7 research outputs found

    Disconnected Skeleton: Shape at its Absolute Scale

    Full text link
    We present a new skeletal representation along with a matching framework to address the deformable shape recognition problem. The disconnectedness arises as a result of excessive regularization that we use to describe a shape at an attainably coarse scale. Our motivation is to rely on the stable properties of the shape instead of inaccurately measured secondary details. The new representation does not suffer from the common instability problems of traditional connected skeletons, and the matching process gives quite successful results on a diverse database of 2D shapes. An important difference of our approach from the conventional use of the skeleton is that we replace the local coordinate frame with a global Euclidean frame supported by additional mechanisms to handle articulations and local boundary deformations. As a result, we can produce descriptions that are sensitive to any combination of changes in scale, position, orientation and articulation, as well as invariant ones.Comment: The work excluding {\S}V and {\S}VI has first appeared in 2005 ICCV: Aslan, C., Tari, S.: An Axis-Based Representation for Recognition. In ICCV(2005) 1339- 1346.; Aslan, C., : Disconnected Skeletons for Shape Recognition. Masters thesis, Department of Computer Engineering, Middle East Technical University, May 200

    Multiresolution signal decomposition schemes

    Get PDF
    [PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis and synthesis. This scheme comprises the following ingredients: (i) the pyramid consists of a (finite or infinite) number of levels such that the information content decreases towards higher levels; (ii) each step towards a higher level is constituted by an (information-reducing) analysis operator, whereas each step towards a lower level is modeled by an (information-preserving) synthesis operator. One basic assumption is necessary: synthesis followed by analysis yields the identity operator, meaning that no information is lost by these two consecutive steps. In this report, several examples are described of linear as well as nonlinear (e.g., morphological) pyramid decomposition schemes. Some of these examples are known from the literature (Laplacian pyramid, morphological granulometries, skeleton decomposition) and some of them are new (morphological Haar pyramid, median pyramid). Furthermore, the report makes a distinction between single-scale and multiscale decomposition schemes (i.e. without or with sample reduction).#[PNA-R9905] In its original form, the wavelet transform is a linear tool. However, it has been increasingly recognized that nonlinear extensions are possible. A major impulse to the development of nonlinea

    MATHEMATICAL MORPHOLOGY BASED CHARACTERIZATION OF BINARY IMAGE

    Full text link

    Morphological operations in image processing and analysis

    Get PDF
    Morphological operations applied in image processing and analysis are becoming increasingly important in today\u27s technology. Morphological operations which are based on set theory, can extract object features by suitable shape (structuring elements). Morphological filters are combinations of morphological operations that transform an image into a quantitative description of its geometrical structure which based on structuring elements. Important applications of morphological operations are shape description, shape recognition, nonlinear filtering, industrial parts inspection, and medical image processing. In this dissertation, basic morphological operations are reviewed, algorithms and theorems are presented for solving problems in distance transformation, skeletonization, recognition, and nonlinear filtering. A skeletonization algorithm using the maxima-tracking method is introduced to generate a connected skeleton. A modified algorithm is proposed to eliminate non-significant short branches. The back propagation morphology is introduced to reach the roots of morphological filters in only two-scan. The definitions and properties of back propagation morphology are discussed. The two-scan distance transformation is proposed to illustrate the advantage of this new definition. G-spectrum (geometric spectrum) which based upon the cardinality of a set of non-overlapping segments in an image using morphological operations is presented to be a useful tool not only for shape description but also for shape recognition. The G-spectrum is proven to be translation-, rotation-, and scaling-invariant. The shape likeliness based on G-spectrum is defined as a measurement in shape recognition. Experimental results are also illustrated. Soft morphological operations which are found to be less sensitive to additive noise and to small variations are the combinations of order statistic and morphological operations. Soft morphological operations commute with thresholding and obey threshold superposition. This threshold decomposition property allows gray-scale signals to be decomposed into binary signals which can be processed by only logic gates in parallel and then binary results can be combined to produce the equivalent output. Thus the implementation and analysis of function-processing soft morphological operations can be done by focusing only on the case of sets which not only are much easier to deal with because their definitions involve only counting the points instead of sorting numbers, but also allow logic gates implementation and parallel pipelined architecture leading to real-time implementation. In general, soft opening and closing are not idempotent operations, but under some constraints the soft opening and closing can be idempotent and the proof is given. The idempotence property gives us the idea of how to choose the structuring element sets and the value of index such that the soft morphological filters will reach the root signals without iterations. Finally, summary and future research of this dissertation are provided

    Application of statistical learning theory to plankton image analysis

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science and Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy At the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2006A fundamental problem in limnology and oceanography is the inability to quickly identify and map distributions of plankton. This thesis addresses the problem by applying statistical machine learning to video images collected by an optical sampler, the Video Plankton Recorder (VPR). The research is focused on development of a real-time automatic plankton recognition system to estimate plankton abundance. The system includes four major components: pattern representation/feature measurement, feature extraction/selection, classification, and abundance estimation. After an extensive study on a traditional learning vector quantization (LVQ) neural network (NN) classifier built on shape-based features and different pattern representation methods, I developed a classification system combined multi-scale cooccurrence matrices feature with support vector machine classifier. This new method outperforms the traditional shape-based-NN classifier method by 12% in classification accuracy. Subsequent plankton abundance estimates are improved in the regions of low relative abundance by more than 50%. Both the NN and SVM classifiers have no rejection metrics. In this thesis, two rejection metrics were developed. One was based on the Euclidean distance in the feature space for NN classifier. The other used dual classifier (NN and SVM) voting as output. Using the dual-classification method alone yields almost as good abundance estimation as human labeling on a test-bed of real world data. However, the distance rejection metric for NN classifier might be more useful when the training samples are not “good” ie, representative of the field data. In summary, this thesis advances the current state-of-the-art plankton recognition system by demonstrating multi-scale texture-based features are more suitable for classifying field-collected images. The system was verified on a very large realworld dataset in systematic way for the first time. The accomplishments include developing a multi-scale occurrence matrices and support vector machine system, a dual-classification system, automatic correction in abundance estimation, and ability to get accurate abundance estimation from real-time automatic classification. The methods developed are generic and are likely to work on range of other image classification applications.This work was supported by National Science Foundation Grants OCE-9820099 and Woods Hole Oceanographic Institution academic program

    Characteristics of a detail preserving nonlinear filter.

    Get PDF
    by Lai Wai Kuen.Thesis (M.Phil.)--Chinese University of Hong Kong, 1993.Includes bibliographical references (leaves [119-125]).Abstract --- p.iAcknowledgement --- p.iiTable of Contents --- p.iiiChapter Chapter 1 --- IntroductionChapter 1.1 --- Background - The Need for Nonlinear Filtering --- p.1.1Chapter 1.2 --- Nonlinear Filtering --- p.1.2Chapter 1.3 --- Goal of the Work --- p.1.4Chapter 1.4 --- Organization of the Thesis --- p.1.5Chapter Chapter 2 --- An Overview of Robust Estimator Based Filters Morphological FiltersChapter 2.1 --- Introduction --- p.2.1Chapter 2.2 --- Signal Representation by Sets --- p.2.2Chapter 2.3 --- Robust Estimator Based Filters --- p.2.4Chapter 2.3.1 --- Filters based on the L-estimators --- p.2.4Chapter 2.3.1.1 --- The Median Filter and its Derivations --- p.2.5Chapter 2.3.1.2 --- Rank Order Filters and Derivations --- p.2.9Chapter 2.3.2 --- Filters based on the M-estimators (M-Filters) --- p.2.11Chapter 2.3.3 --- Filter based on the R-estimators --- p.2.13Chapter 2.4 --- Filters based on Mathematical Morphology --- p.2.14Chapter 2.4.1 --- Basic Morphological Operators --- p.2.14Chapter 2.4.2 --- Morphological Filters --- p.2.18Chapter 2.5 --- Chapter Summary --- p.2.20Chapter Chapter 3 --- Multi-Structuring Element Erosion FilterChapter 3.1 --- Introduction --- p.3.1Chapter 3.2 --- Problem Formulation --- p.3.1Chapter 3.3 --- Description of Multi-Structuring Element Erosion Filter --- p.3.3Chapter 3.3.1 --- Definition of Structuring Element for Multi-Structuring Element Erosion Filter --- p.3.4Chapter 3.3.2 --- Binary multi-Structuring Element Erosion Filter --- p.3.9Chapter 3.3.3 --- Selective Threshold Decomposition --- p.3.10Chapter 3.3.4 --- Multilevel Multi-Structuring Element Erosion Filter --- p.3.15Chapter 3.3.5 --- A Combination of Multilevel Multi-Structuring Element Erosion Filter and its Dual --- p.3.21Chapter 3.4 --- Chapter Summary --- p.3.21Chapter Chapter 4 --- Properties of Multi-Structuring Element Erosion FilterChapter 4.1 --- Introduction --- p.4.1Chapter 4.2 --- Deterministic Properties --- p.4.2Chapter 4.2.1 --- Shape of Invariant Signal --- p.4.3Chapter 4.2.1.1 --- Binary Multi-Structuring Element Erosion Filter --- p.4.5Chapter 4.2.1.2 --- Multilevel Multi-Structuring Element Erosion Filter --- p.4.16Chapter 4.2.2 --- Rate of Convergence of Multi-Structuring Element Erosion Filter --- p.4.25Chapter 4.2.2.1 --- Convergent Rate of Binary Multi-Structuring Element Erosion Filter --- p.4.25Chapter 4.2.2.2 --- Convergent Rate of Multilevel Multi-Structuring Element Erosion Filter --- p.4.28Chapter 4.3 --- Statistical Properties --- p.4.30Chapter 4.3.1 --- Output Distribution of Multi-Structuring Element Erosion Filter --- p.4.30Chapter 4.3.1.1 --- One-Dimensional Statistical Analysis of Multilevel Multi-Structuring Element Erosion Filter --- p.4.31Chapter 4.3.1.2 --- Two-Dimensional Statistical Analysis of Multilevel Multi-Structuring Element Erosion Filter --- p.4.32Chapter 4.3.2 --- Discussions on Statistical Properties --- p.4.36Chapter 4.4 --- Chapter Summary --- p.4.40Chapter Chapter 5 --- Performance EvaluationChapter 5.1 --- Introduction --- p.5.1Chapter 5.2 --- Performance Criteria --- p.5.2Chapter 5.2.1 --- Noise Suppression --- p.5.5Chapter 5.2.2 --- Subjective Criterion --- p.5.16Chapter 5.2.3 --- Computational Requirement --- p.5.20Chapter 5.3 --- Chapter Summary --- p.5.23Chapter Chapter 6 --- Recapitulation and Suggestions for Further WorkChapter 6.1 --- Recapitulation --- p.6.1Chapter 6.2 --- Suggestions for Further Work --- p.6.4Chapter 6.2.1 --- Probability Measure Function for the Two-Dimensional Filter --- p.6.4Chapter 6.2.2 --- Hardware Implementation --- p.6.5ReferencesAppendice

    Application of statistical learning theory to plankton image analysis

    Get PDF
    Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006.Includes bibliographical references (leaves 155-173).A fundamental problem in limnology and oceanography is the inability to quickly identify and map distributions of plankton. This thesis addresses the problem by applying statistical machine learning to video images collected by an optical sampler, the Video Plankton Recorder (VPR). The research is focused on development of a real-time automatic plankton recognition system to estimate plankton abundance. The system includes four major components: pattern representation/feature measurement, feature extraction/selection, classification, and abundance estimation. After an extensive study on a traditional learning vector quantization (LVQ) neural network (NN) classifier built on shape-based features and different pattern representation methods, I developed a classification system combined multi-scale cooccurrence matrices feature with support vector machine classifier. This new method outperforms the traditional shape-based-NN classifier method by 12% in classification accuracy. Subsequent plankton abundance estimates are improved in the regions of low relative abundance by more than 50%. Both the NN and SVM classifiers have no rejection metrics. In this thesis, two rejection metrics were developed.(cont.) One was based on the Euclidean distance in the feature space for NN classifier. The other used dual classifier (NN and SVM) voting as output. Using the dual-classification method alone yields almost as good abundance estimation as human labeling on a test-bed of real world data. However, the distance rejection metric for NN classifier might be more useful when the training samples are not "good" ie, representative of the field data. In summary, this thesis advances the current state-of-the-art plankton recognition system by demonstrating multi-scale texture-based features are more suitable for classifying field-collected images. The system was verified on a very large real-world dataset in systematic way for the first time. The accomplishments include developing a multi-scale occurrence matrices and support vector machine system, a dual-classification system, automatic correction in abundance estimation, and ability to get accurate abundance estimation from real-time automatic classification. The methods developed are generic and are likely to work on range of other image classification applications.by Qiao Hu.Ph.D
    corecore