9,225 research outputs found

    Discretization schemes and numerical approximations of PDE impainting models and a comparative evaluation on novel real world MRI reconstruction applications

    Get PDF
    While various PDE models are in discussion since the last ten years and are widely applied nowadays in image processing and computer vision tasks, including restoration, filtering, segmentation and object tracking, the perspective adopted in the majority of the relevant reports is the view of applied mathematician, attempting to prove the existence theorems and devise exact numerical methods for solving them. Unfortunately, such solutions are exact for the continuous PDEs but due to the discrete approximations involved in image processing, the results yielded might be quite unsatisfactory. The major contribution of This work is, therefore, to present, from an engineering perspective, the application of PDE models in image processing analysis, from the algorithmic point of view, the discretization and numerical approximation schemes used for solving them. It is of course impossible to tackle all PDE models applied in image processing in this report from the computational point of view. It is, therefore, focused on image impainting PDE models, that is on PDEs, including anisotropic diffusion PDEs, higher order non-linear PDEs, variational PDEs and other constrained/regularized and unconstrained models, applied to image interpolation/ reconstruction. Apart from this novel computational critical overview and presentation of the PDE image impainting models numerical analysis, the second major contribution of This work is to evaluate, especially the anisotropic diffusion PDEs, in novel real world image impainting applications related to MRI

    Quantum-Gravity Analysis of Gamma-Ray Bursts using Wavelets

    Get PDF
    In some models of quantum gravity, space-time is thought to have a foamy structure with non-trivial optical properties. We probe the possibility that photons propagating in vacuum may exhibit a non-trivial refractive index, by analyzing the times of flight of radiation from gamma-ray bursters (GRBs) with known redshifts. We use a wavelet shrinkage procedure for noise removal and a wavelet `zoom' technique to define with high accuracy the timings of sharp transitions in GRB light curves, thereby optimizing the sensitivity of experimental probes of any energy dependence of the velocity of light. We apply these wavelet techniques to 64 ms and TTE data from BATSE, and also to OSSE data. A search for time lags between sharp transients in GRB light curves in different energy bands yields the lower limit M≥6.9⋅1015M \ge 6.9 \cdot 10^{15} GeV on the quantum-gravity scale in any model with a linear dependence of the velocity of light  E/M~ E/M. We also present a limit on any quadratic dependence.Comment: This version is accepted for publication in Astronomy & Astrophysics. The discussion and introduction are extended making clear why the wavelet analysis should be superior to straight cross-correlation analysis. More details on compiled data are elaborated. 18 pages, 9 figures, A&A forma
    • …
    corecore