈ A∗(t0). By the definition of
repeller, we have

lim
t→∞

H∗X(T (t, t0)ξ(t0), A(t)) = 0,



MORSE DECOMPOSITION 21

and consequently, ξ(t) ∈ Oε(A(t)) for sufficiently large t, which is in contradiction
with A(t) ∩ Oε(A(t)) ∩ Oε(A∗(t)) = ∅ for all t ∈ R. The proof is complete. �

Remark 3.18. Notice that for single-valued evolution processes, a repeller A∗ :=
{A∗(t) : t ∈ R} associated with a local attractor A is invariant, as shown in [2,
Proposition 2.7].

Definition 3.19. Let {T (t, s)} be a multi-valued process in X with a pullback
attractor {A(t) : t ∈ R} ∈ D and let A0 = {A0(t) : t ∈ R}, A1 = {A1(t) : t ∈ R},
. . . , An = {An(t) : t ∈ R} be n+ 1 local attractors with ∅ = A0(t) ⊂ A1(t) ⊂ · · · ⊂
An(t) = A(t) for each t ∈ R.

Define Ξj(t) := Aj(t)∩A∗j−1(t) for each t ∈ R and j = 1, . . . , n. The ordered set
of weakly invariant families Ξ := {Ξ1,Ξ2, . . . ,Ξn} is called a Morse-decomposition
for the pullback attractor {A(t) : t ∈ R}.

The following result extends Lemma 2.16 to the nonautonomous case.

Lemma 3.20. Let D be a neighborhood closed collection of some families of nonempty
subsets of X, {T (t, s)} be a multi-valued process in X with a pullback attractor
A := {A(t) : t ∈ R} ∈ D, and let A := {A(t) : t ∈ R} be a local attractor for
{T (t, s)} in A, that is, A := {A(t) : t ∈ R} is an isolated weakly invariant family
with Wu

A(A)(t) = A(t) for all t ∈ R, where

Wu
A(A)(t) = {z ∈ A(t) : there is a D-global solution ξ : R→ A

such that ξ(t) = z and lim
s→−∞

d(ξ(s), A(s)) = 0}.

Then A is a local attractor for {T (t, s)} in X.

Proof. We first show that Wu(A)(τ) ⊂ A(τ) for each τ ∈ R. Let t ∈ R and
z ∈ Wu(A)(t) be given arbitrarily. Then there is a D-global solution ξ : R → X
such that ξ(t) = z and

lim
s→−∞

d(ξ(s), A(s)) = 0. (18)

Since A ∈ D and D is neighborhood closed, there exists ε > 0 such that

{B(t) : B(t) is a nonempty subset of Oε(A(t)),∀t ∈ R} ∈ D.

Choose an arbitrary number ε1 ∈ (0, ε). By (18), there is a T > 0 such that for all
s 6 −T ,

d(ξ(s), A(s)) < ε1,

and consequently, ξ(s) ∈ Oε(A(s)) for each s 6 −T and {Oε1(A(t)) : t ∈ R} ∈ D.
Then by the definition of pullback attractor, we have

d(ξ(t), A(t)) 6 lim
s→−∞

H∗X(T (t, s)ξ(s), A(t)) = 0.

This implies that ξ(t) ∈ A(t), thus ξ is a D-global solution defined in A and z =
ξ(t) ∈ Wu

A(A)(t). Noting that Wu
A(A)(τ) = A(τ) for all τ ∈ R, hence z ∈ A(t) and

this proves Wu(A)(t) ⊂ A(t).
In the similar way, the isolation of A for {T (t, s)} in X follows from the one of A

for {T (t, s)} in A. It is clear that A is a weakly invariant family for {T (t, s)} in X
and A(τ) ⊂Wu(A)(τ) for all τ ∈ R, and thus the proof of this theorem is complete.
�



22 Y. WANG AND T. CARABALLO

Remark 3.21. Let {G(t)} be a GDS in X with a global attractor A. By slightly
modifying the proof of Lemma 2.19 and Corollary 2.20, we obtain that an isolated
invariant set A ⊂ A is a local attractor for {G(t)} in A (that is, there is an ε > 0
with ω(Oε(A) ∩ A) = A) if and only if Wu

A(A) = A where

Wu
A(A) = {z ∈ A : there is a global solution ξ : R→ A such that ξ(0) = z

and lim
t→−∞

d(ξ(t), A) = 0}.

Next we describe the construction of a Morse decomposition for the pullback
attractor of a gradient-like multi-valued process relative to the disjoint set of isolated
weakly invariant families {Ξ1, . . . ,Ξn}. First, we need the following fundamental
result.

Lemma 3.22. Let {T (t, s)} be a gradient-like multi-valued process with an asso-
ciated disjoint set of isolated weakly invariant families Ξ = {Ξ1, . . . ,Ξn}. Then,
there exists i ∈ {1, . . . , n} such that Ξi is a local attractor for {T (t, s)}.

Proof. First, we show that there is some i ∈ {1, . . . , n} such that Wu(Ξi)(t) = Ξi(t)
for each t ∈ R. Assume, by contradiction, that this were not the case. Then, for
each 1 6 i 6 n, there would exist a D-global solution ξi(t) ∈ A(t) (with ξi(s) /∈ Ξi(s)
for some s ∈ R) such that limt→−∞ d(ξi(t), Ξi(t)) = 0. From the fact that {T (t, s)}
is gradient-like, ξi(t) converges to some element of Ξ as t → ∞, this necessarily
would produce a homoclinic structure which would be a contradiction.

Note that Ξ = {Ξ1, . . . ,Ξn} is a disjoint set of isolated weakly invariant families,
and thus the proof of Lemma 3.22 is finished. �

Let {T (t, s)} be a gradient-like multi-valued process with the associated disjoint
set of isolated weakly invariant families Ξ = {Ξ1, . . . ,Ξn}. If (after possible re-
ordering) Ξ1 is a local attractor for {T (t, s)}, let Ξ∗1 as in Definition 3.15 be its
associated repeller, then we have that each Ξi(s), for i > 2 and s ∈ R, is contained
in Ξ∗1(s). We can repeat the reasoning in Lemma 3.22 to deduce that there is i > 2
such that

Wu(Ξi)(t) ∩ Ξ∗1(t) = Ξi(t) for all t ∈ R.
We relabel this isolated weakly invariant family as Ξ2 and define for each t ∈ R,

Ξ∗2,1(t) := {z ∈ Ξ∗1(t) : H∗X(T (r + t, t)z, Ξ2(r + t)) 9 0 as r →∞}.
Then we have that, for each t ∈ R and i = 3, . . . , n, Ξi(t) ⊂ Ξ∗2,1(t).

Proceeding in this way untill all isolated weakly invariant families are exhausted,
we obtain a reordering of Ξ = {Ξ1, . . . ,Ξn} such that Ξ1 is a local attractor for
{T (t, s)}. Setting Ξ∗1,0 := Ξ∗1, and

Wu(Ξi)(t) ∩ Ξ∗i−1,i−2(t) = Ξi(t) for all t ∈ R and i = 2, . . . , n,

where, for i = 2, . . . , n,

Ξ∗i,i−1(t) := {z ∈ Ξ∗i−1,i−2(t) : H∗X(T (r + t, t)z, Ξi(r + t)) 9 0 as r →∞}.
Remark 3.23. Similar to the proof of Lemma 2.9 in [2] for single-valued systems,
we have the following result:

Let {T (t, s)} be a gradient-like multi-valued process with a pullback attractor
{A(t) : t ∈ R} and an associated (reordered) disjoint set of isolated weakly invariant
families Ξ = {Ξ1, . . . ,Ξn}. Then, any D-global solution ξ : R→ X in {A(t) : t ∈ R}
satisfies

lim
t→−∞

d(ξ(t), Ξi(t)) = 0 and lim
t→∞

d(ξ(t), Ξj(t)) = 0,
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with i > j.

Theorem 3.24. Let {T (t, s)} be a gradient-like multi-valued process with a pullback
attractor A := {A(t) : t ∈ R} and an associated disjoint set of isolated weakly
invariant families Ξ = {Ξ1, . . . ,Ξn} reordered as explained above. Assume that
there exists δ > 0 such that, for j = 1, 2, . . . , n− 1 and t ∈ R, it holds that

Oδ(Aj(t)) ∩

 n⋃
i=j+1

Ξi(t)

 = ∅. (19)

Then Ξ defines a Morse decomposition for {A(t) : t ∈ R}.

Proof. We divide the proof into four steps.
Step 1. For each t ∈ R, set A0(t) := ∅, A1(t) := Ξ1(t), and for j = 2, 3, . . . , n,

Aj(t) := Aj−1(t) ∪Wu(Ξj)(t) =

j⋃
i=1

Wu(Ξi)(t).

Clearly An(t) = A(t). From Lemma 3.22, it is easy to see that A1 := Ξ1 is a weakly
invariant family. We prove that {Wu(Ξ2)(t) : t ∈ R} is a weakly invariant family.
Let t > s, s ∈ R and y ∈Wu(Ξ2)(t) be given. By the definition of the unstable set
of a weakly invariant family, we find that there is a D-global solution ξ : R → X
such that ξ(t) = y and limτ→−∞ d(ξ(τ), Ξ2(τ)) = 0. Hence ξ(s) ∈ Wu(Ξ2)(s) for
all s ∈ R. Consequently, we obtain that A2 := {A2(t) : t ∈ R} is a weakly invariant
family. Proceeding in this way, we obtain that for j = 3, . . . , n, Aj := {Aj(t) : t ∈ R}
is a weakly invariant family.

Step 2. We prove that Wu(Aj)(t) = Aj(t) for each 1 6 j 6 n and t ∈ R.
Noting that Aj(t) ⊂ Wu(Aj)(t) for each t ∈ R due to the weak invariance of Aj .
On the other hand, if z ∈ Wu(Aj)(t), then there is a D-global solution ξ : R →
X with ξ(t) = z and lims→−∞ d(ξ(s), Aj(s)) = 0. Since {T (t, s)} is gradient-
like and from (19), we must have that there exists k ∈ {1, 2, . . . , j} such that
lims→−∞ d(ξ(s), Ξk(s)) = 0. This implies that z ∈ Wu(Ξk)(t) ⊂ Aj(t) and thus
Wu(Aj)(t) ⊂ Aj(t).

Step 3. We show that {Aj(t) : t ∈ R} is a local attractor for each j. From the
previous results and the definition of local attractors, now we need to prove that
{Aj(t) : t ∈ R} is an isolated weakly invariant family. Indeed, let δ > 0 be as in (19)
and ξ : R → X be a D-global solution with ξ(t) ∈ Oδ(Aj(t)) for all t ∈ R. Since

{T (t, s)} is gradient-like, there is a k ∈ {1, . . . , j} such that d(ξ(t), Ξk(t))
t→−∞−−−−→ 0.

Then ξ(t) ∈ Wu(Ξk)(t) ⊂ Aj(t) for all t ∈ R. Hence, {Aj(t) : t ∈ R} is a local
attractor for each j.

Step 4. Let us prove that Ξj(t) = Aj(t) ∩ A∗j−1(t) for each j. By a similar
proof of Theorem 2.10 in [2], we can show that Aj(t) ∩ A∗j−1(t) ⊂ Ξj(t) for each j.
Now it only remains to prove the reverse inclusion. Let z ∈ Ξj(t), then there is a
D-global solution ξ : R→ X with ξ(t) = z and ξ(s) ∈ Ξj(s) for each s ∈ R. Clearly
z ∈ Aj(t). Suppose z /∈ A∗j−1(t). Then we have

lim
s→∞

H∗X(T (s, t)z, Aj−1(s)) = 0,



24 Y. WANG AND T. CARABALLO

in particular, lims→∞ d(ξ(s), Aj−1(s)) = 0. By assumption (19), we deduce that

d

ξ(s), n⋃
i=j

Ξi(s)

9 0 as s→∞.

Note that {T (t, s)} is gradient-like, hence there is i ∈ {1, 2, . . . , j − 1} such that

lim
s→∞

d(ξ(s), Ξi(s)) = 0,

which contradicts the fact that ξ(s) ∈ Ξj(s) for each s ∈ R and Ξ = {Ξ1, . . . ,Ξn}
is a disjoint set of isolated weakly invariant families. Therefore z ∈ Aj(t)∩A∗j−1(t)
and Ξj(t) ⊂ Aj(t) ∩A∗j−1(t). The proof of Theorem 3.24 is therefore complete. �
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