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Abstract:When fitting archaeological artifacts, one would like to have a representation that simplifies frag-
ments while preserving their complementarity. In this paper, we propose to employ the scale-spaces of math-
ematical morphology to hierarchically simplify potentially fitting fracture surfaces. We study the masking
effect whenmorphological operations are applied to selected subsets of objects. Since fitting locally depends
on the complementarity of fractures only, we introduce ‘Boundary Morphology’ on surfaces rather than vol-
umes. Moreover, demonstrating the Lipschitz nature of the terracotta fractures informs our novel extrusion
method to compute both closing and opening operations simultaneously. We also show that in this proposed
representation the effects of abrasion and uncertainty are naturally bounded, justifying the morphological
approach. This work is an extension of our contribution earlier published in the proceedings of ISMM2019
[10].

Keywords: Boundary Morphology, Scale Space, Fracture Representation, Abrasion, Lipschitz, Extrusion.

1 Introduction
The GRAVITATE H2020 project aims at providing archaeologists with the virtual tools to analyse digital arti-
facts, distributed across several collections (https://gravitate-project.eu/). The project involves archaeologi-
cal institutes and research partners with experience in 3D geometry processing, semantic analysis and ICT
integration. The artifacts are digitally scanned by standard scanning techniques in the form of 3D meshes,
capturing the geometrical properties of each object and some of its photometric properties. Reassembly of
broken artifacts is one of the core objectives of the project.

Figure 1:Morphological simplification pipeline for archaeological fracture facets.
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The test case is on terracotta, which does not deform; but typical fragments are lacking material through
abrasion and chipping. Each fragment undergoes a preliminary preprocessing step [9] which partitions its
surface into significant sub-parts called ‘facets’. Each facet is characterized by its own geometrical properties
of the roughness of its surface and the sharpness of its boundary, which in turn guides its categorization as
either belonging to the fracture region or outside skin region of the fragment.

Our contribution to the project focuses on structuring the pair-wise alignment of promising fragments
nominated for fitting by other selection modules. The computational approach is based purely on the ge-
ometrical properties of the fracture facets, ignoring other clues (such as possible continuity of decorative
patterns on the object facets).

Optimal pair-wise alignment of potentially counter-fitting fragments is computationally expensive. We
therefore take a hierarchical approach, considering the fragments in increasing resolution from simplified
to detailed. We could then explore the possible fit and approximate alignment at the coarse level, and refine
this when descending to finer resolutions, all at approximately the same computational cost per level. But
to be relevant to alignment, such a simplification should be contact preserving and sufficiently specific to
structure and guide the pair-wise alignment.

The common way of simplifying shapes represented as meshes is by various forms of linear filtering of
their vertices; letting themmovewith a differentiable flow (such as based on the Poisson equation) to produce
a smoother model [16]. Structure-aware mesh decimation, to preserve the structure of the mesh by represent-
ing it as a set of pre-computed canonical proxies, has been studied by [22]. Such simplifications are strongly
related to characterizing a surface by differential geometric features, such as those computed by somemeans
of discrete differential geometry [7]. Indeedmost methods to reassemble broken objects [12, 14, 18, 20, 26] are
based on such features. However, a small chip, resulting in a missing part of an object, will affect such differ-
ential measures in a linear fashion: the deeper the missing bit, the stronger the simplified shape is affected.
This is undesirable: the actual match between part and counterpart is simply lacking some local evidence of
a more binary nature. The effect of this gap should not depend on the depth of the hole (a gap with the same
surface outline but twice as deep is not twice as bad); so our representation method should not be too sen-
sitive to this either. For the same reason, applying ICP (Iterative Closest Point) algorithm to find a matching
counterpart based on squared errors of corresponding points is not appropriate; some extensions of ICP that
include distance transforms [11] are more in line of what we might employ.

In our hierarchical approach, we need a representationwhere a coarser, simplified version of the fracture
surface maintains its potential fit with a coarser, simplified version of the counterpart, under abrasion-type
noise. Mathematical morphology with its opening and closing scale spaces, of increasing size, is the natural
choice for just that kind of representation. Contrary to linear methods, it is not affected by the depth of miss-
ing parts, but merely by their spatial scale. Such scale spaces have been studied in [2, 3, 15], and it has been
demonstrated that they simplify the shape, when measured in terms of certain descriptive features such as
local maxima [15], or zero-crossings of the curvature [6]. But our intended use for alignment and complemen-
tarity checking appears to be new.

In this paper,we therefore hone standardMathematicalMorphology (MM) to this novel application. First,
we define scale-based morphology of complementary objects (rather than of one object and its background).
Then, we define morphological operations working only on the fracture region of the fragments. We imple-
ment this ‘BoundaryMorphology’ by takingadvantageof theLipschitz nature of the individual fracture facets.
Our new extrusion method uses a single distance transform to simultaneously produce both scaled dilations
and scaled erosions of a fracture facet (as in Figure 1), leading to a simplified representation at every scale.We
briefly discuss how the fracture Lipschitz property also naturally gives quantitative bounds on the detectable
complementarity and collision-free alignment at each scale of our representation, even in the presence of
abrasion. This paper does not perform the actual fitting, but Section 6 outlines how the proposed morpho-
logical representation of the fracture surfaces can be employed in optimal pair-wise alignment.

This paper extends and supersedes our work published in [10]. We now give full technical detail in the
formof lemmas andproofs of the validity of complementarity propertieswithin amasked region in Section 3.1
and 3.2, preparing this by precise notation in Section 2. Section 6 is also new contribution relative to [10].
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2 Basics of Mathematical Morphology
Mathematical morphology (MM) was developed in the 1960s as a non-linear framework to describe shape
in its qualitative (morphological) aspects, with structuring elements acting as probes to describe the shape
hierarchically at different scales.MMflourishedmostly in image (pre)processing, inwhich its set of non-linear
operations produces results that cannot be obtained by linear, convolutional filtering. This effect–oriented
use of MM has obscured the fact that it is actually a powerful language for describing shapes in contact [8].
In this paper, we employ it as such.

Since it is always clear which structuring element we use, we adopt the following notational shorthand.
Let X be a connected set in R3 and S be our structuring element. Then:

Dilation: δ(X) = X ⊕ S = {x + s | ∀x ∈ X, ∀s ∈ S}
Erosion: ε(X) = X ⊖ S = {x | ∀s ∈ S : x + s ∈ X}
Closing: 𝜑(X) = εδ(X) = (X ⊕ S)⊖ S
Opening: 𝛾(X) = δε(X) = (X ⊖ S)⊕ S
Reflection: Š = {s | − s ∈ S}

Reflected dilation: δ̌(X) = X ⊕ Š
Reflected erosion: ε̌(X) = X ⊖ Š

Reflected closing: 𝜑(X) = ε̌δ̌(X) = (X ⊕ Š)⊖ Š

Reflected opening: 𝛾(X) = δ̌ε̌(X) = (X ⊖ Š)⊕ Š

With this notation, the underlying principles of MM [23] that we will employ can be summarized as follows:

(B1) Duality: Erosion (opening) and dilation (closing) are dual operations relative to complementation (de-
noted X → Xc) of the sets they act on. This means that they satisfy:

ε(X)c = δ̌(Xc) and δ(X)c = ε̌(Xc)
𝛾(X)c = 𝜑(Xc) and 𝜑(X)c = 𝛾(Xc)

(B2) Distributivity: The dilation is distributive over union and the erosion is distributive over intersection:

δ(X ∪ Y) = δ(X) ∪ δ(Y)
ε(X ∩ Y) = ε(X) ∩ ε(Y)

but the converse statements are weaker:

δ(X ∩ Y) ⊆ δ(X) ∩ δ(Y)
ε(X ∪ Y) ⊇ ε(X) ∪ ε(Y)

(B3) Local Knowledge Principle : Morphological operations satisfy the "local knowledge principle". Shapes
are usually seen through a window (e.g, image frame), within which MM is restricted:

∀ bounded M, ∃ bounded M* : [Ψ(X ∩M)] ∩M* = Ψ(X) ∩M*

In words, for any bounded window M in which we want to define a morphological transformation Ψ(X),
there exists a bounded windowM*, in which the knowledge of X is sufficient to locally perform the trans-
formation Ψ .
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3 Complementarity Preserving Scale Space
Consider a fracture between two fragments X and Y in perfect alignment (or, if you prefer, consider a newly
developed crack in an object). Within a well-chosen mask M (such as the part of space the object volume
occupies), the two fragments X and Y, viewed as sets, are almost complementary in the usual MM sense, with
the fracture area being ambiguous (does it belong to X or Y?). In an implementation such an infinitely thin
layer is not going tomake a difference, so we arbitrarily choose X to be a closed set and Y to be open. Then the
M-restricted parts of X and Y, XM(= X∩M) and YM(= Y∩M) are two complementary sets withinM (XcM = YM).
The properties of exact complementarity (no overlap, no gaps) can then be algebraically formulated as:

No Overlap ⇐⇒ Non-Intersection: XM ∩ YM = ∅ (1)
No Gaps ⇐⇒ Completeness: XM ∪ YM = M (2)

In our work, one does not acquire the fragments in alignment, or in perfect condition, or even together with
their counterpart. We choose MM scale spaces to process the fracture region of each of the fragments sep-
arately, producing a simplified representation for each fracture facet of each object at a range of scales ρ.
Morphological scale spaces are well suited to this, since they can simplify objects while closely maintaining
local complementarity, even when objects are slightly damaged (as we will discuss in Section 5). Perform-
ing erosions or dilations would change the objects considerably, so we prefer to use openings and closings
to process the fragments (even though much essential structure is already contained in eroded and dilated
versions).

The complementarity of two exactly fitting objects (within a Mask M) and their morphological opening
(𝛾) and closing (𝜑) may thus be summarized with the following schema:

𝛾(XM) ⊆ XM ⊆ 𝜑(XM)
⇕ cM* ⇕ cM* ⇕ cM*
𝜑(YM) ⊇ YM ⊇ 𝛾(YM)

(3)

Here cM* refers to complementarity within a more restricted mask M* containing the common fracture of
X and Y. This ‘well-chosen’ actually hides some essential details, since masking does not commute with
morphology (e.g., 𝜑ρ(XM) ≠ (𝜑ρ(X))M). We refine this procedural sketch in the following section.

3.1 Masked MM

Before we move to the scale space complementarity, we need intermediate results on the effects of masking
morphological operations when applied to one object only (independent of its complementary counterpart).
The setup will be that within amaskM we have only X∩M available. We are interested in the largest possible
regionM* in which the results of our operations are identical to these operations applied to the unmasked X.
So our results will have the form:

α(X ∩M) ∩M* = α(X) ∩M* (4)

for each operation α, with the post-masking setM* to be determined. Therefore the lemmaswill all be specific
instances of the principle of local knowledge (B3).

For many specific examples of X andM, the masking byM does not really interact with operations on X.
For instance, if X is a point at the origin, and M is a large set enclosing the origin, then small dilations will
satisfy δ(X ∩ M) = δ(X). In this case M* = M would suffice. However, if just outside M there are elements of
the set X, these will dilate into the mask M, and the identity then only holds in a shrunken version of M; in
fact, optimally shrunken to ε̌(M), as we will show below in Lemma 3.2. In our typical use of masking, M will
select a part of X (it is meant to focus on a fracture facet of an artifact), so the precise delimiting of the validity
matters. We are therefore interested in lemmas that hold universally, for all X and M. To formulate this more
precisely, let us introduce the weak notion of ‘necessity’ required to formulate the lemmas.
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Wewill call a parametrized set a ‘generally necessary lower bound’ for the validity of a theorem involving
sets X andM, if for all X and allM, there is no smaller set forwhich the theoremholds. In order to demonstrate
that a particular set is a generally necessary lower bound, it suffices to show a specific choice of X and M in
which masking of the result by a larger set would make the equality invalid.

Lemma 3.1. Formasked erosion, the generally necessary lower bound is ε(M), i.e. ε(X∩M)∩ε(M) = ε(X)∩ε(M),
for all X and M.

Proof. Sufficiency is straightforward from the commutation and distributivity properties of the operations of
erosion and intersection:

ε(X) ∩ ε(M) = ε(X) ∩ ε(M) ∩ ε(M) = ε(X ∩M) ∩ ε(M).

We give a critical example to demonstrate the general necessity in 1D. Consider a mask M = (−∞, 0), the
half line left of zero, and an object X = (−∞, 0], an interval that includes the point at zero. Picking as our
structuring element the asymmetric 1-sphere B = [−ρ, 0], we find that ε(X) equals (−∞, −ρ], so it includes the
point at −ρ. Yet ε(X∩M) equals (∞, −ρ), and therefore does not include this point.We can precisely eliminate
this point by limiting the post-masking of the results by M* = ε(M), and no more severe limitation than this
is needed.

Our counterexample to prove the general necessity of the lower bound was taken from 1D, for clarity.
This is more universal than it may seem. It has been shown that the boundary points that can possibly be
present in the result of erosions (or dilations) emanate along straight lines from the original set boundaries,
as the structuring element scales (see [27], Section IV). In morphology in n dimensions, there will always be
at least one critical 1-dimensional propagation direction that determines the lower bound of validity, through
the effect most purely exposed in this 1D counterexample. �

Lemma 3.2. For masked dilation, the generally necessary lower bound is ε̌(M), i.e. δ(X ∩ M) ∩ ε̌(M) = δ(X) ∩
ε̌(M), for all X and M.

Proof. We first show sufficiency of the bound:

δ(X) ∩ ε̌(M) = δ((X ∩M) ∪ (X ∩Mc)) ∩ ε̌(M) (by X = (X ∩M) ∪ (X ∩Mc))
= (δ(X ∩M) ∪ δ(X ∩Mc)) ∩ ε̌(M)
= (δ(X ∩M) ∩ ε̌(M)) ∪ (δ(X ∩Mc) ∩ ε̌(M))

The second term is empty by duality between dilation and erosion:

δ(X ∩Mc) ∩ ε̌(M) ⊆ (δ(X) ∩ δ(Mc)) ∩ ε̌(M)
= δ(X) ∩ (ε̌(M))c ∩ ε̌(M)
= δ(X) ∩ ∅

= ∅

So it follows that
δ(X ∩M) ∩ ε̌(M) = δ(X) ∩ ε̌(M)

The general necessity of the masking by ε̌(M) can be established by giving an example in which no larger
mask (i.e., smaller eroded mask) would work to preserve the identity. In 1D, consider a mask M = (−∞, 0),
the half line left of zero and an object X = {0} (the point at the origin). Clearly X ∩ M = ∅, so to preserve the
identity δ(X ∩ M) ∩ M* = δ(X) ∩ M*, the right hand side should be empty as well. Picking as our structuring
element the asymmetric 1-sphere B = [−ρ, 0], we find that δ(X) extends to the point −ρ into M; therefore M*

needs to extend at least as far, and this is indeed what the choice M* = ε̌(M) minimally does. This argument
can be extended to n dimensions by considering any 1-D direction in those spaces. �
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Lemma 3.3. The universal equivalence of closing before and after masking by M is limited by the generally
necessary lower bound εε̌(M), i.e. 𝜑(X ∩M) ∩ εε̌(M) = 𝜑(X) ∩ εε̌(M) for all X and M.

Proof. Sufficiency:
𝜑(X) ∩ εε̌(M) = εδ(X) ∩ εε̌(M)

= ε(δ(X) ∩ ε̌(M))
= ε(δ(X ∩M) ∩ ε̌(M)) (by Lemma 3.2)
= εδ(X ∩M) ∩ εε̌(M)
= 𝜑(X ∩M) ∩ εε̌(M)

Necessity of this post-masking lower bound for general X andM is demonstrated by the following 1D example
on the real line. Let M = (−∞, 0) (the half line), and X = {0} ∪ (−∞, −2ρ). Then with B = [−ρ, ρ] (a closed
interval), the closing of the two components of X equals the interval𝜑(X) = (−∞, 0], but𝜑(X∩M) = (−∞, −2ρ).
The largest masking in which the non-empty parts of these sets coincide is by the open interval (−∞, −2ρ),
which is indeed εε̌(M). �

Lemma 3.4. The universal equivalence of opening before and after masking by M is limited by the generally
necessary lower bound ε̌ε(M), i.e. 𝛾(X ∩M) ∩ ε̌ε(M) = 𝛾(X) ∩ ε̌ε(M) for all X and M.

Proof. Sufficiency:

𝛾(X) ∩ ε̌ε(M) = δε(X) ∩ ε̌ε(M)
= δ(ε(X)) ∩ ε̌(ε(M))
= δ(ε(X) ∩ ε(M)) ∩ ε̌(ε(M))
(by applying Lemma 3.2 on ε(X) and ε(M) instead of X and M respectively)
= δ(ε(X ∩M)) ∩ ε̌ε(M)
= 𝛾(X ∩M) ∩ ε̌ε(M)

General necessity for the opening follows the same principle as for closing, but now with X = {0, −2ρ}c (a
set of two point holes), for M = (−∞, 0) and B = [−ρ, ρ]. �

Actually, the post-masking validity regions of opening and closing are identical, since we have:

Lemma 3.5. εε̌ = ε̌ε

Proof.
ε̌ε(A) = (A ⊖ S)⊖ Š

= A ⊖ (S ⊕ Š)
= A ⊖ (Š ⊕ S)
= (A ⊖ Š)⊖ S
= εε̌(A)

�

For notation convenience, we will denote both εε̌ and ε̌ε by ε2, which better shows their equality. In fact the
resulting structuring element has interesting properties:

Lemma 3.6. The structuring element S ⊕ Š involved in ε2 is symmetrical and contains the origin.

Proof. S ⊕ Š = {x = b1 − b2 | b1, b2 ∈ S} so choosing b1 = b2 gives x = 0, and swapping b1 and b2 shows
that −x also belongs when x does. �

This implies that the post-masking region for opening and closing only shrinks the sets symmetrically but
does not displace them, even for general S.
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3.2 Masked Complementarity

In this section we prove that when originally there was exact complementarity between X and Y within a
mask M (i.e, XcM = YM), then exact complementarity still holds between 𝜑(X) and 𝛾(Y), or between 𝛾(X) and
𝜑(Y), but is only guaranteed within a doubly eroded mask M* = ε2(M). This is important to establish before
we move into MM scale space, where the operations will be performed with scaled version of the structuring
element S. It shows precisely how the validity region depends on S and its scale.

Lemma 3.7. For erosion and dilation, the non-intersection property (equation 1) holds within the entire M, i.e.
δ(XM) ∩ ε̌(YM) = ∅ and ε(XM) ∩ δ̌(YM) = ∅.

Proof.
δ(XM) ∩ ε̌(YM) = δ(X ∩M) ∩ ε̌(Xc ∩M)

= δ(X ∩M) ∩ ε̌(M) ∩ ε̌(Xc)
= δ(X) ∩ ε̌(M) ∩ ε̌(Xc) (by Lemma 3.2)
= ε̌(M) ∩ (δ(X) ∩ (δ(X))c)
= ε̌(M) ∩ ∅

= ∅

Similarly,
ε(XM) ∩ δ̌(YM) = ∅

�

Lemma 3.8. For opening and closing, the non-intersection property (equation 1) holds within the entire M, i.e.
𝜑(XM) ∩ 𝛾(YM) = ∅ and 𝛾(XM) ∩ 𝜑(YM) = ∅.

Proof.
𝜑(XM) ∩ 𝛾(YM) = 𝜑(X ∩M) ∩ 𝛾(Xc ∩M)

= ε(δ(X ∩M)) ∩ δ̌(ε̌(Xc ∩M))

⊆ ε(δ(X) ∩ δ(M)) ∩ δ̌(ε̌(Xc) ∩ ε̌(M))
= 𝜑(X) ∩ 𝜑(M) ∩ 𝛾(Xc) ∩ 𝛾(M)
= (𝜑(M) ∩ 𝛾(M)) ∩ (𝜑(X) ∩ 𝛾(Xc))
= (𝜑(M) ∩ 𝛾(M)) ∩ (𝜑(X) ∩ (𝜑(X))c)
= (𝜑(M) ∩ 𝛾(M)) ∩ ∅

= ∅

Similarly,
𝛾(XM) ∩ 𝜑(YM) = ∅

�

In contrast to this universal validity of non-intersection within M, the completeness property needs to be
restricted, as shown by the following lemmas.

Lemma 3.9. For dilation and erosion, the completeness property (equation 2) holds only within ε̌(M), i.e.
[δ(XM) ∪ ε̌(YM)]ε̌(M) = ε̌(M) and [ε(XM) ∪ δ̌(YM)]ε̌(M) = ε̌(M) and no larger area provides general validity.
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Proof. Sufficiency of limiting by ε̌(M):

[δ(XM) ∪ ε̌(YM)]ε̌(M) = [δ(XM) ∪ ε̌(YM)] ∩ ε̌(M)
= [δ(X ∩M) ∪ ε̌(Xc ∩M)] ∩ ε̌(M)
= [δ(X ∩M) ∩ ε̌(M)] ∪ [ε̌(Xc ∩M) ∩ ε̌(M)]
= [δ(X) ∩ ε̌(M)] ∪ [ε̌(Xc) ∩ ε̌(M)] (by Lemmas 3.2 and 3.1)
= [δ(X) ∪ ε̌(Xc)] ∩ ε̌(M)
= [δ(X) ∪ (δ(X))c] ∩ ε̌(M)
= ε̌(M)

Similarly,
[ε(XM) ∪ δ̌(YM)]ε̌(M) = ε̌(M)

Necessity in the sense of ‘generally necessary lower bound’ follows from the general necessity of the ero-
sion and dilation masking of Lemmas 3.1 and 3.2. �

Lemma 3.10. For closing and opening, the completeness property (equation 2) holds within a further shrunken
area ε2(M), i.e. [𝜑(XM) ∪ 𝛾(YM)]ε2(M) = ε2(M) and [𝛾(XM) ∪ 𝜑(YM)]ε2(M) = ε2(M) and no larger area provides
general validity.

Proof. Sufficiency of limiting by ε2(M):

[𝜑(XM) ∪ 𝛾(YM)]ε2(M) = [𝜑(XM) ∪ 𝛾(YM)] ∩ ε2(M)
= [𝜑(X ∩M) ∪ 𝛾(Xc ∩M)] ∩ ε2(M)
= [𝜑(X ∩M) ∩ ε2(M)] ∪ [𝛾(Xc ∩M) ∩ ε2(M)]
= [𝜑(X) ∩ ε2(M)] ∪ [𝛾(Xc) ∩ ε2(M)] (by Lemmas 3.3 and 3.4)
= [𝜑(X) ∪ 𝛾(Xc)] ∩ ε2(M)
= [𝜑(X) ∪ (𝜑(X))c] ∩ ε2(M)
= ε2(M)

Similarly,
[𝛾(XM) ∪ 𝜑(YM)]ε2(M) = ε

2(M)

Necessity in the sense of ‘generally necessary lower bound’ follows from the general necessity of the opening
and closing masking of Lemmas 3.3 and 3.4. �

3.3 Ball Scale Spaces for Archaeology

Wewill not needMM in its full generality, whichwould allow one to choose a structuring element for all basic
operations to affect the directions and extent of dilation and erosion (and hence of closing and opening). In
our archaeological context, we assume that the objects are placed in arbitrary orientation, and that abrasion
(by wear or wind) has no preferential direction. As a consequence, we should perform all our morphological
operations with structuring elements that are balls (filled spheres), of a specified radius ρ as the effective
scale. We now refine our notation to be specific on the radius and use ρ as a subscript to our δ as in δρ. The
balls we use are convex, symmetric and contain the origin; this simplifies our treatment since we no longer
need to distinguish between S and Š, and consequently ε and ε̌ etc.

At a scale ρ within a suitably chosenmask ε2ρ(M), the opened version 𝛾ρ(X) will be complementary to the
closed version 𝜑ρ(Y), and vice versa. The closing 𝜑ρ(X) simplifies the local geometry of the fracture X at its
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valleys, and the opening 𝛾ρ(Y) does the same to Y at its peaks. Therefore, the complementarity of 𝜑ρ(X) with
𝛾ρ(Y) becomes less specific in those areas, and vice versa. To maintain specificity of both peaks and valleys
of the common fracture surface, we must therefore compute both opening 𝛾ρ(X) and closing 𝜑ρ(X) for each
fragment X. Since both opening and closing are increasing, coarser levels of the scale space are guaranteed
to contain less detail, thus enabling the hierarchical approach.

For different scales R and ρ with R > ρ, the complementarity and containment relationships illustrated
by schema 3 can now be extended as follows:

𝛾R(XM) ⊆ 𝛾ρ(XM) ⊆ XM ⊆ 𝜑ρ(XM) ⊆ 𝜑R(XM)
⇕ cR ⇕ cρ ⇕ c ⇕ cρ ⇕ cR

𝜑R(YM) ⊇ 𝜑ρ(YM) ⊇ YM ⊇ 𝛾ρ(YM) ⊇ 𝛾R(YM)
(5)

Here cρ is a shorthand for cε2ρ(M) and ε2ρ(M) = ερ(ε̌ρ(M)) = ε̌ρ(ερ(M)), which is equivalent to erosion of M by
a ball of twice the radius (ε2ρ = ε2ρ).

4 Fracture Morphology

Figure 2:Morphological opening of a volumetric broken object at 4 different scales.

Consider a broken vase producing thin sherds as fragments. Volumetric morphological simplification of
the fragments would be limited in scale by their thickness: an opening by a ball with a radius ρ of more
than half this thickness would results in empty sets, (see Figure 2), which would only be complementary to
their counterpart in a trivial way. Since the fractures themselves have informative morphological structure
transcending this scale, we design in this section a way to focus the morphological processing purely on the
fracture surface (rather than on the fragment volume). This should suffice for our puzzle, since whether two
broken fragments can be refit locally depends on the complementary shape of their fractures only.

4.1 Boundary Morphology

In Section 3, we had masked objects XM and YM, with exact complementarity within a chosen mask M (and
a slight issue of how we treat their common boundary fracture F). Now consider only one of them, no longer
in contact, and investigate how to compute its openings and closings. We are only interested in the effect on
F, not on the remainder of the object volume within M.

F is a boundary, not a volume, and the classical mathematical morphology does not apply immediately.
We first define what we mean by applying mathematical morphology to a boundary. Let us call it ‘Bound-
ary Morphology’ and denote its operations by an over-bar. Consider a general object A of which we take the
boundary ∂A (and ignore the masking effects for the moment). As we have seen, for true mathematical set
complementarity some objects may be open sets, others closed sets. We need to take the boundary of either,
so wewill always close the set and then apply the usual boundary operator ∂ to define our boundary operator
(which we denote by ∂ ):

∂ A = ∂A (6)

Thus ∂ A returns the set of points of A that have neighbours in Ac.
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In order to distinguish erosion and dilation, we need to make the boundary oriented, for instance by
denoting the outward pointing normal at each location. We assume that the result of the boundary operator
∂ includes this allocation of normal directions (and hence so does ∂ ). This orientation should change to
its opposite when we consider the boundary of the complement. To more easily denote this, we write the
complement as the prefix operator c . We then have:

c ∂ A ≡ ∂ c A (= ∂ Ac), (7)

which defines the complementation c of the boundary.
We define what it means to dilate and erode a boundary, defining operators δ and ε in terms of classical

volumetric operators by:
δ ∂ A ≡ ∂ δA and ε ∂ A ≡ ∂ εA. (8)

It now follows that we can perform a reflected boundary erosion as a boundary dilation on the complemented
(oppositely oriented) boundary:

δ ∂ A = ∂ δA = ∂ c ε̌c A = c ∂ ε̌c A = c ε̌ ∂ c A = c ε̌ c ∂ A, (9)

which implies that
ε̌ = c δ c and δ̌ = c ε c . (10)

In fact, this is merely the duality between dilation and erosion, extended to their boundary versions (with c
playing the role of complementation). So oncewe candilate a boundary,we canuse that capability to produce
both the dilation δ and the reflected erosion ε̌ (by doing dilation on c ∂ A, the oppositely oriented boundary,
and complementing the result):

This can be easily extended to boundary closing 𝜑 and opening 𝛾 defined as:

𝜑 ∂ A ≡ ε δ ∂ A and 𝛾 ∂ A ≡ δ ε ∂ A, (11)

for it follows from eqs. (9) and (10) that we can also perform a reflected boundary opening as a boundary
closing on the complemented boundary:

𝜑 ∂ A = ε δ ∂ A = c δ̌ c δ ∂ A = c δ̌ ε̌ c ∂ A = c 𝛾 c ∂ A, (12)

which implies that
𝛾 = c 𝜑 c and 𝜑 = c 𝛾 c . (13)

For symmetric structuring elements like balls, we can ignore the checkmarks within the aboveMMnotations.
Now let us relate this to each of the objects X and Y within amaskM. Themask is chosen to focus on (part

of) the common fracture F. With X and Y in perfect contact, the set F is simply F = X ∩ Y ∩ M (the overbar
denoting set closure). Considering only the object X in isolation, for the contact we focus on the part of its
boundary masked byM. We turn this point set into an oriented boundary facet for X, borrowing the outward
pointing normals of X at the chosen locations. This defines a facet FX:

FX ≡ ∂(X ∩M). (14)

Some care is needed: this definition produces only points of the desired F if M itself does not contribute to
the boundary. Therefore, we have to take the mask M as an open set. Similarly, one defines FY ≡ ∂(Y ∩M).

One would then like to define the boundary dilation δ through:

δ (∂(X ∩M)) = ∂(δ(X) ∩M), (15)

or, denoting the masking by M as an operator,

δ ∂M = ∂Mδ, (16)

which looks like the natural extension of the unmasked case of eq. (8). But after dilation, the masking by
a general M could crop parts of the dilated boundary facet that should have been included, since they were



56 | Hanan ElNaghy and Leo Dorst

caused by points of the original boundarywithin themask. This issue can be resolved simply, by constructing
masks M for boundary MM only as the union of normal line segments emanating from the boundary facet
FX, since the differential equations of morphology transport points along straight lines in the direction of the
normals [27].

With FX defined by eq. (14), we have produced a proper oriented boundary facet, which can take the place
of ∂ A of eq. (6) in the derivations above. We can then define boundary morphology in this manner, with the
complementarity relationships like FY = c FX indicating that FY and FX are the same set of points, but with
opposite orientation. This permits us to translate the volumetric schema 5 to describe the complementarity
of two exactly fitting fracture boundaries FX and FY (at scales R and ρ with R > ρ), as follows:

𝛾RFX ⊆ 𝛾ρFX ⊆ FX ⊆ 𝜑ρFX ⊆ 𝜑RFX
⇕ cR ⇕ cρ ⇕ c ⇕ cρ ⇕ cR
𝜑RFY ⊇ 𝜑ρFY ⊇ FY ⊇ 𝛾ρFY ⊇ 𝛾RFY

(17)

Here cρ is the boundary complementation within a mask ε2ρ(M).

4.2 The Lipschitz Condition

Figure 3: (a) Fracture surface with blue local normal directions. (b) Mapping of the normals to a unit sphere of directions. (c) The
minimum bounding sphere (in green) determines the minimum bounding cone on the unit sphere of directions (in cyan).

Terracotta is uniform and brittle. We assert that it fractures rather simply such that there is at least one
3D direction from which the whole fracture facet is completely visible, i.e. a ray in that direction emanating
from each point of the fracture will not encounter any other point of that local fracture facet. Accordingly, a
given fracture facet can be represented as a function (a Monge patch) within an orthogonal coordinate frame
taking a visibility direction as function axis (while noting that another fracture facet of the same fragment
may require a different coordinate frame to be seen as a function). By choosing our frames well, the visibility
assumption of the surface can be related to the ‘Lipschitz condition’ of the corresponding function [24].

For any pair of points on the graph of a slope-limited Lipschitz function with slope s, the absolute value
of the slope of the line connecting them is always less than s (i.e., the Lipschitz constant). As a consequence,



Hierarchical Simplification of Archaeological Fragments | 57

there exists a double cone whose vertex can be moved along any such Lipschitz-continuous function, so that
it always remains entirely visible from the principal direction of the cone while the rest of the function is
completely outside the cone. For a local fracture to meet the visibility condition, it should meet the Lipschitz
condition over its entire domain.

To compute the maximum Lipschitz slope s, we first collect the local normal vectors of the fracture facet
on a unit sphere of directions, and then fit the smallest possible cone that contains this set (see Figure 3). The
axis of this cone we call the cone direction, and the opening angle we call the cone angle. Let us use the cone
direction as the principal direction to align the fracture facet, so that it can be described as a Lipschitz func-
tion. The corresponding Lipschitz principal direction acts as the ‘average breakage direction’ for the whole
fracture facet. The fracture function is then bounded in Lipschitz slope s, which is the cotangent of the cone
angle.

In practice, the Lipschitz condition appears to intrinsically hold for each of our terracotta fracture facets
with a Lipschitz slope of approximately 1. Even if it does not hold, we can always artificially separate the
fracture regions by the Faceting preprocessing procedure [9] that delivers the piecewise Lipschitz facets of
the fracture region.

4.3 Extrusion

Figure 4: Extrusion of a fracture facet ∂ F along the Lipschitz principal direction, generating a volume (cylinder) with ∂ F as its
top red surface, and the oppositely oriented c ∂ F as its bottom aquamarine surface.

The fracture surfaces can thus be guaranteed to be locally Lipschitz. Therefore, we can generate a thick-
ened fracture volume by extruding the facet along such visibility direction without self-intersection. Such an
extrusion effect is equivalent tomaking two copies of the fracture surface bounded by a generalized cylinder:
one with original (non-inverted) normals ∂ F and one with inverted normals c ∂ F (see Figure 4). The outward
propagation of the copywith non-inverted normals is the fracture surface dilation (δρ), while the propagation
of the one with inverted normals is the erosion (ερ), by eq. (10). By a subsequent inward propagation of the
resulting expanded surfaces, by the same amount ρ, one then acquires the closing (𝜑ρ) and the opening (𝛾ρ)
of the fracture.

Focusing our morphological simplification on the extruded fracture volume has the following advan-
tages:

(a) Extending the functional morphological scale (ball radius ρ) beyond the minimum thickness of the ar-
chaeological object by only needing to perform the closing operation.

(b) Permitting simultaneous propagation of the fracture surface to both sides, thus allowing the production
of MM opened and closed surfaces in one go.

(c) Avoiding the dilation of elements outside the mask (which could affect the outcome within the mask) by
surrounding the extruded surface by sufficient empty space completely isolated from outside influences.

(d) Avoiding needless processing of the non-fracture regions of the object.
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4.4 Distance-Transform Based MM Implementation

Figure 5: Distance field computation, two cross sections are shown.

Weobtain our data as 3Dmeshes, so it would be natural to apply the operations of boundarymorphology
to fracture facets represented directly as extruded 3D meshes. However, applying morphological operations
directly on a mesh representation is not straightforward (the dilation and erosion operations lead to many
additional vertices as themesh faces start intersecting [13], and theball structuring elements addmanymore).
At this point of our narrative, it would seem that Point Morphology [5] is also a good candidate; however we
will see in Section 5 that we need the structure of the distance field to determine sensible morphological
features for pair-wise alignment, rather than just the simplified surfaces by themselves.

An alternative implementation ofmorphology, especiallywhendone in a scale space context, is bymeans
of the isosurfaces of distance functions. Since we do want to perform our operations at different scales of a
ball-shaped structuring element, this is especially attractive. Two basic approaches exist: distance transform
considered as a numerical level set in a space of one more dimension [25] or classic distance transform on a
3D grid. We adopted the latter approach which: a) suffices as a straightforward demonstration of the validity
of our concepts and b) enables us to keep track of the original fracture points propagation in the distance
field and their contribution to the generated MM surfaces through what we call the provenance map. This
map specifies the original boundary point(s) to which each point of the MM surface can be traced back. Our
implementation relies on distance transforms in a volumetric representation [28], oriented with the Lipschitz
principal direction along its z-direction. We convert the extruded mesh to binary representation by embed-
ding the fracture surface in a 3D voxelized grid of a well chosen resolution, of step size g. The maximum
outward and inward displacement that could take place due to discretization effects is no more than

√
3 g/2,

since each point is displaced by maximum half the grid size along each of its dimensions. This implies that
distances (and hence MM surfaces) are affected by no more than this amount. The generated grid is padded
with an empty region sufficient to contain the maximally dilated versions of the fracture surfaces. To gen-
erate our distance field, the method proposed by [17] is employed, which calculates the euclidean distance
transform in linear time on a binary voxelized representation of the object as shown in Figure 5. The closing
of the fracture volume with a ball of radius ρ (closing is all we need by virtue of eq. (13)) is performed by first
extracting the outward level set at distance ρ, then re-computing the distance field of the background and
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extracting the inward level set at distance ρ. This generates amaximumerror of
√
3 g for the extracted surface

relative to the true closing.

4.5 MM Surfaces

Figure 6: Closing and opening scale spaces simplifying a fracture with increasing scale ρ.

Intuitively, morphologically closing the entire extruded volume is equivalent to rolling a ball (our chosen
structuring element) over the fracture surface from both sides. The upper rolling (constrained by the frac-
ture peaks) is equivalent to the closing effect, while the lower rolling (constrained by the fracture valleys) is
equivalent to the desired opening effect. At increasingly coarse scales, we compute the closed and the opened
versions of the fracture facet.Moving up the scale space, the generatedMMsurfaces are simpler in shape than
the original fracture they represent while maintaining the fitting (i.e., complementarity) essentials.

Figure 6 shows the closed and opened simplifiedMM surfaces at 6 different scales of a given fracture facet
with 5.8K vertices and 11K faces. The grid resolution is g = 0.2mm of size 119×323×29 and is paddedwith
151 voxels from each side to permit the outward propagation of the fracture surface up to 30 mm without
losing information, thus producing a grid of size 421 × 625 × 331.

The fracture facet Lipschitz computations together with the extrusion and embedding take less than 2
seconds for a mesh of size 10K. The distance field computation time is O(g−3): computing the distance trans-
form for 500×500×500 grid takes at most 1 minute. Extracting the closed and openedMM surfaces takes less
than 50 seconds for the same grid size. In the GRAVITATE system, such times are considered acceptable since
themorphological characterization of the fracture facets of each artifact is an o�ineprocess at ingestion time.
We performed our experiments on an Intel(R) Xeon(R) CPU 2.9 GHz × 8 computer with 256 GB RAM.

5 Inexact Complementarity
In practice, there are many aspects to our data that prevent complementarity from being exact. Fortunately,
using the Lipschitz condition for fracture surface characterization together with MM for hierarchical fracture
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simplification enables us to establish the bounds on the amount of inexactness. In this section, we briefly
discuss the sources causing inexactness and how we expect to treat their associated deviations.

– Abrasion.When a fractal surface as brittle as terracotta is rubbed, this will tend to take off the sharp
local peaks without affecting the valleys. We propose that a reasonable model of such effect is that
the surface undergoes a morphological opening 𝛾α of a small size α.
Assuming this, the opening scale space will be unaffected for ρ > α, since 𝛾ρ(𝛾α(X)) = 𝛾ρ(X) for ρ ≥
α. However, the closing is affected by the abrasion. Therefore, exact complementarity of 𝛾ρ(X′) and
𝜑ρ(Y ′) of the schema in eq. (17) no longer holds for the abraded versions X′ = 𝛾α(X) and Y ′ = 𝛾α(Y),
even if it did for the original X and Y. Nevertheless, the difference is bounded for the Lipschitz
functions we are considering as the fracture facets. A simple sketch of a local sphere of radius α
cappedby aLipschitz cone of slope s shows that themaximal deviation of a possible original surface
and its α-opening is (

√
1 + s2 − 1) ≃ 1

2αs
2. Since X′ does not differ by more than 1

2αs
2 from X, also

𝜑ρ(X′) will not differ from 𝜑ρ(X) by more than this amount. With that in mind, we can still test the
possibility of complementarity, to within this bound, of the opened and closed abraded fractures.

– Fracture Adjacency Effects. Each facet is delineated by an outer border (contour). That border de-
fines the complementarity zone of its processed MM surfaces. In practice, there are two different
kinds of facet borders: fracture-skin border and fracture-fracture border. The former is the contour’s
segment that is adjacent to a facet which belongs to the exterior skin of the original object. By
contrast, a fracture-fracture border occurs when the original fragment is further broken into sub-
fragments, causing the adjacency of more than one fracture facet.
If the facet has only fracture-skin borders, then complementaritywith its counterpart still holds over
the entire surfaces of its simplified MM versions across all scales. For facets with fracture-fracture
borders, one should expect complementarity to holdwithin regions away from the border. But there
is then a scale-dependent zone adjacent to the fracture-fracture borders where the MM surfaces are
no longer guaranteed to be complementary to those of its counterpart. In that zone, the represen-
tation of either part may have been affected by the further breaking. The bounds we can obtain on
this zone under the general assumptions wemade (such as Lipschitz) are weak.We have found that
we can much more specifically delineate it through analysing the provenance map of the distance
transform (defined in Section 4.4). Our current work is on efficient representation of the simplified
scale space surfaces, taking this effect into account.

– Misalignment.Complementarity only exists inperfect alignment of the twocounterparts; anyoffset
in translation or orientation will destroy it. But this effect is not as boolean as eqs. (1) and (2) makes
it appear: the complementarity is quantifiable bymeans of theMM scale spaces. The distance trans-
form method of producing the openings and closings at different scales can be employed to guide
the alignment, from coarser to finer scales, with the separation between one surface’s opening and
closing at each scale giving an indication of reasonable bounds on the fine alignment at that scale
[11].

6 Towards Fitting
The classical way of fitting fracture surfaces is based onmatching significant corresponding features charac-
terizing the fracture surfaces of counter-fitting fragments [4, 14, 21]. These features are mostly detected and
extracted using differential geometric techniques which are linearly sensitive to missing information, as has
been clarified before in Section 1. Such features are not expected to be stable under abrasion and many of
them are not compact enough to allow the cheap hierarchical fitting we are anticipating. In this section, we
introduce our intended morphological features and how they can be structured in a compact scale space
representation that can robustly and cheaply guide our next phase of optimal pairwise alignment.

The key observation is that the closing process results in a surface of which large parts are spherical caps
(see Figure 6, especially the coarser resolutions, and Figure 7). Moreover, as the scale increases, the surface
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Figure 7:Morphological characterization of fracture surfaces through 3D medial axis points. (a) Each medial axis point repre-
senting a part of the surface by a spherical cap at the chosen scale. (b) The 30most relevant feature points and their spherical
caps.

tends to be hierarchically composed of fewer, larger and more clearly separated spherical caps. The centers
of the balls to which these spherical caps belong can be extracted from the provenance map of the distance
transform computation (which specifies which point on the original fracture generated a given point on the
MM scale space surface). In fact, these centers are medial axis points of the complement of the extruded frac-
ture mesh volume. Medial axes are notoriously sensitive to discretization, but they can be made robust [1].
With increasing scale, the ongoing morphological simplification can be characterized in terms of fewer yet
more distinctive medial axis feature points, which can therefore serve as 3D morphological features. More-
over, these points can be tagged by their significance for the MM reconstruction (see Figure 7(a)).

Figure 7(b) is an exploration of this idea. It shows the 30 most distinctive MM feature points which are
capable of representing 30% of the simplified (closed) fracture facet at scale 30 mm. The fracture facet is
the same as in Figure 6, which is about 6 × 2.5 cm size. Moving up in the hierarchical scale space, these
MM feature points are increasingly capable of describing more surface area of the overall simplified fracture
surface. It seems natural to use each cap’s area for weighting the significance of the corresponding feature
point. We thus arrive at the representation of a fracture surface by a set of 3Dweighted points, at well-defined
positions above it (for closing) and below it (for opening), at a certain scale ρ. Such ‘landmarks’ may then
be used to characterize the morphologically simplified versions of the fracture surface at different scales.
We could further reduce themorphological characterization by only keeping themedial axis points at critical
scales, as is usual in linear scale spaces.Wewould then consider replacing our linear time Euclidean distance
transform (based on [17]) by the linear time medial axis chamfer approximation of [19].

According to our simplification framework, amorphological graph characterizing the closing scale space
of a given fracture surface is expected to be very similar to themorphological graph characterizing the opening
scale space of its counter-fitting fracture surface. Alignment of fracture surfaces using morphological graphs
can be done bymeans of using the well-known Procrustes method. One should then use an extended version
of this algorithmwhichallows formissingpoint correspondences. But beforeweperformour alignment in this
way, we are currently studying the reproducibility, stability and robustness properties of the morphological
feature points and the feasibility of computing them directly from the distance field.
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7 Conclusion and Future Work
We have presented morphological simplification of the fracture facets of archaeological fragments based on
their scanned 3Dmesh representation, as a preparatory phase for optimal pair-wise alignment. This is a prob-
lem that lends itself very well to treatment by mathematical morphology, since that framework provides
complementarity-preserving simplification of shapes in a manner that is insensitive to the kind of missing
information and abrasion that we expect in archaeological fragments. We showed what the effect of mask-
ing is on the interpretability of MM results in Sections 3.1 and 3.2 and also how to perform morphology on
boundaries in Section 4.1. The assumption that each fracture facet is a Lipschitz function allowed us to set
up the extrusion method in Section 4.3. The duplicate internal and external copies of the local fracture facet
surface enable computing the opening and closing scale spaces simultaneously, in a volumetric representa-
tion in Section 4.5. The resulting surfaces are simpler, but still contain the essentials of complementarity for
identification and fitting of counterparts. In Section 5, we discussed the sources of inexact complementarity
and how their effects are naturally bounded in our method.

We are currently investigating the compact characterization of the MM scale space surfaces by means of
characteristic scale space medial axis points, computed directly from the distance transform and its prove-
nance map (specifying which points are influential at each location) along the lines sketched in Section 6.
This should allow the use of standard registration algorithms on those morphologically relevant feature
points only. Moreover, we plan to use the provenance map of the distance transform to automatically control
the reliability of those representations when parts of the original fracture facet are missing.
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