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Abstract 

Nonlinear image filters, especially robust estimator based filters, are renowned for their 
excellent performance in impulsive noise suppression while preserving edges. However, most 
nonlinear filters have poor detail preserving properties. This is undesirable because details as 
well as edges carry important information for segmentation and analysis of an image. 
Currently, all detail preserving image filters such as the multistage median filter and the FIR-
median hybrid filter, are median based. These filters take into account the geometric structures 
of a signal by utilizing subfilters in different orientations. 

Researchers have been developing nonlinear image filters which are purely driven by 
the geometry of a signal. Mathematical morphology, which is a set-theoretical methodology 
deals with the geometrical features of a signal, seems to be a solution. However, 
morphological filters which are based on the opening and closing transformations are hardly 
detail preserving. 

In this thesis, a novel detail preserving filter called the Multi-structuring Element 
Erosion Filter which is based on the erosion operator of mathematical morphology is 
proposed. Impulsive noises are usually spatially uncorrelated with their surroundings, 
however, details and edges maintain high dependencies among neighbouring pixels. In our 
filter, a collection of structuring elements which are two-dimensional binary signal pattern 
with predetermined size and shape are designed. Details and edges are represented as unions 
of different combinations of these structuring elements. A detail will be preserved if at least 
a combination of structuring elements can be found. Therefore, impulses can be distinguished 
from useful pictorial information and can be removed. Moreover, as the filter relies heavily 
on the geometrical correlation of a signal, pixels filtered by the multi-structuring element 
erosion filter are also highly correlated to their neighbourhoods. This is different from some 
median based filters which produces visually uncorrelated outputs. 
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Chapter 1 Introduction 

1.1 Background - The Need for Nonlinear Filtering 

Images are two-dimensional representations of objects. Nowadays numerous 
applications using images are found around the world. Engineers and scientists analyze images 
and produce useful information in areas like weather forecasting, geographical mapping and 
space probing. Moreover, digital image processing also plays an important role in our daily 
life. Television broadcasting, transmission of facsimile images and teleconferencing provide 
us a world wide communication. Medical images help specialists in analyzing and detecting 
disease in patients. 

Images are captured by devices such as charged coupled device (CCD) camera and 
photoelectron tubes like vidicon camera [Lim90]. An image is usually stored and transmitted 
before recognition and analysis is taken place. Therefore, it is susceptible to corruption by 
various kinds of noise. Thermal noise and photoelectron noise may plague an image during 
image acquisition. The former is usually a white Gaussian noise with zero mean which is 
produced by the various component of electronic circuits. Photoelectron noise is created by 
random fluctuation of the number of photons on the light sensitive surface of the detector 
[Pitas90] which is approximated by a Poisson distributed noise. During the transmission and 
storage of digital images, another type of noise known as the salt-and-pepper noise may be 
generated [Pitas92]. This kind of noise appears as black and/or white impulses on the image. 
Film-grain noise [Pitas90] [Jain89] and speckle noise [Jain89] [Safa89] [Pitas90] are signal 
dependent noise. Film-grain noise occurs in the development of photographic film due to 
silver precipitation. The noise has a Poisson distribution and becomes a Gaussian distribution 
in a limiting case. Speckle noise exists in the coherent imaging of objects and is 
multiplicative in nature. Although a variety of noise can be observed on an image, different 
visual effects are perceived. The human visual system is very complicated and is still not fully 
understood, research indicates that the human eyes are sensitive to high frequency 
information. Therefore, abrupt changes in contrast are stimulating. As a result, the presence 
of salt-and-pepper noise is perceptually more uncomfortable than the presence of Gaussian 
and Poisson noise. 
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Image coding, segmentation, recognition and analysis are some typical operations on 
digital images. Noise should be removed before these tasks can be proceeded. One of the 
objectives of image filtering is therefore the suppression of noise in images. Linear filters, 
such as the moving average filters are applied successfully in many aspects. However, their 
performance in long tailed noise, such as Poisson and salt-and-pepper noise are not 
satisfactory. Furthermore, linear filters are notorious for blurring edges and destroying fine 
details such as texture and thin lines which are important information on an image. 
Consequently, researchers have been developing new filtering techniques for removing noise 
in an image while preserving edges and details. As linear methods are not adequate, nonlinear 
techniques are used. 

1.2 Nonlinear Filtering 

A system is nonlinear if the superposition principle does not hold [Oppen83]. A linear 
system can be decomposed into several subsystems. The output of the overall system is the 
sum of those of its subsystems. However, an equality between the overall system and the sum 
of the subsystems may not exist for nonlinear systems. 

Several families of nonlinear filters are developed. Robust estimation theory [HuberSl] 
has been extensively applied in nonlinear filtering. The principle of these filters is the 
correlation of neighbouring image data. The values of the neighbourhoods of a point are of 
similar magnitudes. As salt and pepper noise takes the maximum and minimum gray levels 
respectively so corruption by salt-and-pepper noise can be distinguished owing to the 
difference in gray values. A robust estimator rejects these outliers. The median filter is the 
best known filter of this family. One-dimensional median filter is found to be edge preserving, 
but the two-dimensional median filter is not. A lot of efforts have been put to improve the 
edge and detail preserving properties of median filters. Modifications of median filters, such 
as the weighted median filter [HuangSl] [Harja91], the separable median filter [NarSl], the 
max/median filter [Arce87], the multistage median filter [Neuvo87] [Arce89] and the finite 
impulse response median hybrid filter [Neuvo87] [Neuvo87a] [Neuvo90] are developed. Apart 
from the median, rank order statistics are also applied [Nodes82] [Lee87] [Palm89] [Bovik89] 
[Bovik88]. Other robust estimators [DavidSl], such as the maximum likelihood estimator 
[Lee85] and the rank test estimator [Crin85] have been used. 
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One approach to achieve filtering is to utilize the geometric structure of a signal. 
Mathematical morphology was developed to describe the geometrical features of a binary 
image. A digital binary image can be represented as a set in Z l A simpler and smaller set, 
which is called a structuring element, is a tool to quantify objects in an image. Mathematical 
morphology, which is based on several set operations, has been applied in image processing 
and analysis [Hara97] [Gour91]. The methodology was originally developed for image 
analysis, for instance, in counting the number of pores in a binary image of soil. Filters that 
are based on the morphological operators are called morphological filters. Applications in 
nonlinear image filters are found in [Serra82] [Arce87] [Chu89] [Safa89] [Mara90] [Kos91] 
[Kuos91]. One of the most important and interesting application of morphological filters is 
in the representation of filters in different domains. This brings about a unifying approach to 
describe both linear and nonlinear filters. Linear shift invariant filters, rank order filters and 
stack filters [Wendt86] can be represented by mathematical morphology [Mara87] [Mara87a] 
[Mara89]. 

Homomorphic filters are one of the oldest nonlinear filtering techniques, which are 
used for image enhancement as early as 1958. Image enhancement includes contrast 
enhancement and dynamic gray level modification [Lim89]. Homomorphic filters have found 
applications in multiplicative noise and signal dependent noise removal [Pitas90] [Jain89]. The 
basic idea behind this type of filters is to transform nonlinearly related signals (such as 
multiplicative noise on a signal) to additive signals and then to process by a linear filter. In 
multiplicative noise environment, the logarithm transforms multiplication into addition. If a 
signal is corrupted by signal dependent noise, nonlinear transformation is utilized to transform 
the signal dependent noise into additive noise. The additive noise can be removed 
conveniently by a linear filter. The image can be restored by the inverse transformation. 

Another nonlinear family is the polynomial filter or known as the Volterra filter. In 
polynomial filters, the input and output relation is expressed in the form of a discrete 
Volterra series [Sicu92]. The Volterra series can be interpreted as a Taylor series with 
memory [Pitas92]. Owing to the complexity in calculating the high order Volterra kernels, the 
use of Volterra filter is quite limited. 

A detail discussion on robust estimators based filters and morphological filter will be 
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given in Chapter 2. As the applications of the homomorphic filter and the volterra filter are 
limited, so further considerations of these filters will not be attempted. 

1.3 Goal of the Work 

Details and edges are most important in recognition and analysis of objects in an 
image. An image filter is suitable for digital image filtering if the filter has good edge and 
detail preserving properties. Many nonlinear filters are developed for suppressing noise in 
images. Pitas and Venetsanopolous have carried out a comprehensive study and comparison 
on robust estimator based nonlinear filters and morphological filters. They revealed that 
currently there are two median based filters which possess good edge and detail preserving 
properties, namely the multistage median filter and the FIR-median hybrid filter [Pitas92]. 
These filters require multistage operations. The principles of these filters are quite similar 
[Neuvo87a] [Arce87]. A multistage median filter is composed of several subfilters. Each 
subfilter is designed to preserve a detail in one direction. The subfilter may be a one-
dimensional line segment which are oriented horizontally, vertically and diagonally.. A 
subfilter outputs the median or the mean of the data on an images masked by itself. In a 
multistage median filter, the subfilters are median filters. In a two-dimensional FIR-median 
hybrid filter, the subfilters are moving average filters. The overall output of a multistage 
median filter (FIR-median hybrid filter) is then the median of the outputs of their subfilters. 
As the median is a point estimator which does not account for the geometry of a signal, so 
we can conclude that the geometry of a signal must be considered if details are going to be 
preserved. 

Mathematical morphology is a methodology which is developed to deal with the 
geometrical structures of a signal. Morphological operators are set operators that modify the 
geometrical features of a binary signal. There are two primary morphological operations, 
namely, the dilation and erosion. Two secondary operators, known as the opening and closing, 
are constructed from the primary ones. Hence, nonlinear filters can be developed solely by 
treating the geometrical structures of a signal. The smoothing of a morphological filter is 
determined by the shape and size of the structuring element and the morphological operator 
used. Morphological filters which are based on the opening and closing operations are 
developed [Stev87] [Chu89] [Safa89]. However, none of these filters is detail preserving in 
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spite of having very fast convergence. This is apparently due to the fact that the opening and 
closing transformations remove details. 

Two questions are raised. First of all, how can a structuring element(s) be designed 
so that details can be preserved? Secondly, can a filter based on dilations and erosions be 
detail preserving? In our works, we attempted to solve the problems. We first developed a 
new nonlinear filter which is based on the erosion operator of mathematical morphology. The 
design and implementation of the filter is discussed. Theoretical analysis of the filter is 
carried out. Since the filter is nonlinear, the analysis of the filter cannot adopt the method 
used in analyzing linear systems. Researchers characterize nonlinear filters by deterministic 
properties and statistical properties. Deterministic analysis reveals the signal structure which 
is unchanged by the particular filter. Statistical properties show the noise suppression power 
of the filter under various noise distributions. We will follow their approaches in analyzing 
our filter. We also test the filter with real images. Finally, evaluation will be made to verify 
the performance of the filter. 

1.4 Organization of the Thesis 

Our goal of work is to develop and to analyze a new nonlinear filter which is based 
on mathematical morphology. Moreover, the performance of the filter will compare against 
the multistage median filter. An introductory on the theories related to nonlinear filters which 
are based on robust estimators and mathematical morphology will be presented in Chapter 2. 
The Chapter will be divided into two sections. The first section gives the definition of median 
filter and its deviations. The theory of mathematical morphology as well as its applications 
in nonlinear filtering will be described briefly in the second section. 

In Chapter 3，the design of the new nonlinear filter, the multi-structuring element 
erosion filter will be discussed. The filter is first defined for binary signals. The criteria for 
the structuring element used in the new binary filter will be explained. Afterwards, the filter 
is generalized for gray level signals. Examples will be given to improve the legibility of this 
chapter. 

The analysis, both deterministic and statistical, will be given in Chapter 4. 
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Deterministic analysis aims at two objectives. Firstly, the signal that is invariant to the filter 
can disclose us information about the minimal details which the filter can preserve. Secondly, 
the number of filter passes required to bring any input signal to its invariant signal will be 
derived. In addition, the noise suppression of the filter under different noise distributions will 
be evaluated. The noise suppression is referred to the statistical properties of the filter. 

The performance of the filter under the mean square error, the mean absolute error and 
the subjective test criteria will be given in Chapter 5. Comparison of performance between 
the multi-structuring element erosion filter and the multistage median filter will be carried out. 
All overall summary will be presented in Chapter 6. 
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Chapter 2 An Overview of Robust Estimators Based Filters and 
Morphological Filters 

2.1 Introduction 

Noise removal is one of the important tasks in signal processing. In image processing, 
noise removal is difficult. Firstly, images are non-stationary 2-D signals which contain 
discontinuities such as edges and corners. Edges and details represent important information 
in an image. Perceptually our vision relies heavily on edges information. Furthermore, images 
are always corrupted by additive, impulse, and signal dependent noise. Therefore, removal of 
noise should incorporate with the preservation of edges and details. Although linear filtering 
finds success in many applications and possesses very simple structures for realization 
[Oppen83], linear filters cannot cope with the discontinuities of an image. They blur edges, 
destroy thin lines and fine image details and cannot effectively remove non-Gaussian types 
of noises. A linear filter averages an impulse and distribute the magnitude of the impulse 
among the neighbourhood of the pixel. Development of nonlinear filters is initiated by these 
deficiencies of linear filter. Most nonlinear filters can be categorized as [Pitas92]: 

1. Robust Estimator Based filters 
2. Morphological filters 
3. Homomorphic filters 
4. Polynomial filters or Volterra filters 
5. Adaptive filters 

The fundamental difference between a linear filter and a nonlinear filter is that a 
nonlinear filter does not commute with superposition. For any linear filter, \j/(x(n)), the 
following relation holds 

= ^a^.a^eR …(2.1) 

which may not hold for a nonlinear filter. 
The most popular family of nonlinear filters are those based on robust estimators. The 

median, ranked order, a-trimmed mean, multi-stage median, median hybrid, M-filters and the 
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Wilcoxon filters fall in this category. Morphological filters are derived from the basic 
operators of mathematical morphology. Mathematical morphology was developed by 
Matheron and Serra [Serra82] for the analysis and descriptions of objects from their 
geometrical features. Homomorphic filters were used as early as 1958 for image enhancement 
and removal of multiplicative and signal dependent noise [Lim89]. Analysis of homomorphic 
filters can be found in [Pitas86]. In polynomial filters, the relationship of the input and output 
is expressed in the form of a discrete Volterra series. The Volterra series can be interpreted 
as a Taylor series with memory [Pitas92] [Sicu92]. Lastly, as a nonlinear filter is usually 
optimal for only a specific type of noise. This limits the applicability of the filter to other 
signals. Adaptive nonlinear filters are therefore derived for robust nonlinear filtering for non-
stationary signals. Wendt et al introduced the stack filter in 1986 which can be regarded as 
a collection of nonlinear filters that commute with thresholding [Wendt86a]. Stack filters 
provide a means for the hardware realization of nonlinear filters. In the following, discussion 
on nonlinear filters that based on robust estimators, and morphological filters will be 
presented. This is because robust estimator based filters have found extensive applications in 
digital image filtering. Most detail preserving filters are median based. On the other hand, 
morphological filters have attracted attention of many researchers, and become a hot topic in 
image processing. 

2.2 Signal Representation by Sets 

Let R and Z be the set of real and integer numbers, respectively, and let D be the 
domain on which the signal is defined. D is either the n-dimensional continuous space R" or 
the discrete space Z". An n-dimensional (n-D) signal can be represented as a mapping / from 
domain D to a range R or Z. A binary signal is a mapping whose range takes on only two 
values,i.e./(jc)G {0,1}, VjcgD [Mara87]. In particular, a binary image can be represented by the 
foreground S={x:f(x)=\} and the background 5^={A::/(af)=0}, which is the complement of S. 

Binary signals can be obtained by thresholding a gray level signal [Fitch84]. Let G � ’ 
xeD be a ；t-level signal in the range [0,M], and let S^(Gix)) be the threshold set of G(x) at 
level j. 

The threshold set at level j is defined as : 
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s (G(x^) - \ 1， Gix)>j …(2.2) 
〜 剛 ) - l o ， ifGixXj, 

The gray level signal G{x) can be represented by using k-l threshold sets 5j(G(jc)), 
l<j<k-\. The threshold sets have two important properties. 

Property 2.1 The threshold sets are linearly ordered. If a<b，then 

Property 2.2 The 众-level signal G{x) can be reconstructed uniquely from the threshold sets 
Sf^G{x)\ l<j<k-\ as : 

G{x) = max{;:5/G(jc)) = l}, VX:GZ). . " ( 2 . 3 ) 

Prop.2.1 reveals that the thresholded set at gray level must be a subset of the thresholded set 
at a lower level. Prop.2.2 is also known as the stacking operation which is the reverse to 
thresholding. An example of threshold representation of a 1-D signal is given in Table 2.1. 
The signal G{x) has four levels as shown in the second row of the table. G(x) is therefore 
represented by three threshold binary sets ；=1,2,3- Reconstruction of G(x) from the 
threshold sets is achieved by Prop.2.2. 

jc 0 1 2 3 4 5 6 7 8 9 
G(x) 3 2 1 0 0 1 2 3 3 3 

S^(G(x)) 1 0 0 0 0 0 0 1 1 1 
S^jGjx)) 1 1 0 0 0 0 1 1 1 l _ 
S,(G(x)) I 1 I 1 I 1 I 0 I 0 I 1 I 1 I 1 I 1 I 1 I 

Table 2.1 Threshold Decomposition of a 1-D Signal 
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2.3 Robust Estimator Based Filters 

The objective of robust estimation theory is to construct estimators that perform well 
for a variety of distributions and in the presence of contamination owing to wrong observation 
or measurement [DavidTO]. There are three basic types of estimates, namely, the L, M and 
R estimates. The L-estimates are linear combinations of order statistics. The M-estimates are 
the maximum likelihood estimates, and lastly the R-estimates are known as the rank test. 
These estimators are found to have extensive applications in digital signal and image 
processing. For example, the M-filter proposed by Lee et al. [Lee85] and the Wilcoxon filter 
[Crin85] are based on the M-estimators and the R-estimators respectively. Median filters and 
order statistics based filters are based on the L-estimators, which are the most popular type 
of nonlinear filters [Pitas92]. 

2.3.1 Filters based on the L-estimators 

Order statistics based filters are famous for excellent robustness under the presence 
of impulses. The median filter, which is the most common type of order statistic filters, is 
used by Tukey [HuangSl] for time series analysis. In order statistics filtering, a window W^ 
is sliding over the points of a signal where N is the index that determines the size of W^. For 
example, the size of W^ is 2N+1 for a 1-D median filter. The operation of median filters is 
simple. In 1-D data sequences, let 52N+I be the set of 2N+1 elements of real numbers or 
integers which is masked by the window W ,̂ i.e. S2^+i={x(n-N),...,x(n),...,x(n+N)}. Suppose 
that the elements in S2N+1 are sorted in descending order. Denote as the 产 ranked 
element. The 严 order statistic is the 严 largest element in <S2n+i. In particular, the median of 
•S2N+1 is the (iV+l)th largest and the (A^+iy^ smallest ranked element. The maximum, denoted 
as max, is the largest element, while the minimum (min) is the smallest element in S2N+1. 
Hence, the order statistics are related : 

min = A : ( 2 " + i ) ( n ) � _ …匆圳 n) =max. ."(2.4) 

After median filtering, the value at x(n) is replaced by the median of S2N+1，i.e. ；c(N+i)(n). 
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2.3.1.1 The Median Filter and its Derivations 

Let med{X\W^) be the output of a 1-D median filter on signal X and with a moving 
window W^ of size 2N+1. X can be a binary signal or a multilevel signal. The window length 
is 2N+1 which is always odd to facilitate a unique median of the data sequence. For even 
window length, the median can be defined as the average of jc(N)(n) and The 2-D 
median filter is defined similarly which the shape of the window can be line segments, 
squares, circles, etc.. As median filters are nonlinear, so analysis cannot be done by the 
principle of superposition. A nonlinear filter can be characterized by two types of properties, 
namely deterministic and statistical properties [HuangSl]. Deterministic properties show the 
effects of a filter on the geometrical structures of a signal, and the number of passes required 
to bring any non-invariant signal to its invariant. The invariant signal to the filter is also 
known as the root signal which is unchanged by the filter. Statistical properties indicate the 
efficiency and effectiveness of a filter in the removal of different type of noise. Although 1-D 
median filters can preserve edge and suppress impulse, the performance of 2-D median filters 
is not that satisfactory. Edges are blurred and fine details are removed. Examples of 2-D 
median filters can be found in [Pitas90]. Moreover, the computation for sorting boosts in 2-D 
median filtering. Modifications are made to improve the performance in edge and detail 
preservations as well as in the speed of computation. Attempts have been made to improve 
the speed of the 2-D median operation. The separable median filter was proposed by Narenda 
[NarSl]. In separable median filters, two passes of median filtering are used. A 2-D signal 
is first filtered row by row and then column by column. Deterministic analysis of separable 
median filter has been examined by Nodes and Gallagher [Nodes83]. In their work, the root 
structures are derived as well as the rate of convergence of separable median filter. Statistical 
analysis was performed by Liao et al [Liao85]. Recursive filtering speeds up the 2-D median 
operation. In non-recursive median filtering, several passes are usually required for the 
convergence of a signal. Recursive median filter is defined as : 

y{n) = med{y{n-N),,..,y{n-\)An\^.An+N)) …(之-̂) 

The previous outputs y{i), /<n-l, are used for the calculation of the current output. One of the 
most important properties of a recursive median filter is that only one pass is needed to bring 
any nonroot signal to its root. A recursive median filter has a higher noise suppression and 
introduces more signal distortions than the non-recursive one. Separable recursive median 
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filter can be defined similar to the case of median filter. Analysis of recursive median filter 
is difficult. Arce et al, applied the principle of threshold decomposition to derive the 
expression for the statistical properties [Arce86] [Arce88]. 

Median filters commute with thresholding [Fitch84]. Thus, a multilevel (grayscale) 
median filter can be implemented by stacking the outputs of binary median filters. The 
analysis of the standard median filter is quite well established. Deterministic properties, 
including the root structures and rate of convergence, of 1-D median filters can be found in 
[Huang81] [GallSl] [Wendt86] [Astola87] [Gan91] [Fitch85] [Arce82] [Pitas92]. Statistical 
analysis can be found in [HuangSl] [Arce86] [Pitas92]. [HuangSl] provides an extensive 
study of statistical properties of standard median filters using different types of noise. 
Comparison of the relative efficiency of noise removal between a moving average filter and 
a median filter of the same window length can be found. It is shown that median filters are 
optimal for Laplacian noise. Neuvo et al. has implemented a signal processor based on a 
median filter in 1989 [Vainio89]. Another VLSI implementation of a median filter was 
performed by Richards [Rich90]. 

Moreover, signal distortions caused by median filter are analyzed. The effect of edge 
shift produced by median filters are examined by Davies [Davies89] [Davies92]. A median 
filter not only tries to smooth the noise in homogeneous region, but also tends to produce 
regions of constant or nearly constant intensity. Therefore, contours which are not present in 
the original image may result. The contouring phenomenon is known as streaking. Streaking 
is analyzed by Bovik [Bovik87]. An image, however, does not solely consist of edges and 
constant regions. Although noise suppression is achieved by median filtering, too much signal 
distortion is resulted as thin lines, sharp corners are removed or get blurred. In binary 
filtering, a point of 0 value will be preserved if the number of points of 0 values is greater 
than that of 1. This is not likely so for points representing fine details. Images filtered by 2-D 
median filters can be found in [Jain89], in which edges are blurred and fine details are lost. 
Modifications of median filters are towards the goal of preserving fine details. In the 
following, several median based detail preserving filters will be discussed. 
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Max/Median Filter 
Arce and McLoughlin introduced a new class of median based filter, known as the 

max/median filter [Arce87]. The max/median filter is defined as : 

y { i j ) = max(Zi，Z2，Z3，Z4) ...(2.6) 

where 

Zy = med{x{ij -N),... ,x(ij),... ,x(ij +N)) 

Z3 = med(x{i +Nj-N),...j),...,x(i-NJ+N)) "'. 
Z4 = med�x(j-Nj+N),".，x(JJ)，"”x{i+Nj-Ny). 

The output of the max/median filter of window length 2N+1 is the maximum of the 
median subfilters Zj, /=1，2，3，4，which run horizontally, vertically and diagonally through x(ij). 
Analysis of max/median filter [Arce87] [Neuvo88] shows that the filter is biased towards 
regions of higher intensity. This is caused by the max operator. Therefore, a detail will be 
preserved by max/median filter if it is brighter than its background. Wang [Wang90] therefore 
proposed the max/min median filter which is defined as : 

T,m if I Uij) - T^dJ) I > I T抑-T^dJ) I 
y ( i j ) = …(） 

[r^Cy), if I r � v ) - • I < I T 抑 - U i j ) I 
where 

T^iiJ) = median x{ij) in the (2N+1) by (2N+1) window) 
T^(iJ) = MAX(ZI，Z2，Z3，Z4) … ( 2 . 9 ) 

where Zj, /=1，2，3，4 are the same as those in (2.9). The performance of max/min filter in detail 
preservation is better than that of max/median. However, the max/min median filter is 
computational more complex than the max/median filter as TQ requires sorting of all pixels 
within the moving window. 
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Multi-stage Median Filter 
Multi-stage median filter was proposed by Neuvo [Neuvo87]. The unidirectional multi-

stage median filter is defined as : 

umedj^ij) = …(2.10) 

where Zj, /=1，2，3，4 are defined by (2.9). By taking the union of orthogonal subfilters of length 
2N+1’ the bidirectional median filter can be defined. The subfilters ẑ i and Zb2 are defined as: 

x(i+N-ij)Mi+Nj),x(iJ-N),x(ij-N+l)’…XiJ-V},x(ij+l),"., 
x(iJ+N-\Xx(iJ+^) n ii) 
x(i+N-lj+N-Y)Ai+Nj+N)，x(i-Nj+N)，x(J-N+lj+N-l\..； 

-1 J. +1) ’x(/+1 -1)，…，;c(/ +7V-1 j/-N+1) ,x{i +NJ-AO) 

Multi-stage median filters are proved to be detail and edge preserving. Moreover, they 
are computational efficient. For median based filters, most of the computation is spent on the 
sorting of data. Obviously, in a multi-stage median filter, the number of sorting is greatly 
reduced as the {2N+lf pixels in the moving window is grouped into several subfilters. It has 
been reported that the computation for the bidirectional multi-stage filter of subfilter length 
5 requires less that one fourth of computation time of the standard median filter [Neuvo87]. 

Owing to the asymmetric statistical properties of the max/median filter, Arce and 
Foster has derived another multi-stage median filter, known as the multi-stage max/median 
filter, which is defined as: 

y { i j ) = med(T^(iJXT,iiJUm ...(2.12) 

where T\(iJ) and T2(ij) are defined in (2.9). Analysis shows that the outputs of the multi-stage 
max/median filter is identical to the unidirectional multi-stage median filter [Arce89]. The 
multi-stage median filter and the multi-stage max/median filter are unbiased. In other words, 
the filters preserve details of higher and lower intensities. In addition, the multi-stage median 
filter, in its ultimate form, will be composed of numerous subfilters which span all the 
possible directions. 
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FIR-Median Hybrid Filter 
Heinonen and Neuvo introduced a new class of median based filter in 1987 

[Neuvo87a]. The filter contains FIR (Finite Impulse Response) substructures and is known 
as the FIR-median hybrid (FMH) filter. The FMH filter with M FIR filters those transfer 
functions are i=l,2,..,M, is defined as : 

y{n) = mê/0;i(n)，:v2(n)”..，:v̂(n)) …(2.13) 

where yln) is the output of the FIR filter /=1，2”..，M.，and M is odd. The hybrid median 
filter can be extended to 2-D by using four subfilters. Two sets of subfilters can be selected. 
One of them is described by : 

yiiij) = +… 

^ …(2.14) 
y^iQ) = +…+滅zV)} 
yS-Q) = +…+对 

The second subfilter set is resulted by rotating those subfilters in (2.14) by 45°. The 
performance of FMH filters is analyzed in [Neuvo87a] [Neuvo88] and [Neuvo89]. It has been 
shown that owing to the inclusion of FIR filters, the FMH filters do not commute with 
thresholding. However, implementation of the FMH filter is simple. 2-D median hybrid filters 
preserve fine details fairly well. 

2.3.1.2 Rank Order Filters and Derivations 

The median filter is a particular case of rank order filters. Rank order filters were first 
introduced by Nodes et al in 1982 [Nodes82]. An 严 rank order filter replaces the original 
signal x{n) with the 产 order statistics of the signal data within the moving window. The root 
signals of rank order filters are quite different from those of median filters. Only constant 
signals are invariant to rank order filters. Hence, rank order filtering cannot be applied 
repeatedly. One of the applications of rank order filters is as a peak detector in AM detection 
while eliminating impulses. Lee proposed an edge gradient enhancing filter based on adaptive 
order statistic in 1987 [Lee87]. Two rank order filters, the maximum filter (max filter) and 
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the minimum filter (min filter) are of particular interest, since these filters are equivalent to 
the multilevel morphological dilation and erosion which will be discussed later. Similar to 
median filtering, rank order filtering commutes with thresholding. Coyle has derived the 
relation between rank order filtering and the mean absolute error [Coyle88]. Some of the 
derivations of the ranked order filtering will be discussed. 

Linear Combinations of Order Statistics (L-Filters) 
Bovik et al. introduced a new family of nonlinear filters which are linear combinations 

of order statistics [Bovik83]. The new family of nonlinear filter is known as the L-filter 
[Huber81]. The 1-D L-filter is defined as : 

2 A M 

y(n) = arx^^in) " . ( 2 . 1 5 ) 
1=1 

where x � ( � ) represents the 产 rank order statistics among the window {x{n-
A0，...，"̂ («)”..，4«+A0}.By setting a^+pl and 0Ci=0，/=l，2”..，MÂ+2，." ,27̂ +1，a L-filter is reduced 
to a median filter. Also, if all 0Ci=(Xj，/j.=l，2，..”2Â+l，the filter can be regarded as a moving 
average filter. The 2-D L-filter is defined similarly. One of the advantages of L-filters over 
median filters is that no streaking effect is produced, provided that the coefficients are not 
similar to that of the median filter. From (2.15), it is quite obvious that the performance of 
a L-filter is somewhere in between a median filter and a moving average filter under 
Laplacian and Gaussian noise. The main disadvantage of L-filters is the high computation 
requirement. Moreover, a L-filter has poorer robustness properties if all its coefficients are 
nonzero. Also, time ordering between adjacent signal points is destroyed by L-filtering owing 
to the sorting operation. The time ordering is irrelevant in stationary signal such as a constant 
signal embedded in i.i.d. noise. However, this time ordering distortion causes problems in 
non-stationary signal. Deterministic analysis of L-filters and their relation to linear filters are 
discussed in [Bovik89]. Generalization of L-filter was done by Palmieri [Palm89] and is 
known as the [/-filter. A L/-filter is an FIR filter with each coefficient dependent on the rank 
of the specific element within the window. 
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Alpha-Trimmed Mean Filter 
Bednar and Batt in 1984 proposed the a-trimmed mean filter [Bednar84]. In trimmed 

mean calculation, an average is taken over the trimmed data set in which some data are 
removed. This is different from the normal mean by which all data are averaged. The number 
of data points that are removed is controlled by a trimming parameter a, 0<a<0.5. The 
definition of the a-trimmed mean filter using a moving window of N points and a trimming 
parameter a is : 

yln)=——i——y xJn) -.(2.16) 

where [•] is the integral part function. An obvious difference of an a-trimmed mean filter to 
that of a median filter is the restriction of filter length. If N is odd and a is chosen to be 0.5, 
(2.16) is reduced to a median filter. If a is chosen to be 0，(2.16) becomes a moving average 
filter. The complementary filter to the a-trimmed mean filter is known as the a-trimmed 
complementary filter, which is defined as : 

1 [aN] N 

W " ) 卜 丄 E � ) ( " ) + E � � . ...(2.17) 

From the definition, edge smearing is unavoidable since averaging is required. 
Modifications of the a-trimmed mean filter bring about the modified trimmed mean (MTM) 
filter and the double window modified trimmed mean (DWMTM) filter. Discussions of these 
filters can be found in [Lee85]. Lee also performed the statistical analysis of the standard a-
trimmed mean in 1988 [Lee88]. Adaptive trimmed mean filters are applied in image 
restoration by Bovik [Bovik88]. 

2.3.2 Filters Based on the M-estimators (M-Filters) 

Let p be an arbitrary function. The M-estimation is to find s.t. the problem 
[HuberSl]: 

E P( I，力 ...(2.18) 

is minimized. The M-estimate is the solution to the implicit equation : 
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购，>0 = 0 ".(2.19) 

where vi/(jc，>；) = ^P^flZl. 
dy 

In nonlinear filtering, the solution y(n) to the equation is of interest : 
n+N 
Y, N^WO -y{n)) = 0 …(2.20) 

i=n-N 

where is some odd, continuous, and sign-preserving function so that \\f(x) is positive 
(negative) whenever x is positive (negative). Lee has shown that a unique solution of y(n) 
exists if \|/ is strictly increasing [Lee85]. Depending on the function \j/(jc), different M-filters 
can be defined. The median and the arithmetic mean are special cases of M-filters. If \\f=ax, 
(2.20) represents a moving average filter. If \j/ is a hard limiter, which is defined as : 

= f 1 ...(2.21) 
彻 1-1 ifx<0 

(2.20) becomes a median filter. If the limiter type M filter (LTM filter) is defined by: 

g(p)， x>p 

-g(p), -p 

where is a strictly increasing, odd, continuous function, and p is some positive constant, 
then the filter is known as a LTM filter. Detail analysis of LTM filters can be found in 
[Lee85]. Although M-filters are proved to be robust, it is difficult to calculate the implicit 
solution from (2.20). Hence, the M-filter is less popular than the median based filters. 
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2.3.3 Filter Based on the R-estimators (R-Filters)[Crin85] 

The most important R-filter is the Wilcoxon filter which is defined as : 

y(n) = mediJH ！^_，1</<7<2A^+1) ...(2.23) 

The output of the Wilcoxon filter is the median of all the averages formed pairwisely among 
all the data within the filter window. The filter is the locally most powerful filter for logistic-
distributed noise, and it performs efficiently in estimating noisy signals in non-stationary 
symmetric noise environments where there are deviations from the assumed noise model. For 
Gaussian noise and Laplacian noise, the performance of Wilcoxon filter lies between that of 
the moving average and the median. However, the filter does not preserve edges well and is 
computational intensive. 

Pitas and Venetsanopoulos in their review paper have examined many robust estimator 
based nonlinear filters [Pitas92]. They have compared the performance of the above 
mentioned median based filters. Although most filters are edge preserving, only the multi-
stage median filter and the FIR-median hybrid filter preserve details. In addition, the multi-
stage median filter is computationally not complicated. Both filters are unbiased. Table 2.2 
is duplicated from [Pitas92], compares the performance of the multi-stage median filter and 
the FIR-median filter. 

Multi-stage Median FIR-median Hybrid 
1. Detail Preserving / / 
2. Edge Preserving / / 
3. Bias / / 
4. Computation complexity ^ 
5. Salt-and-Pepper Noise / 
6. Gaussian Noise ^ 
7. Long-tailed Noise ^ 
8. Positive Impulses ^ 
9. Negative Impulses ^ 
Table 2.2 Comparison of Performance of the Multi-stage Median Filter and the FIR-median Hybrid Filter 
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A check mark means that the performance is the best among all filters compared by Pitas. 
The multi-stage median filter performs better in impulse suppression (positive, negative and 
salt-and-pepper) and long tailed additive white noise than the latter. We can conclude that the 
multi-stage median filter is the best detail preserving so far developed. 

2.4 Filters Based on Mathematical Morphology 

Mathematical morphology is a set-theoretical methodology for image analysis. 
Morphology can quantify many aspects, size and shape, of the geometrical structure of a 
signal. The method was mainly developed by Matheron and Serra [Serra82]. Applications of 
mathematical morphology are found in multidimensional signal processing, especially in 
image processing. In image processing, applications of mathematical morphology can be 
found in the areas of morphological edge detection [Lee87a], multiscale image analysis 
[Hara87], image segmentation [Serra82], morphological sampling [Hara87], image coding 
[Mara86], signal decomposition and representation [Mara89a], and nonlinear filtering 
[Mara87] [Mara87a] [Mara89] [Serra92]. Although mathematical morphology is widely used 
in different areas of signal processing, the following discussion will concentrate on its 
applications in nonlinear filtering. 

2.4.1 Basic Morphological Operator 

Morphological operators are set operators that modify the geometrical features of a 
binary signal. Let XqD be the set representation of a binary signal, and let SEqD be a 
compact set [Gaal64] of smaller size and simpler shape. The set SE is known as a structuring 
element. Denote X^={x+b\xeX] the vector translate of X by b^D. The basic morphological 
operators for sets are dilation © and erosion e which are defined as follows.' 

Let X and SE be subsets of D. The dilation of X by SE is defined as: 

X®SE = (J = {x+b'.xeX and beSE). ...(2.24) 
beSE 

The erosion of X by SE is defined as : 

1 The definition of morphological operators are based on those work of Haralick et al [Hara87]. For other 
definitions of basic morphological operators, please refer to [Serra82][Mara90]. 
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XQSE =门 = ...(2.25) 
beSE 

The output of the dilation operator of X by SE is the set of translation points b s.t. the 
translate o fZby b, be 紐 has nonempty intersections withZ. Therefore, X@SE= {z:SE^nXit0}. 
The output of the erosion operator of X by SE is the set of translation points s.t. the translate 
of Z by ^ is a subset of X, Complementing the dilated set of T by SE produces an output 
which are quite similar to that of the erosion operator. 

Theorem 2.1 Let SE be the reflected set of SE, i.e. SE = {-b\beSE) , the morphological 

dual of erosion is : 

(XQSEy = X'QSE ...(2.26) 

where is the complement of X. 

The proof of this theorem can be found in [Hara87]. If the structuring element is 
symmetrical about its origin, (2.26) can be written as : 

( x e S E f = X'^QSE •••(2-27) 

In other words, dilating the foreground of a binary signal using a structuring element 
which is symmetrical about its origin is equivalent to erode the background by the same 
structuring element. Unless otherwise specified, all structuring elements used in the following 
discussion will be symmetric. 

In addition, two morphological operators, the opening�and closing • transformations 
can be defined. The opening of X by SE is defined as : 

XoSE = {XQSE)®SE …(2.28) 
The closing of X by SE is defined by : 

X^SE = {X®SE)Q SE …(2.29) 
The operations of morphological operators are illustrated in Fig.2.1. The original 

binary signal X and the structuring element SE is shown in Fig.2.1 (a). X looks like a dumbbell 
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with projections at the square blocks. SE is a symmetric horizontal structuring element of 3 
points. Figs.2.1(b) to 2.1(e) show the geometrical modifications by these operators. Dilation 
fills the hole in X as well as expands X. Erosion shrinks X’ bisects X and enlarges the hole 
in the way opposite to that dilation does. The opening removes the vertical projection and 
bisects X by cutting through the bar in between. The closing widens the bar and fills the 
holes. Obviously, the smoothing effect is determined by the shape and size of the structuring 
element. If the dumbbell depicted in Fig.2.1(a) is eroded by a vertically oriented structuring 
element, all horizontal projections will be removed. 

參眷參眷眷 ••參•參參參 
眷 眷 參 眷 眷 眷 參•眷••參參參眷 

• • • • ••參 Origin 
X • •〇參 ••眷 

••參參眷 S E 參•參••參參 

參•參參參 ••眷•參•眷 
• ••• 
參(a) • • • (b)Dilation 

••• •參••眷 參••參參 
••• •參參參眷 ••參•春 

參 參 • 參 參 • 參 參 參參參•眷•拳 

• 參 鲁 參參參參參 參眷••眷 

•參參 •參參參參 •參••參 

••參 ••眷•參 ••眷•眷 

(c)Erosion (d)Opening … . . 
(e)Closing 

Figure 2.1 Morphological Operations (a)X and SE (b)Dilation of X by SE (b)Erosion of X by SE (c)Opening 
ofX by SE (d)Closing of X by SE 

The binary operators can be extended to multilevel signals. A multilevel signal G(x) 
can be operated morphologically. A typical way is to make use of the threshold sets of G(x) 
[SeiTa82] [Heij89] [Mara90]. Dilating the threshold sets of G(x) by SE is defined as: 

(G®SE)(x) = mdix[G{x-b)]. …(2.30) 

beSE 
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The erosion of G by SE is defined similarly. 
(GQSE)(x) = min{G(Jt+幼. ...(2.31) 

beSE 
In addition, the o p e n i n g � a n d closing • of G by SE are defined as 

GoSE={GbSE)®SE and G^SE={G®SE)bSE, 

Sternberg [Stern86] have attempted to extend the binary operators to multilevel by the 
umbra representation. The umbra representation U{G) of a function G{x) is defined as: 

U{G) = {(x,a):a<G(x)}. …(2.32) 
y • “ The umbra is the collection of points below the 

surface represented by G{x). The shaded region in 
Fig.2.2 represents the umbra of a single variable 

^ ^ ^ ^ ^ function G(x). The umbra of Gix) is the area covered 
by G(x). Thus, the umbra is a (n+l)-D function. The 

； : : : a n b ~ — 一 

。丨 球 _ } . … ( 2 . 3 3 ) 

Figure 2.2 Umbra of a Multilevel Function 
G(x) 

In the previous discussion, a structuring element is a subset in D. A function 客⑷ can 
be a structuring element, provided that g is defined on a compact region of support. If x lies 
within the region of support of g’ then Dilation and erosion of the umbra of G by 
the umbra of g are defined as: 

(G®g)(x) = max{G(y)+g(jc-j)} ."(2.34) 
3' 

(GQg){x) = min{G(y) -g(y -x)} ."(2.35) 
•V 

where G and g are ranged over the intersection of the regions of support of G and g. The 
opening and closing of G by g is Gog={Geg)®g and ㊉ r e s p e c t i v e l y . 

Property 2.3 Morphological opening and closing are idempotent, i.e. 
(Gog)og = Gog and (G*g)»g = G*g ...(2.36) 

In other words, repeated opening and closing give the same results as the signal is 
2.17 



opened and closed once. Prop.2.3 holds for binary as well as multilevel signals. This is a very 
appealing property in nonlinear filtering, since one pass is required for obtaining the root 
signal. Therefore, the opening and closing operators are the most frequently used 
morphological operators in digital signal processing. 

2.4.2 Morphological Filters 

Input Opening and Closing Filters 
f • — ^ Examples of applications of morphological filters can 

|opening| | Closing | be found in [Safa89] [Chu89]. These filters are combinations 
CioLg lopeningl � � t h e closing and opening transformations [Safa89] [Chu89]. 

This is due to the fact that the opening and closing have very 
^ Average fast convergence rates. A single filter pass can bring any 
T t nonroot signal to its root. 

Opening Closing 

I Closing [opening EKG signals are frequently plagued by impulsive 
noise due to muscle activities and power line interference. 

• - •Average — T — Moreover, background normalization is needed to correct the 
baseline drift of the signal caused by the respiration and 

，r Output motion of the subject. Chu and Delp [Chu89] have developed 
a filtering algorithm to remove impulses and normalize 

Figure 2.3 Block Diagram of a . . j j ._c‘ t l i j . c ^u . Filter Algorithm Based on background drift. The block diagram of the filtering 
morphological Closing and Opening algorithm is depicted in Fig.2.3. Two blocks of 

morphological filters are in cascade. Each block consists of 
two morphological filters, a closing-opening and a opening closing filter. An EKG signal is 
processed simultaneously along two filter paths in parallel. As an EKG signal is a 1-D signal, 
so 1-D structuring elements are used. Along one path, the signal is first opened and then 
closed. On the other path, the data is closed and then opened. 

Safa applied closing and openings to remove speckle noise in radar images [Safa89]. 
Speckle noise is a kind of noise that appears in coherent imaging. It is multiplicative and 
occurs whenever the roughness of the object being imaged is of the order of the wavelength 
of the incident radiation [Jain89]. Traditionally, statistical methods based on the minimization 
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of mean quadratic error between the noiseless image and its estimate, and order statistics are 
used to handle this problem. Safa have proposed the multidirectional filter and the 
comparative filter. These filters are combinations of morphological closing and opening. 
Results revealed that these filters are able to preserve edges. 

Obviously, the closing and opening operators are the basic components of 
morphological filters since these transformations are idempotent. 1-D and 2-D closing-opening 
and opening-closing filters have been examined by Stevenson et a/.[Stev87]. A order 1-D 
closing-opening filter (ID CO) is a two-pass filter. A signal is first closed and then opened 
with a structuring element B^ which is a 1-D set with (A +̂1) points whose origin is at the 
leftmost point. Similarly, a 1-D opening-closing filter is an opening followed by a closing. 
In 2-D closing-opening (opening-closing) filtering, four structuring elements are used. These 
structuring elements are oriented at 0°, 45。，90�and 135° with the horizon. Comparison 
shows that these morphological filters are not detail preserving [Pitas92], in spite of the one-
pass convergence. 

Soft Morphological Filters 
Koskinen et al. proposed new morphological operations, called soft morphological 

operations [Kos91]. Erosion and dilation are equivalent to, respectively, local minimum and 
local maximum of the data masked by a structuring element. In soft morphological operations, 
soft erosion and soft dilation replace local minimum and local maximum by more general 
weighted order statistics. The soft dilation is denoted as G@[BJiJc\ and soft erosion is denoted 
as B is the structuring element and A is the centre of B. Denote • as the repetition 
operation, i.e. ld)X implies that X is repeated itself for k times. The definitions of soft dilation 
and soft erosion are given as : 

GQ[BAMX) = k仇 smallest data in \koG(a)\aGA^ (237) 
\j{G{by.b^{B-AX) 

and 
G®[BAM{x) = k'^ largest data in \koG{a)\aeA^ ^^38) 

Hence, soft dilation and soft erosion can be regarded as ranked order filters. The 
definitions of soft opening and soft closing are analogous to those of standard morphological 
opening and closing respectively. Analysis of soft morphological filters can be found in 
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[Kos91][Kuos92]. 

2.5 Chapter Summary 

An overview of nonlinear filters which are based on statistical robust estimators and 
mathematical morphology is presented. A nonlinear filter is characterized by its suppression 
of different kind of noise, preservation of edges and details and the computation requirement. 

Robust estimators, for instance, M-estimators, L-estimators and R-estimators are 
applied in image processing. The M-filter are the solutions to the implicit equation which 
minimizes some cost functions (Maximum likelihood). The Wilcoxon filters are originated 
from the rank test (R-estimators). These filters are not frequently applied than those L-
estimators based ones. The median, rank order filter, and their deviations belong to the filter 
class of L-estimators. Median based filters, such as the multi-stage median filter has excellent 
edge and detail preserving properties. A median based detail preserving filter usually consists 
of several subfilters and requires multi-stage operation. The subfilters are median filters or 
moving average filters which are oriented in different directions. The output of the filter is 
determined by those of its subfilters. 

Mathematical morphology provides an alternative for nonlinear filter design. Basic 
principles of mathematical morphology has been discussed. There are four basic operators in 
mathematical morphology, namely dilation, erosion, opening and closing. The closing and 
opening operators are renowned for their excellent convergent rate. Morphological filters 
operate on the geometry of a signal. The smoothing caused by a morphological filter is 
determined by the interaction of the input signal with a structuring element. A structuring 
element is a smaller and simpler set. Owing to the idempotence of the opening and closing 
transformations, a single filter pass can always convert a nooroot signal to its root. This is 
very attractive in nonlinear filtering. Therefore, morphological filters based on these two 
operations are developed. Various morphological filters such as the closing-opening filter and 
opening-closing filters, however, are not detail preserving. 
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Chapter 3 Multi-Structuring Element Erosion Filter 

3.1 Introduction 

One of the basic principles of nonlinear filters, such as order statistics based filters, 
alpha trimmed mean filter, etc, is to make use of the relation among the values of the picture 
elements within the moving window. An point is an isolated pointed if it is visually different 
from its neighbourhood. Nonlinear filters never treat an isolated point which has no 
correlation with its neighbourhood as useful detail. It seems that order-statistics based filters 
are not the only solution although these filters are proved to be efficacious. Mathematical 
morphology is the study of form and structure, has broken forth another approach in nonlinear 
filtering [SeiTa82]. In this chapter, a new detail preserving filter, Multi-structuring Element 
Erosion Filter, will be discussed. This filter is based on one of the morphological operator -
morphological erosion. 

Firstly, the design criteria of Multi-Structuring Element Erosion Filter will be 
discussed and then the definition and construction of various structuring elements used will 
be given. The binary filter is defined first. The multilevel filter is defined using the selective 
threshold decomposition. The selective threshold decomposition is a modification of the 
threshold decomposition which was introduced by Fitch et al [Fitch84]. This modified 
threshold decomposition can only handle set processing filters. Examples are given to 
demonstrate the basic operations of these filters. 

3.2 Problem Formulation 

Edges and details are important carriers of information in an image. Edges characterize 
object boundaries and are useful for segmentation, registration, and identification of objects. 
Edge points are identified by pixel locations having abrupt gray level changes. Details include 
small objects, sharp corners, thin lines and textures. One of the most important classes of 
details is texture. Textures characterize the structural patterns of surface of objects. Most 
image filters are used in the preprocess of an image to remove noise. The preprocessed image 
will then further be analyzed. Therefore, edges and details preservations are important 
properties of an image filter. 
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It is fully understood that moving average filters blur edges and remove details. 
Moreover, moving average filters are poor in suppressing impulses and long tailed distributed 
noise such as Laplacian noise. Nonlinear techniques are therefore developed. 2-D median 
filters have been used in image processing. A moving window of size (2A^+1) by (2A^+1) is 
slided on the entire image, the value at the centre of the window is replaced by the median 
of the pixels masked by the square window. Although noise suppression is achieved by 2-D 
median filtering, image information such as thin lines, edges and fine details are distorted or 
removed. Several new detail preserving nonlinear filters have been introduced [Arce89] 
[Neuvo87]. Most of these filters are order statistics based. Multistage max/median filters and 
multistage median filters consider the geometrical structure of a signal by utilizing some 
directional subfilters. The output of these filters are the median of their subfilters. The 
operation of multistage filters has been discussed in Chapter 2. Consideration of geometrical 
structures is key to a filter in preserving image details. 

Researchers have been asked for a methodology which is able to deal with the 
geometrical structures as well as the magnitudes of the points of a signal. Matheron and Serra 
have developed the theory of mathematical morphology [SerraSl]. Morphology is the study 
of form and structure, which can quantify many aspects of the geometrical structure of signals 
in a way that agrees with human perception. Four basic operators are found in mathematical 
morphology, which are erosion, dilation, opening and closing. Erosion and dilation correspond 
to the minimum and maximum operators respectively. These two operators are seldomly used 
in nonlinear filter design, as repeated passes by these filters reduce the input signal to a 
constant. A closing is a dilation followed by an erosion, and an opening is an erosion 
followed by a dilation. The closing and opening operators have the idempotent property, i.e. 
a closed (opened) signal is invariant to further closing (opening). This is a very appealing 
property to nonlinear filter designers, since those filters based on opening and closing 
operations have very fast convergent rates. However, morphological filter operations, such as 
erosion, dilation, closing and opening, closing-opening and opening-closing are not detail 
preserving [Pitas92]. 

In Chapter 2，Fig.2.1 has already shown some examples of the closing and opening 
of a dumbbell shaped binary signal by a 3-point horizontal structuring element. Fine details, 
such as the thin line connecting the rectangular blocks are removed. Also, the hole in the 
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upper rectangular block is filled. A single structuring element is not sufficient to preserve 
details in different orientations. Structuring elements with different directions, or more 
appropriately of different shapes, must be taken into account. Stevenson and Arce [Arce87] 
have already implemented a family of 2-D morphological filters in which several structuring 
elements are used. Their filters are known as the closing-opening and opening-closing filters. 
The former is a closing followed by an opening while the latter is an opening followed by 
a closing. Four linear structuring elements, which are oriented at angles 0。，45°, 90�and 135° 
with the horizon are used. However, these filters are still not detail preserving [Pitas92]. 
Apparently, this is due to the fact that opening and closing operations remove details. 

In this chapter, a new filter based on erosion is proposed. The filter is called multi-
structuring element erosion filter. As its name implies, the filter uses several structuring 
elements. The output of the filter is the union of the eroded outputs by all structuring 
elements. 

It is reminded that one of the objectives of image filtering is to suppress noise. Many 
types of noise, Gaussian noise, Laplacian noise, and impulse noise are always observed in an 
image. As human eyes are sensitive to abrupt changes, the uncomfortable effect under the 
presence of salt and pepper noise is more pronounced. Therefore, our prime objective is to 
suppress salt and pepper noise. Under high noise environment, clustering of noise may be 
resulted after several filter passes. The clustered noise patches are difficult to remove thus the 
filter must be able to prevent noise clustering. 

In the design of the Multi-Structuring Element Erosion Filter, the following 
considerations are taken into account. They, including fine details preservation, salt and 
pepper noise suppression, prevention of noise clustering under high noise environment and 
absence of priori knowledge, contribute to the definition and the basic operation of the filter. 

3.3 Description of Multi-Structuring Element Erosion Filter 

Let SE�’ /=1，2”.. be the structuring elements used in a multi-structuring element erosion 
filter with an index N. N governs the size of the structuring element. If the filter index is N’ 
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then the length of all structuring elements is 2N+1. Moreover, we adopt the notation used in 
Chapter 2’ i.e. a gray level signal is represented as G(jc), XED. 

3.3.1 Definition of Structuring Element for Multi-structuring Element Erosion Filter 

A structuring element is a subset of the signal space D with a specific size and shape, 
and an origin. The origin in a structuring element is the location where the erosion outputs. 
The size is the area or the number of pixels composing the structuring element. Although 
structuring elements of any shapes can be used, we intend to impose some restrictions. 
Structuring elements of 1-D and 2-D filters will be discussed. 

Two approaches can be used to design the structuring elements used in the multi-
structuring element erosion filter. One can exhausively search the details which are required 
to be preserved. For example, if a star shaped object needs to be preserved, then star shaped 
structuring elements will be used. It should be noted that a structuring element is 
characterized by its shape as well as the location of its origin. Fig.3.1 shows an example of 
this approach where five structuring elements are required. If the detail to be preserved is 
composed of n pixels, then generally n structuring elements are needed. Li has utilized this 
approach to remove unwanted features in an image [Li90]. The filter is known as the median 
based feature selective filter. To remove unwanted features, priori knowledge of the input 
image is required. 

Another approach employs structuring elements which trace the edge of an object. 
Geometrically, an object can be interpreted as a stack of constant regions at different gray 
levels. For example, the star shaped detail in Fig.3.1 can be decomposed into simpler objects. 
It can be regarded as the union of two straight lines, one orients horizontally and the other 
stands vertically. As a result, the problem of defining a structuring element is reduced to 
define a set of lines, or smaller objects, by which larger objects can be built upon. The second 
approach is chosen since the set of lines or smaller objects can be defined without priori 
knowledge on an input image. 
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\|：匪 7 
Eroded Outputs 

Figure 3.1 Example of Object Based Structuring Elements 

Definition 3.1 SE is a structuring element used in the multi-structuring element erosion filter 
with index N if and only if it satisfies all following conditions: 
T.l Its size is (2A^+1). 
T.2 Adjacent points must be connected. 
T.3 Any 3 connected points must not form a right angle. 
T.4 All points must be resided in the rectangle those opposite corners are the end points 

of the structuring element SE. 

T.l restricts the size of all structuring elements. T.2 imposes the requirement on the 
connectivity of the structuring elements. T.3 and T.4 define the shape of the structuring 
elements. In particular, T.3 rejects those combinations of pixel which contain right angle(s). 
A right angle is a detail, but right angled patterns are rejected because they contain 
redundancy which can be accounted for. An example illustrates how the redundancy can be 
deal with will be given later. By T.4, a structuring element must be bounded by the rectangle 
formed by the end points of the structuring element. Therefore, closed signal patterns as well 
as oscillating structures are forbidden. In summary, the structuring elements used in a Multi-
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structuring Element Erosion Filter must be simple, single pixel wide, connected, and of 
(2N+1) pixels. 

Example 3.1 In these examples, combinations of pixels are given. The selection of 
structuring elements from these combinations are determined in accordance with Def.3.1. 
Fig.3.2 gives several examples which fail T.3. The right angled pixel patterns in Figs.3.2(a) 
and 3.2(b) are not structuring elements. The pattern shown in Fig.3.2(a) contains redundant 
information as there are more that one path between p^ and p!. In Fig.3.2(a)，the pattern can 
be accounted for by the union of the structuring elements in Figs.3.2(c) and 3.2(d). Fig.3.2(b) 
is rejected since p^, p^ and p^ form a right angle. 

Fig.3.3 shows some rejected pixel combinations owing to T.4. Those patterns in 
Figs.3.3(a) and 3.3(d) are invalid since p^ and p^ are not resided in the interior of the 
rectangles formed by the end points. Fig.3.3(b) is a pattern which tends to close itself. 
Fig.3.3(c) shows an oscillating combination of pixels. 

I I I I I I I I I I I I I J ^ H ^ i I I |眷| I I 
互 

^ • ： — - P l ！二三~P4 n i l = = 互 互 一 

！ A * — = m — i 三 I 5 = = = = = 
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(a) ( b ) ^ — ( a ) (b) I I I I I I I I I I I I 1 I I I I I 
i A 乙二 C 二 

！ ! — ！一 ！ 一 互 — ！ 互 n = = = m = = = = = 互 = = 1 = 1 = M i l l I I I I I I I I I I M - P e I . I 
(c) (d) (c) (d) 

Figure 3.2 (a)&(b) Examples of Pixel Patterns Fail Figure 3.3 Examples of Pixel Pattern Fail T.4 
T.3. (c)&(d) Shapes of Structuring Elements (a)(c)(d)oscillating (b)close itself 

Produce (a) on Union 

Structuring elements are further grouped into subgroups which are classified by their 
locations of the origin. As all structuring elements are of (27V+1) points long, so there are 
(2iV+l) subgroups of structuring elements. 
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Theorem 3.1 The number of structuring elements in each subgroup is 

The proof of Theorem 3.1 is in Appendix I. In particular, three out of the (2A^+1) 
subgroups are chosen as the structuring elements of a multi-structuring element erosion filter. 
Let T\N be the subgroup of structuring elements whose origins are at the centre of the 
elements, and be the subgroups of structuring elements whose origins are at the end 
points. Let be the collection of all structuring elements used in a multi-structuring element 
erosion filter with index N. Therefore, 

TN = 厂 声 … ( 3 . 1 ) 

The reasons why only three subgroups of structuring elements are used are as follows. 
Firstly, as the filter index N increases, the length of the structuring element increases 
accordingly. If all the (27V+1) subgroups of structuring elements are used, the total number 
of structuring elements becomes ( 2 A ^ + 1 ) M o r e o v e r , the length of minimal 
preservable detail equals to (2A/̂ +l). The minimal length is 3N if only the three subgroups are 
used. Table 3.1 compares the length of minimal preservable line with N ranging from 1 to 4. 
The first column is the filter index N. The second and the third columns indicate the length 
of preservable details and the total number of structuring elements required respectively if all 
subgroups are used. Similarly, the fourth and the last column show those if the above 
mentioned three subgroups are used. 

All Subgroups Three Subgroups 
N Min. Length Number of SEs Min. Length Number of SEs 
1 3 36 3 36 
2 5 400 6 240 
3 7 2688 9 1152 
4 9 14976 12 4492 

Table 3.1 Comparisons of Minimal Preservable Details and Number of Structuring Elements Used when (i) 
All Subgroups and (ii) three Subgroups are Used (SE : Structuring Element) 

Referring to Table 3.1，there is no difference when for both the number of 
structuring elements used and the length of minimal preservable details. When N=2, the length 
differs by 1 point, but the number of structuring elements nearly twice than the other when 
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all subgroups are used. The ratio of the numbers of structuring elements increases as N 
increases, but the difference in length is so small that the increase in the number of 
structuring elements is not justified. Hence, the three subgroups are used. 

Corollary The total number of structuring elements used in a multi-structuring element 
erosion filter with index N is 3(7.2^^-2^''^). 

Example 3.2 Fig.3.4 illustrates some T^^ structuring elements for different values of N. 
Similarly, some T顶 structuring elements are shown in Fig.3.5. For any structuring element 
in Fig.3.4, the origin of the structuring element is at its mid-point. All structuring elements 
are of odd number of pixels, simple, connected and non-oscillating. Moreover, they are bound 
by the rectangles formed by their end points. 

I 互 I 1 1 = V T ^ W 厂 N=1 

I I I M = = = 巴 ： 工 • n ~ ~ ~ “ “ ~ — • 〇 F T f f H 
H + W ^ f t t i 三三g I 三 三 
“ ~ 丨 I 丨 I 丨•丨丨 I 

• —— I I I I I I n I I I I i*i n 
==I==== ZZZZJ.ZZ •A •__ 
= I I o Z - I - - - o l l l n=3 I I I Z Z I I I I I Z I I I N=3 

= = = = = = 互 = = = = = = = 

〇 :Or ig in of Structuring Element 〇：^.g；^ of Structuring Element 

• : Component of Structuring Element 眷：component of Structuring Element 

Figure 3.4 Examples of T^n Structuring Elements Figure 3.5 Examples of T2N Structuring Elements 
for N=l,2,3. for N=l,2,3. 

Table 3.2 summaries the number of structuring elements, 7]N，丁2^ and T^ from N=L 
to 4. For A/>3, more than 1000 structuring elements are required, which cannot be realized 
easily. The J\n structuring elements for and N=2 are shown in Appendix II. 
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—N — 2 謝 I7g Ijg irj 
1 3 N 24 一 36 

2 5 ^ m 240 
3 _7 ^ ^ 1152 

I 4 I 9 1664 3328 4492 
Table 3.2 Number of Structuring Elements for N=I to 4 

3.3.2 Binary Multi-structuring Element Erosion Filter 

Definition 3.2 Let X be a discrete binary signal defined on Zl The binary multi-structuring 
element erosion filter with index N operates on X is denoted by BMEF^{X) and is defined as: 

BMEF^iX) = U XQSE., SE.eT^ …(3.2) 
j=i 

where T̂  is the collection of structuring elements and I is the cardinal number of TN. 

In mathematical morphology, operators exist in dual pair. In Section 2.4.1，dilation is 

the dual to erosion provided that the structuring element is symmetrical about its origin. 

Although the T\N structuring elements are all symmetrical, the JJN structuring elements are 
not. However, the T顶 structuring elements exist in mirror pairs. If SE is a Tj^ structuring 
elements, then its mirror images w.r.t. the horizontal axis and the vertical axis are also 

contained in TIN. It is reminded that the dual to erosion is the dilation of the complement of 
X by the mirrored structuring element. Hence, the dual filter to BMEF^ can be defined. 

Definition 3.3 The dual filter to BMEF^, denoted by BMEF^\ is defined as: 

Ĵ -l …(3.3) BMEF/{X) = y X^QSE.l， SE.eT^ 

The 2-D binary multi-structuring element erosion filter with index N can be interpreted 
as a filter of a moving window size {4N+lf. The region of the signal masked by this window 

is eroded by the structuring elements in TN. The window size is {4N+lf in spite that all 

structuring elements are of {2N+1) points. This is due to the use of structuring elements. 
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If some structuring elements are found to be subsets of the signal in the window, the output 
is set to 1. 

The 1-D binary multi-structuring element erosion filter can be defined similarly. In the 
1-D case, only three horizontal structuring elements are defined. The operation is the same 
as the 2-D one, instead of the reduction in the number of structuring elements. To show the 
operation of the binary filters, a 1-D filtering example using a filter with index N=2 is given. 

X0SE1 • M mm • • • • • • • • • • " • • • • • 
•MM •••••• •• / X0SE2 • M M 

Input Signal X \ x 0SE3 • mm — wwwwww WWWWWW WWWWW 

SEi： OMM BMEF2 Union 
SE2： MOM f 
SE3： — — O • • • • • • • • • “ 

o： Origin of SE 
Figure 3.6 Example of One-dimensional BMEF: 

Example 3.3 Three structuring elements are used, and are denoted as SE” where /=1，2，3. 
Edge conditioning is handled by end point attachment scheme [Gabb92]. The signal on the 
edges of the signal are repeated IN times to represent the undefined pixel beyond the edges. 
It should be noted that end point attachment is not the only solution to cope with the 
undefined pixels at the edge. Schemes such as constant value end point attachment, adaptive 
end point attachment are used. Pixels of constant values, either 0 or 1，are added to the both 
the ends of the input signal. In morphological filters, pixels of 0 are usually added. This is 
done by assuming that the undefined end points belong to the background set of the binary 
signal. Adaptive point attachment scheme may be based on the statistics of the signal. For 
instance, in the 1-D case, the number of 1 as well as that of 0 are counted. If the number of 
1 is greater than that of 0，all the attachment points will be 1 or vice versa. We adopt the 
duplication of end points as the attachment scheme since we want to maintain the correlation 
of pixels at these regions. Figure 3.6 shows a detailed operation of BMEF:. Data sequence 
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is first eroded by the structuring elements. The final output is then the union of the eroded 
results. 

3.3.3 Selective Threshold Decomposition 

From now on, the threshold decomposition will be termed as the classical threshold 
decomposition. Lemma 3.1 and the definition of set processing filter are stated [Mara87] by 
which a modification from the classical threshold decomposition is introduced. 

Set Processing Filter 
A filter \|/ is set processing if and only if the output of the filter is chosen among the 

input. Examples of set processing filters are the median filter and the stack filter. In a 1-D 
median filter of window size 2N+i’ the output at a point x{n) is chosen from the data which 
is masked by the window. 

Lemma 3.1 Let G be a /:-level signal defined on D, and \\f and ^ be a multilevel set 
processing and a binary filter with a moving window W. If \j/ and 平 are related as follows: 

\J/(G(JC)) = max{7:^(S.(G(JC))) = L}, V J C G D …(3.4) 

where 5j(G), 7=0,1,2,...,^-! are the threshold sets of G at level j’ then 
\l/(G(jc)) = max[/e W :'¥(Sj(G(x))) = 1 }， V j c e D …(3.5) 

where W^ denotes the translate of W by x. 

Proof: 
Since \j/ is set processing, implying that the output of the filter is chosen among the 

data masked by Ŵ  which is centred at jc. Therefore, those input data which are not included 
by Ŵ  has no contribution to the output. This is equivalent to perform filtering at the gray 
levels in the window. Hence, Lemma 3.1 is proved. 

Lemma 3.1 has significant contributions in both the hardware and software 
implementation of set processing (stack) filters. In the classical threshold decomposition, all 
binary signals of a A:-level signal are used. This is not feasible in the implementation of the 
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filter. Lemma 3.1 implies that the output by the full set of binary signals is equivalent to that 
of the simplified operation using the binary signals thresholded by the data in the window 
only. 

The speed of filter operation as well as the storage requirements are the primary 
concerns in the hardware implementation of a set processing filter. Usually a high degree of 
parallel binary filtering is demanded. Therefore, an implementation of (it-l) binary filters and 
a storage of all thresholded signals are required. If k equals to 256，then 255 binary signals 
are resulted. Let M and N be the width and height of the image respectively. The memory 
required to store these 255 binary signals become 255M7Vbits, which is approximately equal 
to yiMN bytes. 255, or {k-\) binary filters will be implemented. For a square 512 by 512 
pixels image, about 8M bytes memory is required. A window of size of (IN+V) by (2N+V} 
contains (2N+lf threshold levels. Each thresholded set again required (2N+lf bits for 
storage. As there are MN pixels on an images, so the total memory required in bits is 
{2N+\fMN. The number of binary filters to be implemented is {IN+lf. Under certain 
circumstances, a reduction in memory is achieved provided that the number of gray levels is 
more than that of the number of pixels masked by the moving window. In addition, stacking 
requires comparisons of output bits on the threshold binary images, the number of 
comparisons is reduced from 255 (or k-\) to {2N+lf. On the whole, a simpler hardware 
architecture can be resulted in which less number of binary filters are implemented. 

In software implementation, suppose that the filter is implemented on a sequential 
machine. The effect of the usage of Lemma 3.1 is more significant in the reduction of 
computation time. The storage requirement and the number of comparisons are the primary 
considerations. If Lemma 3.1 is not applied, the output at a pixel is chosen by searching the 
stack of {k-l) binary output at that pixel. Only {2N+\f binary outputs will be searched in the 
contrary. 

In Chapter 2，the definition of the classical threshold decomposition is given in (2.2). 
The selectively threshold decomposition is derived from Lemma 3.1. which is designed to 
reduce the computational requirement, especially in the software implementation, of set 
processing filters. By selectively thresholding a multilevel signal, repeated binary filtering on 
binary sets which are thresholded at the same level is avoided. Furthermore, by varying the 
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forcing level, filters of different noise rejection property and detail preserving property are 
resulted. The operation of selective threshold decomposition is as follows. The threshold 
levels which slice a multilevel signal into binary signals is taken from a data sequence Q, 
where Q contains the sorted data masked by the moving window W of the filter. Let /①，j>l 
be t h e / rank order data in Q. If /�=/。_”，thresholding of the multilevel signal G at threshold 
level / � is skipped. A forcing threshold level,/, is introduced to provide a stopping threshold 
value for the comparison of sorted data. Whenever f equals /，thresholding is carried out 
disregarding whether / � is equal to /(�])or not. 

Definition 3.4 Let G{x\ xsD be a /:-level signal taking values in [0,A:-1], and let Sfj(G(x)) be 
the selective threshold set with a forcing level / a n d a ranked threshold value sequence g，the 
selective threshold set is defined as : 

0， 仏 

Sf.(G(x)) = \(GW)， if Vi) …(3.6) 
S,iiG(x)X i f M 

where / � is the f" largest data in Q. 

If a forcing level is set to 0，then the selective threshold decomposition is said to be 
without a forcing level. In this case, the selective threshold decomposition is equivalent to the 
classical one. All threshold sets will be sliced. By the principle of selective threshold 
decomposition using a ranked threshold levels sequence Q of kg levels, and a forcing level 
f . A multilevel level signal G of /:-levels can be decomposed into maximally JCQ or less than 
{kQ-f) binary signals. The addition of forcing level/，also increase the noise rejection power. 
In fact, if a forcing level / is used, at the forcing level, at least /pixels which are equal to 1 
must be found. The effect of forcing lever on multilevel signal filter will be discussed in later 
chapters. The pixels in the window are sorted. If binary filtering is performed from the largest 
threshold level, stacking operation by taking the maximum level at which the output of binary 
filter is 1 can be eliminated. In other words, binary filtering at all threshold levels are not 
necessary. Hence, selective threshold decomposition has already merged the stacking 
operation while thresholding a signal. Example 3.4 illustrates the effect of level skipping with 
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and without a forcing level. 

Sorted Data 
^ _ _ 2 2 2 _ _ ^ 9 I First 

9 Second 
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Figure 3.7 Filtering Using Selective Threshold Decomposition 
(a)Original (b)Sorted Array (c)0/p f=0 (d)0/pf=2 

Example 3.4 A 2-D multilevel signal is given in Fig.3.7(a). The signal is thresholded 
selectively using the image data masked by a 3 by 3 window. The binary signals are filtered 
by BMEFj. Fig.3.7(c) shows the multilevel filtered output with a forcing level equal to 0. The 
pixel at the centre of the window become 2 after filtering. Binary filtering is performed only 
when the current threshold level is different from the previous one. If a forcing level is 
included, which is set to 2 in this example, the output at the centre is preserved as shown in 
Fig.3.7(d). 

Property 3.1 The selectively thresholded sets are linearly ordered. If a<b and /(a产Z(b)，then 

The property is similar to Prop.2.1. A partial ordering between the thresholded sets at 
different threshold levels exists. 
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：3.3.4 Multilevel Multi-Structuring Element Erosion Filter 

A straightforward extension of a binary filter to a multilevel filter is by the principle 
of classical threshold decomposition. An /:-level signal G is sliced into (k-l) binary signals 
by the classical threshold decomposition [Fitch84]. Binary filtering is performed for each 
thresholded signals. The multilevel output is then produced by the stacking operation, which 
is the reverse to the classical threshold decomposition. The merit of the classical threshold 
decomposition is that multilevel signal can be decomposed into binary signals. Usually, binary 
operations are simpler that the multilevel ones. Also, properties of a multilevel filter can be 
predicted from those of its binary filter. However, the binary filter must be increasing; 
otherwise, the stacking principle will not hold [Fitch84]. As erosion is an increasing operation 
[SeiTa82], we can simply propose a multilevel filter };N(G(JC)) which is defined as : 

yJ.G{x)) = max{7: BMEF^{S (G{x))) = 11 , V J C E D …(3.7) 

where 

and BMEF^ is the binary multi-structuring element erosion filter with index N. In the 
following, we will show that the multilevel erosion filter defined in (3.7) is not suitable for 
suppressing noise. 

By Lemma 3.1，(3.7) can be reduced to: 
y^{G{x)) = = \f xeD ."(3.8) 

where / � is the , largest element within the (AN+lf window centred at x. 

However, the multilevel filter defined by (3.8) performs well only under low noise 
environment. Also, the filter is computational intensive. According to the interpretation of 
BMEF阶 a moving window of size slides on a signal. However, the following analysis 
show that the performance in computation speed as well as noise suppression are better if 
threshold levels are taken from the (2N+lf window than the one. Figure 3.8 shows 
the arrangement of the windows. The inner window of (2N+lf pixels is denoted as W,, the 
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W outer one with (4N+lf pixels is W�. The shade region is 
jL the complement of the inner window in the outer one, 

denoted as A structuring element is said to match 
the signal if the erosion of the signal by the structuring 

Wj element gives a non-empty result. The pixel in W�\Wi do [ _ _ _ _ J not contribute to a T^̂  matching. Similarly, if the signal 
is matched by a structuring elements, at least (A +̂1) 
l，s are found in Ŵ . This reveals that most of the required 

Wo:(4N+1)*(4N+1) information is in 化. 

Wj ： (2N+in2N+1) 

Figure 3.8 Inner and Outer Windows 

Computational Efficiency 
It is obvious that the number of comparisons depends on the number of data to be 

sorted. Moreover, as the number of data increases, the number of binary filter increases as 
well. The computation time for sorting {2N+\f data is approximately one fourth of (4A^+l)l 

Noise Rejection 
As different forcing levels vary the minimum number of pixels equal to 1 on a binary 

image. Fig.3.9 show the outputs of a multilevel signal which is corrupted by impulse of 
magnitude 99 by multilevel filter with and {2N+\f windows. All filters are with 
index N=L Fig.3.9(a) is the original signal, which is a constant signal of magnitude 9 
corrupted by impulses of magnitude 99. Fig.3.9(b) is the selective threshold set at level 99 
with a forcing level of 3. Hence, at least 3 l，s are found in Fig.3.9(b). At pixel the 
impulse is preserved by the filter using data. However, the impulse at pj is removed 
by the second filter whose threshold levels are taken in the (IN+l)^ window. Let p be the 
probability of occurrence of an impulse. The expectation of number of impulses in a (4N+1)^ 
window is (4N+lfp, while that of (2N+lf window is (2N+\fp. The ratio of expectation of 
impulses occurring in these window are approximately equal to four. Hence, with the same 
forcing level, the effect of impulses on a filter with a window is greater. Therefore, 
the noise suppression is worse. 
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Figure 3.9 Comparison of Multilevel Multi-Structuring Element Erosion Filter Using Threshold Levels in a 
(4N+lf and a (2N+lf window (a)Original (b)Thresholded Set at level 99 (c)Output of (3.8) using a 

(4N+lf window (d)Output using the Threshold Values in a (2N+1 f window only 

According to the previous discussion, a structuring element will match a binary signal 
if there are at least (7V+1) 1，in W,. The minimum forcing level/^IN is therefore set to A +̂1. 
I f / i s less than N+\, the output of the binary filter must be zero. From the objective of the 
filter, the maximum forcing level /MAX will be set to 2N+1, so that fine details can be 
preserved. 

Definition 3.5 Let G ( J C ) , X^D be an A:-level signal. The multilevel multi-structuring element 
erosion filter operates on G with index N and forcing level / i s defined as: 

GMEF.^(G(x)) = max { BMEF^(S^.(G(x))) = 1} ...(3.9) 

where (W-X is a (2iV+l) by (2iV+l) window centred at JC, and / � is the 产 ranked data in the 
(W-X window a n d / i s the forcing level/G }. 

It should be noted that sorting is performed in descending order, i.e. the largest 
element in (W-X is denoted by / � . T h i s is different from the notation used by [DavidSl] in 
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which I � denoted the smallest number. Similarly to the dual of binary filter, the dual of 
multilevel filter operates on the complement multilevel signal. 

Definition 3.6 Let k be the number of levels in a multilevel signal G, the complement of G, 
denoted as G" is defined as : 

G\x) = (k-1) - G(jc), VxeZ" … ( 3 . 1 0 ) 

The complement of a multilevel signal is so set in order to comply with the definition 
of binary complementation. If the number of gray levels k is set to 2，then the signal is 
essentially a binary signal and Def.3.6 becomes the binary complementation. By Def.3.6, the 
dual filter to a multilevel erosion filter can be defined. 

Definition 3.7 Let GMEFf/ be the dual to GMEF^^. GMEF^/ is defined as : 

GMEF^/(G) = { GMEFf/G')y -O-H) 

A flow chart of the operation of multilevel multi-structuring element erosion filter is 
shown in Fig.3.10. The data in the inner window of size (2iV+l) by (2N+V) is first sorted. 
Thresholding of the output window of size (4謝）by (4A^+1) begins at the (謝)'h ranked 
threshold level since at least (A^+1) l，s are needed in the inner window for a structuring 
element matching. If the current level, say / � equals to the previous level /(j])’ then 
thresholding as well as binary filtering at this level is skipped provided that j is not equal to 
/ , the forcing level. The output is found by the stacking operation. 
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Fig.3.11 shows the operation of GMEF^^ on a 2-D multilevel signal, whereyb{2,3}. 
Fig.3.11(a) is the original signal, which is a plateau. An impulse of magnitude 87 is added 
to the signal. Originally, the values at the impulse is 3. Fig.3.11(b) and 3.11(c) show the 
output of the filter GMEF^ , and GMEF^ ,. In both cases,the impulse is removed, but the 
values at the corrupted pixel are different. 

_3__3__3__3__3__3__2 3 _ _ 3 _ _ ^ 3 3 3 2 3 3 3 3 3 | 3 | 2 
_3__4__5__4__4__3__2 3 _ _ 4 _ _ 5 _ _ 4 _ _ ^ 3 2 _ 3 _ _ ^ 5 4 4 3 2. 
3 90 5__5__4__3__2 3 _ _ _ _ ^ J . _ _ 3 _ _ ^ 3 4 _ _ 5 _ _ ^ 4 3 2 

_3__4__5__5__4__3__2 3 _ _ _ _ _ _ 3 _ _ ^ 3 4 5__5 4 3 2 
_3__4__4 90 90 3 _ _ ^ 3 4 4 90 90 3 2 3 4 4 4 4 3 2 
_ 3 _ _ 3 _ _ 3 _ _ ^ 3 90 2 3 3 3 3 3 90 2 3 3 3 3 3 3 2 
3 I 3 3__3__3__3__2 3 _ _ ^ 3 3 3 3 2 J _ _ ^ 3 3 3 3 2 

(a) (b) (c) 

Figure 3.11 Examples of Multilevel Erosion Filtering using GMEF21 and GMEF^ j (a)Original Signal 
(b)Filtered by GMEF�,! (c)Filtered by GMEF^ j ‘ 
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3.3.5 A Combination of Multilevel Multi-Structuring Element Erosion Filter and its 
dual 

It can been seen that the binary filter is highly biased, as erosion is biased to preserve 
negative features. As a result, the multilevel filter is also biased. To alleviate this bias, 
sequential applications of GMEF,^ and its dual is proposed. Properties of the filtered signal 
will be dependent on the order of application. Denote the resultant filter that GMEF^^ is first 
used followed by its dual as CGf ̂ . 

Definition 3.8 Let G(x), xeZ^ be a multilevel signal. The filter CGf^ with an index N and a 
forcing level f is defined as: 

CG^J,G{x)) = GMEF^/{GMEF^^{G{x)) . . . ( 3 . 1 2 ) 

Numerous combinations of the multilevel erosion filter and its dual can be made. For 
example, one can apply the multilevel erosion filter until the root signal is found, and then 
continue in this way for the dual filter. Moreover, the application sequence of the erosion 
filter and its dual can be changed. An image can be filtered by the dual filter first followed 
by the erosion filter. But only the properties of CG^^ will be discussed. Properties, both 
deterministic and statistical, of CGf i will be discussed in the next Chapter. 

3.4 Chapter Summary 

A new family of binary nonlinear filters based on a multi-structuring element approach 
is introduced. The filter is the union 3(7.22N-2n+3) morphological erosion filters. The essence 
of this filter is to try to find a match between those desirable details such as edges, sharp 
comers, constant regions in an input signal with the set of structuring elements while 
removing impulse noise. All structuring elements used must satisfy the T. 1 to T.4 constraints. 
These constraints govern the shape and size of the structuring element used in a multi-
structuring element erosion filter. The filter is characterized by an index N. If a filter of index 
N is used, then all the structuring elements must be 2N+\ long. Constraints also restrict that 
the structuring element must be connected and non-oscillating. Lastly, the structuring element 
must not tend to close itself. 
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The definition of binary filter is given as the union of erosions of a binary signal by 
all structuring elements. Multilevel filters are derived from the binary filter using a 
modification of the classical threshold decomposition, known as the selective threshold 
decomposition. Threshold values are chosen from the inner window W., which is a square 
window of size (27V+1) by (2A^+1). The window is selected owing to the computation 
complexity and noise suppression power considerations. The objective of introducing selective 
threshold decomposition is to reduce the computation complexity of the filter by reducing the 
number of binary filtering as well as repeated filtering is avoided. Two basic gray scale filters 
which are defined on selective threshold decomposition and binary multi-structuring element 
erosion filters are proposed. In section 3.3.5，a filter which is a sequential application of the 
multilevel erosion filter and its dual is designed. 
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Chapter 4 Properties of Multi-Structuring Element Erosion Filter 

4.1 Introduction 

Analysis of the multi-structuring element erosion filters, both binary and multilevel, will 
be presented. As the multilevel element erosion filter is a nonlinear filter, the methodology 
of superposition is not applicable. Deterministic analysis and statistical analysis have been 
served to portray the properties of nonlinear filters by pioneers in this area. The former is 
concerning, firstly the geometrical structures of signals which are invariant to the filter, and 
secondly the rate of convergence of the filter. The rate of convergence shows how fast, in 
number of filter passes, an input signal is transformed to the corresponding invariant signal. 
It is reminded that the one of the purposes of image filtering is to eliminate or suppress noise. 
The efficiency and effectiveness of noise suppression is described by the statistical properties. 

Section 4.2 will discuss the deterministic properties of the multi-structuring element 
erosion filter. The analysis commences with the binary erosion filters. Root signal structures 
of the 1-D binary erosion filter, which is a particular case of the 2-D filter, will be derived 
first and then those of the 2-D binary erosion filter. The root structure analysis of the 
multilevel erosion filters follow. The rate of convergence of the 1-D binary erosion filter will 
be considered, and is followed by the 2-D filters and the multilevel erosion filters. 

Section 4.3 deals with the statistical analysis. The probability measure function of the 1-D 
and 2-D multilevel erosion filters with index N=Y will be derived using the statistical 
threshold decomposition [Arce86]. Simulations using Gaussian distribution and uniform 
distribution will be performed. Breakdown probabilities will be calculated under different 
probabilities of occurrence of impulse. We will compare the noise suppression performance 
with the unidirectional and bidirectional multistage median filters. 
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4.2 Deterministic Analysis 

By the principle of superposition, a linear system can be analyzed by sinusoidal signals 
at different frequencies [Oppen83]. The passband, which is defined as the band of frequencies 
passed by the system, can be identified. Signals whose frequency components are within the 
passband are unchanged by the system. However, such analysis is not applicable to nonlinear 
filters because superposition does not hold. Harmonic distortion as well as phase and 
amplitude changes are resulted. Fig.4.1 illustrates the clipping effect of a multi-structuring 
element erosion filter on a sinusoidal input. A sinusoidal wave is input to the multi-structuring 
element filter(MEF) in Fig.4.1. The filter should be a CGf^. Both the peaks, maximum and 
minimum of the input signal are cut which brings about a clipped output. 

Sinusoidal Input Clipped Output 

Figure 4.1 Clipping Effect of Multi-structuring Element Erosion Filter (MEF). Sinusoidal input is fed to the 
erosion filter, the output is clipped 

To a certain extent, the deterministic analysis is analogous to the frequency band analysis 
in linear systems. Deterministic properties disclose the invariant signal and the rate of 
convergence of a filter. Invariant signals, or known as roots, are signals which are unaltered 
by the filter. Let \\f represents a nonlinear filter. If an input signal G(x), xeD, is invariant to 
\\f, then 

\|/(G(jc)) = G(xX \/ xeD. ...(41) 

Root signal analysis is carried out in the spatial domain. The geometrical features, such 
as sizes and shapes, of root signals determine a filter's applications. Finally, the number of 
filter passes required to convert any nonroot signal to its root, determines whether a filter can 
be used in real time applications. The number of filter passes is referred to the rate of 
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convergence. In some literature [GallagSl] [Arce82] [Arce86], the number and the 
construction of root signals are determined. However, the theoretical development is limited 
to some 1-D median based filters. Applications are found in block truncation coding (BTC) 
of speech [Arce83]. We will not attempt to count the number of 2-D root signals as the search 
space is too large. 

4.2.1 Shape of Invariant Signal 

We shall begin by defining some terminologies in deterministic analysis [Nodes83] 
[Fitch85] for 1-D root signal analysis. A constant neighbourhood is a region of consecutive 
points with identical values which are invariant to a filter. The shape and size of a constant 
neighbourhood are filter dependent. For a 1-D median filter, the number of consecutive points 
is at least N+1 for a filter window of 2N+1 points. An edge is a monotonically increasing or 
decreasing region which is surrounded by constant neighbourhoods. Usually, the root or 
invariant signals are combinations of constant neighbourhoods and edges. Nonroot structures 
can be described by impulses and vibration points. An impulse is a set of points whose values 
are different from the surrounding regions and whose surrounding regions are identically 
valued constant neighbourhoods. For a 1-D median filter with a moving window of 2N+\, an 
impulse is a set of N or less points. Vibration points may exist for those nonlinear filters 
which are composed of several steps, for example, the separable median filter. A separable 
median filter is a two- pass filtering operation. A 2-D signal is first filtered by a horizontally 
oriented 1-D median filter and then, the resulting signal is filtered by a vertically oriented 
median filter. A vibrating point is toggled by the first pass and toggled back to its original 
state upon the second pass. 

In 2-D root signal analysis, as geometrical structures of the signal are used, it is natural 
to use terms such as open curve, closed curve, etc. to describe the root structure. Descriptions 
of geometrical structures of a 2-D signal are given. 

Two points JCi and X2 are said to be connected if x: is in the 8-neighbourhood of x^. A 
line is said to be a single point wide line if for all points JC on a single point wide line, at 
least one and at most three l，s which are not fully connected are found in the 8-
neighbourhood of x. A single point wide line, or a single point line is the simplest 2-D signal 
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structure. Fig.4.2 indicates some examples and counter examples of single point wide lines. 
In fact, the 1-D invariant signal structure is a single wide line which is oriented horizontally. 
Figs.4.2(a) and (b) are examples of single wide point lines. A single point wide line may 
contain right angle as shown in Fig.4.2(a). The patterns in Figs.4.2(c) and (d) are not single 
point wide since there are points on the line that more than three l，s are located in their 8-
neighbourhood. 

|叫 I I I I I I I I ~~|~ 
= = H = = = = = I I I I I u I I |叫 I 
= = = i = : = = n = = : : = = I = = = = 

！ = = :I==== ―̂-—-—— ——— 
= I = = = = = — ^ 
(a) (b) la)' 

==;「日 卜卜I ====;;; I•卜!•! 
A A ± ZZZZZZZ I 一 一 • 

！ ! ! _ ! ! ! = : = = ====Z=一 
= : : 1 = (0) (d) (c) (d) • 

Figure 4.2 (a)(b)Examples of single point wide lines Figure 4.3 Examples of lines with m segments 
(c)(d) Counter examples of single point wide lines (a)m=J (b)m=J (c)m=3 (d)m=7 

A segment is a line which is oriented either in the horizontal or the vertical directions 
only. A line I is said to be consisted of m segments if the line can be divided into a minimal 
number of m segments. Figs.4.3(a) and (b) are segments which are composed of 7 points. The 
one in Fig.4.3(a) is a horizontal segment, while the other in Fig.4.3(b) runs vertically. 
Fig.4.3.(c) is a curve of three segments. Two of them are composed of three points. The 
centre one is a single point segment. Fig.4.3(d) shows a line running diagonally. Each point 
on the line is a segment. 

An open curve is a linkage of points in a 2-D space whose end points are not coincident. 
On the contrary, a closed curve is a connected linkage of points those end points are 
coincident. A structuring element is an open curve of 2N+\ points. The boundary of an object 
is an example of closed curve. A rectangular region is defined as a constant region in which 
points are arranged as a rectangle. A rectangular region can be characterized by its height and 
its width. An irregular region is a region which is not rectangular in shape. A curve of any 
arbitrary shape is an example of an irregular region. 
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4.2.1.1 Binary Multi-Structuring Element Erosion Filter 

The binary multi-structuring element erosion filter will be abbreviated as the binary 
erosion filter. The term binary erosion filter and BMEF^ will be used interchangeably with 
binary multi-structuring element erosion filter. In 1-D root signal analysis, let [g]^ be a region 
of L consecutive points of value g. A constant region is said to be (relatively) positive if the 
value of the constant region is greater than its surroundings. A constant region is (relatively) 
negative if it is of lower value than its surroundings. 

One-dimensional Binary Multi-structuring Element Erosion Filter 
The 1-D binary multi-structuring element erosion filter, BMEF^, is a particular case of 

the 2-D one. Three collinear horizontal structuring elements are chosen among the 2-D 
structuring elements. A point x(n) of value 1 on a 1-D binary sequence survives after one pass 
of BMEF^ if one of the following cases occur. A region [1]2n lies either on the left or on the 
right of x{n). Or, regions of [1]^ are found on both sides ofx{n). If [1]2n+i is filtered, the end 
points and the middle point are unchanged. Thus, [1]2N+I becomes [1][0]N_I[1][0]N_I[1] after 
the filter is applied once. 

Property 4.1 (1-D Binary Positive Region) Let [1]^ be a constant region of L consecutive l，s 
in a 1-D binary sequence. The constant region [1]L is a constant neighbourhood to a binary 
multi-structuring element erosion filter with index N if and only if L>?>N. 

Proof: 
It is obvious that L must be greater than 2N+L Suppose L=(2A^fl)+^, where e is the 

minimal number of consecutive l，s [1]̂  appended to [1]2n+i. For [1]2肿 only the end points 
and the middle point are preserved. The second to the N^ and the (A^+2)̂  to the are set 
to regions of [0]N_I. If [1]I is appended to the right of [1]2N+I and the positive region becomes 
[l]2N+2，the second and the 2 妒 points will be preserved. The minimal number of [l]! 
a p p e n d e d , � i s (2iV+l-3)/2=AM. The minimal length is 3N. 

Property 4.2 {1-D Binary Negative Region) Let [0]L be a constant region of L consecutive 0，s 
in a 1-D binary sequence. The region [0]L is a constant neighbourhood to a binary multi-
structuring element erosion filter of index N if and only if L>1. 
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This follows from the definition of BMEF阶 as erosion of [0]^ is also [0]^ for L>1. 
Apparently, the binary erosion filter is biased towards regions of lower intensity. It preserves 
all negative details but converts regions of [1]^ into [0]^ if L<3N. The bias of the filter will 
be verified when its statistical property is elaborated in Section 4.3. The dual filter of BMEF阶 

which is denoted as BMEF^' in Chapter 3，on the other hand, preserves regions of higher 
intensities. The 1-D root signal to BMEF^' is the complement to BMEF^. Constant regions 
of [1]L remain unchanged for any positive integer L, and regions of [0][ are preserved if 
L>3N. 

Two-Dimensional Binary Multi-structuring Element Erosion Filter 
The root signal structures of 2-D multi-structuring element erosion filters are more 

complicated. It can be deducted from Property 4.1 that the length of connected l，s in a 2-D 
signal must be at least 3N points. However, the shape of a signal also contributes to the 
invariance of the signal. Let (r^ j, r̂  ；) be the relative coordinates of the (/-1)出 point to the 严 

points, and m, be the number of segments of a structuring element. If the 产 point lies on the 
same segment as (/-1)出 point, then either (4.2) or (4.3) is true. 

r . = 1 
.叉’' …(4.2) 

r . = 0 

= 0 
. . . . ( 4 . 3 ) 

r . = 1 
(4.2) and (4.3) imply 

. ...(4.4) 

If the (/-l)th and the 产 points are on different segments, then 
k j = 1 …(4.5) 

r . = 1 I y’' 

which implies ^ + r = 2 . ...(4.6) 
x,i y,i 
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rx,i = 1 r,, = 1 _ _ ^ 
〜尸0 ry’i=1 

(a) (b) f 

Figure 4.4 Relative coordinates between the (i-Jf and the 产 points on a curve (a)both points are on the 
same segment (b)the points are on different segments 

Fig.4.4 illustrates the determination of relative coordinates. A line of two segments are 
shown in Figs.4.4(a) and (b). The ( M f and the 严 points in Fig.4.4(a) are on the same 
segment. The sum of the relative coordinates between the (/-1产 and the 严 points is 1. On the 
other hand, the (/-I)出 and the 产 points in Fig.4.4(b) are on different segments. The sum of 
relative coordinates is 2. 

Lemma 4.1 {T.4) If a single point wide line of L points satisfies T.4 of Def.3.1, then the 
sequences 

h I. 
E 肌d r^ . ’ where I. = 2，...，L …(̂.乃 
1=2 i=2 

must be monotonic. 

Proof 
T.4 does not allow line which is oscillating, or have the trend to close itself. If a line is 

oscillating, then there exists two points, say and s.t. 
r . +r . +r . +r . - 2 ...(4.8) y,lj >,'2 

since either r . = -r . or r .= -r .. This implies that the sum of the relative coordinates will 
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not be monotonic. I f the line is is not oscillating, then (4.8) wi l l not result, implying that 

the sum of the relative coordinates must be monotonic. I f the line tends to close itself, (4.8) 

wi l l be true for some and The above argument is applied again. 

In the following property, a structuring element used by a multi-structuring element 

erosion filter is regarded as a single point wide line. A structuring element used by a multi-

structuring element erosion filter wi l l have the property described below. 

Property 4.3 {Relative Coordinates of a Structuring Element) Let (r又’r) be the relative 

coordinates between the end points of a structuring element of a multi-structuring element 

erosion filter with index N, i，e. 

k l = i : E 〜 l ， l r 」 = i : E ; l ...(4.9) i:2 i=2 
where (rx’i，"y，i) is the relative coordinate of the 产 point with respect to the (/-7产 point in the 

structuring element. I f the structuring element has m, segments, then 

〜I + I'v - m= 2N - I . … ( 4 . 1 0 ) y s 

Proof: 

Al l structuring elements must satisfy T.4. By Lemma 4.1，the sequences, 

h I 
— E 广”，/,2，...，2浴 1 

i=2 1=2 
are monotonic. I f the structuring element has only one segment, i.e m=l, then the end point 

is at a distance of 2N away from the starting point. I f the structuring element is of m̂  

segments, then 
2AM 2N+1 

+ = ( 2 N . I - 2 ) . m^ ...(4.11) i=2 i=2 
=2N - \ + m . s 

At every transition from one segment to another, (4.6) holds, i.e. There are 

totally m^ transitions and the '2' in (4.11) sets the starting point as the new origin. Hence 

Property 4.3 is proved. 

The following property uses the representation of relative coordinates to find a sufficient 

condition for invariant single point wide open lines. Only the positive lines, curves, 

4.8 



rectangular regions and irregular regions wi l l be considered because negative regions of all 

sizes are preserved by BMEF^ (Prop.4.2). 

Prop吻 4.4 (Positive Binary Single Point Open Curve) Let be a single point wide open 

curve and L=3N. Let r ) be the relative coordinates between the end points of defined 

as in (4.9), and m be the number of straight line segments on The line (L=3A0 is 

invariant to a binary multi-structuring element erosion filter with index N i f and only i f 

+ k j - m = 3N - 2. …(4.12) 

Proof 

i. k is invariant. Divide the line into 2 lines I 舰 and /2N+1 is a line of (2A^+1) points, and 

/n+1 is o f N + l points. The last point on /2N+1 coincides with the first point on /n+i. /2N+1 and /n+i 

has nil and m】segments respectively, we must have 

l 、 | l + l 。 ’ / J , = 2 i V - l ’ |r《|| + I 〜 J -饥2 = N-2 

provided that both lines satisfy T.4. For the whole line /[，the relative coordinates between 

the end points is 

丨小丨〜丨= | r " J + l ; / J + l 。 J + K / J . …(4.13) 

The last points in /2N+1 coincides with the first point in Z^+i, the number of segments, m, of 

/ l is m=mi+m2-l, implying 

+ = 2N- 1 +N-2+m^. 

i i. + This implies that satisfies T.4 and by Prop.4.3, can be regarded 

as unions of some structuring elements. Therefore, every point on can be preserved by at 

least one structuring element. 

Property 4.4 can be extended to lines of any length L > 3N. 

Property 4.5 {Positive Binary Single Point Open Curve 2) A single point wide open curve 

L>?>N is invariant to BMEF^ i f I rJ+jfy 卜 

A line of any length L>3N can be visualized as unions of lines of length 3N which are 

invariant to BMEF^. However, this property only gives a sufficient condition for a line to be 
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invariant to BMEF^. I f this property does not hold, it does not imply that a line must not be 

invariant to BMEF^. For example, Prop.4.5 does not hold for closed curves which may be 

invariant to BMEF^. Fig.4.5 gives some examples of invariance test using Props.4.4 and 4 .5. 

Fig.4.5(a) is invariant to BMEF^ which shows the sufficiency of Prop.4.5. Figs.4.5(b) and (c) 

are not root signals to BMEF^ which do not satisfy Prop.4.4. Fig.4.5(d) is a root to BMEF^. 

It satisfies Prop.4.4 but not for Prop.4.5. Since Prop.4.4 holds, the signal structure is also 
invariant. 

= n = = = = = 
Z Z Z Z Z Z Z Z (�x'ry) = (5,5) = H ! Z = = = = (rx，ry) = (2,3) 

m = 3 = = = Z = = = = m = 2 
Z rx+ry-m = 7>4 = = = ! ^ = = = = r^fry-m = 3 < 4 

=::I===: _ 

(a) (b) 

= = = n = = = = m = = = = 
A _ ? _ = = ( � A ) = ( 2，1 ) = = = Z = = = = M ) = (2,4) 

一 ！ ！ m = 6 — = — i m = 2 
= I = = I = = = ^x+ry-m < 4 = = = Z = = = = rx+ry-m = 4 ===I==== •‘ 

(c) (d) 
Figure 4.5 Test of Invariance of Signals for BMEF: (a)Invariant by Prop A. 5 (b)Nonroot Signal fails 

Prop.4.4 (c)Nonroot Signal Fails Props.4.4 and 4.5 (d)Invariant by Prop.4.5 

As binary signal structures can be constructed by set operations, such as intersection, 

union, translate and complements, of other binary signals. Study of the invariance resulted by 

these operations are worth since this provides us more information for the root signal 

structure. 
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Property 4.6 {Binary Set Operations) Let A and B be invariant signals to BMEF阶 

1. The intersection of A and B is invariant i f and only i f 

i. AnB = 0，or 

i i. A c B or 

2. The union of A and B is invariant. 

BMEF^iA) = A,BMEFn(B) : B => BMEF^(A[JB) = A\JB. 

The set union can be extended to the union of any number of invariant signal, either 
countable or uncountable. 

BMEF^i UA ) = " = 1，2”" 
/=i i=i 

3. Let A(i，j) be the translated A by ( i j ) . I f BMEF^(A)=A, then 

4. The complement of A is invariant BMEF^ if A is also invariant to BMEF^^. 

Property 4.6 shows that the union of invariant signals is also invariant. The following 

properties concerning closed curves and rectangular details can be derived. 

Property 4.7 {Positive single Point Closed Curve) Let /〔L be a closed curve of L points. The 

curve ZcL is invariant to BMEF阶 N>1 i f is composed of at least 6N-2 points and can 

be decomposed into at least 2 invariant open curves. 

Proof: 

I f a closed curve can be decomposed into 2 invariant single point open curve, then the 

closed curve in invariant due to Property 4.6. The minimal length of an invariant signal is 3N， 

that of a closed curve is 1 务3N-2:6N-2 i f the end points of the open curves are overlapped. 

Moreover, i f a particular closed curve cannot be decomposed to two invariant open 

curves, a binary erosion filter wi l l convert the closed curve to the longest open curve(s) after 

repeated filtering. Single point wide invariant signal structures have been discussed, details 

of regular shape wi l l be treated. It is impossible to consider all 2-D structures which are 

invariant to the binary erosion filter. Solid rectangular structures are analyzed for their 

simplicity. For hollow structures, the analysis is the same as that of a closed curve. 
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P零rty 4.8 {Positive Rectangular Region) Let 礼 be a solid rectangular detail with height 

/I and width w on a binary signal. The solid rectangular shape detail 礼 is invariant to BMEF^ 

i f and only i f the width w must not be less than Wmin， 

h 
w . = \ ， i f 2N>h>3 and h is even …(4.14) 

mm 丄 \ z 

3斤一 ¥ ’ if and h is odd 

Proof: 

1. is invariant. There are three cases to be considered. 

Case i. h<?>. Property 4.1 has already considered the case when h=l. When h=3, i f the row 

in the middle of the rectangle is invariant to BMEF^, then there exists a 3N points invariant 

line • There are two possible construction of this invariant line, the 37V points lie horizontally, 

or 3NA points lie horizontally while the last point is either below or above this line. Both 

lines result in a total width of 3N. When h=2, the same situation is encountered. 

" I l l I I I I 11 
(h-1)/2 

h， 

H M T 丄 T 
h， h’+1 :h+1)/2 

-ill - | I l _ I I — i i i 
(a) h is even (b) h is odd 

Bf: Shaded region 

Figure 4.6 Definition of B^ 

Case ii.2N>h>?i and h is even. The rectangle of height h can be divided into two identical 

rectangles of height h,. Let B! be the boundary of the rectangle of height h’ and width w as 

shown in Fig.4.6(a). Let B, be the boundary of the rectangle with height h '+ l and width w. 

I f only the horizontal rows of B^ is invariant then 3N>h'+w>2N+L Consider the second point 

(counted from the left) on a horizontal row of B” i f it is preserved after the filter is applied 

once, then /i'+w-l>2A^+l. Continue in this way, at the N^^ point on the row, h'+W'{N-l)>2N+l. 
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Hence, we have This gives Therefore, w^,=3N^h'=3N-h/2. 
I f the horizontal rows of B̂  is preserved, the union 

h' 
…(4.15) 

7=1 
gives a rectangle of height h and width 

Case iii.2A/>/z>3 and h is odd. The result follows if h’=(h-l)/2. 

2. w > The proof is similar to Prop.4.4. 

Figs.4.6(a) and 4.6(b) show the shape of the boundary B^ when h is even and odd 

respectively. The sizes of minimal rectangular details which can be preserved by the binary 

erosion filter with index N、M=l，2，3，are summarized in Table 4.1. 

Index，N Minimal 1-D Line Minimal 2-D Rectangle 
3N "1 

Height, h Width, w 

1 3 1 3 一 

2 3 

3 3 

2 6 1 一 6 

2 6 
3 5 

4 4 

3 9 1 9 

2 9 

3 9 

4 7 

5 7 

6 6 
I • I I I 

Table 4.1 Summaries of Minimal Preservable Rectangular Details of BMEFf^, N=J to N=3 

A binary signal is not solely composed of single points curves, either open or closed, and 

rectangular regions, most of the signal patterns are irregular in shape. Denote (ijR as an 
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irregular region. An irregular region can be interpreted as the union of a set of invariant 

signals with a set of nonroot signals, i.e.减R={Invariant structures}u{Nonroot structures}. 

Any element in the set of invariant components of d,^ must have empty intersections with all 

the elements in the set of nonroot components. Denote and N, as the set of invariant 

components and the set of nonroot components of respectively. Therefore, we have 

〜=0，Vn^G iV^ , i e l c ...(4.16) 

(4.16) implies that the two sets are disjoint. In addition, a point which is included in an 

element o f / , must not appear in any element of N。The nonroot structures are those signals 

which fail to comply with Property 4.3 to 4.8. Moreover, as single point wide open curves 

can build other signals by set union operations. Hence, in the discussion of Property 4.9，all 

signal structures are assumed to be single point wide open curves. It should noted that the set 

of invariant structures or the set of nonroot components composing d̂ ^ can be empty. 

Property 4.9 {Positive Irregular Region) Let d^^ be an irregular detail, can be represented 

as the union of a non-empty set of invariant signals and a set of nonroot signals N。which 

satisfies (4.16). The irregular detail d^^ is preserved by BMEF^ i f all nonroot components of 

diR satisfy the following conditions: 

i. There exists at least N+l connected points on some invariant signals s.t. these points are 

connected to both ends of the nonroot signal. 

ii. Denote x^ and x : as the end points of the concatenated single point open curve formed 

by the nonroot signal and the connected regions on some invariant signals. Suppose that 

the length of the concatenated curve is L and of m segments, and the coordinates 

of X2 relative to x^. The concatenated signal is invariant to BMEF^ i f |rx|+|rjJ-m=L-

2>2N. 

The proof of Property 4.9 is contained in Appendix III. Fig.4.7 shows two examples of 

irregular details. Fig.4.7(a) and (c) are two irregular details. The binary filter BMEF】 is used. 

The detail in Fig.4.7(a) can be decomposed into two invariant components, which are shown 

in Fig.4.7(b). The components are invariant line of 6 points. No nonroot signal is found. 

Therefore, the detail in Fig.4.7(a) is invariant to BMEF!. The detail in Fig.4.7(c) can be 

decomposed into an invariant component which is shown in Fig.4.7(d) and a nonroot signal 

in Fig.4.7(e). Since the nonroot signal of (c) satisfies Property 4.9. The detail in Fig.4.7(b) 
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is also invariant to BMEF^. 

〇| I I I I I I 

= = = = = = = 一 |Q| I I I I T~n |o| I I I I TT" 

= = = = 二 z = = = 
— 一一ZZZZZI 

= 1 1 = = = = = F f F — — - - 一 ！！一 - = = : 

(i) (b) 
0 | I I I I I I I 

|c | | | | I T T I M i l l I T T " 
一 • “ 一 — — — — — 

! • ! • 
！ ！ 一 Z Z Z j e T = = = = = [ : 

I I I I I I 3 J (d) (e) 
(c) 

O : Origin of the Signal 

Figure 4.7 Decomposition of Irregular Details into Invariant Components and Nonroot Signals (a)Irregular 
Detail 1 (b)Invariant components of (a), there is no nonroot signals (c)Irregular Detail 2 (d)Invariant 

Component of (c) (e)Nonroot Component of (c) 

Property 4.10 A signal is invariant to BMEFn+i is also invariant to BMEF^. 

As the length of the structuring element used in BMEF^^^ is longer than that of BMEF阶 

hence Prop.4.10 follows. Similar to the 1-D root signals, the complement of root signal of 

BMEF^ is invariant to BMEF^^. Properties of the root signals of BMEF^^ wi l l not be stated 

here. The deduction of root signals of BMEF^ can be done by replacing regions of l，s by 

those of 0，s complementing those of BMEF^. The size of minimal preservable details are the 

same. 
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4.2丄2 Multilevel Multi-Structuring Element Erosion Filter 

The geometrical structures of an invariant signal to a multilevel multi-structuring element 

erosion filter can be deducted from those of the binary filter with the same index as the 

selective threshold decomposition also possesses the stacking propeity(Propeity 3.1). Before 

further our discussion of invariant signals to the multilevel multi-structuring element erosion 

filter with an arbitrary forcing level/, where/e the filter with forcing level 

A^+1 is considered, which is also known as the standard multilevel erosion filter. In the 

following discussion, the multilevel multi-structuring element erosion filter with index N and 

forcing leve l / i s denoted as GMEF,^. The multilevel multi-structuring element erosion filter 

wi l l also be abbreviated as the multilevel erosion filter. The term multilevel erosion filter and 

GMEFf N wi l l be used interchangeably with multilevel multi-structuring element erosion filter. 

During the analysis, a (relatively) positive region is a region whose level g is greater than 

those of its surroundings. Similarly, a (relatively) negative region is defined i f the level of the 

constant region is less than those of its surroundings. 

One-Dimensional Multilevel Multi-structuring Element Erosion Filter 

The 1-D multilevel multi-structuring element erosion filter is a particular case of the 2-D 

one which is defined in Definition 3.5. Three horizontal structuring elements are used. The 

analysis is quite similar to that of the binary 1-D filters. Let [g]^ be a region of L consecutive 

points which are of identically value g. It can be observed from the following properties that 

the root signal structures of the standard multilevel erosion filter thresholded at level g 

resemble those of the binary erosion filter with the same index. In the meantime, only the 

standard 1-D multilevel erosion filter wi l l be considered since those filters with forcing level 

greater than N+\，the invariant signals are constant signals. 

Property 4.11 {1-D Multilevel Positive Region) Let [g]^ be a constant region which is 

surrounded by [ ^ J l i and [容2]l2 on both sides, and is a constant neighbourhood 

to the 1-D GMEF_ i f and only i f L>3N. 

Proof: 

In [容2]L2，since g is greater than g^ and g!, thresholding the signal at level g 

results in a binary signal [0]L[1]L[0]L. By Prop.4.1，L>3N. 
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Property 4.12 {1-D Multilevel Negative Region) Let [g], be a constant region which is 

surrounded by [g j ^ i and [^J^z on both sides, and [g], is invariant to the 1-D 

GMEFn+i’n i f and only i f L>1. 

P—erty 4.13 (1-D Multilevel Positive Region 2) Let be a constant region which is 

surrounded by [g,]^, and [g,]^, on both sides, and g i k g魂 . [ g ] , is invariant to the 1-D 

GMEFn+i，n i f and only i f L+L^>3N. 

Property 4.14 (Monotonic Sequence) A monotonic sequence 

[ • ？ 2 ] l 2 … [ 认 ， — 俯 始 … 化 o r 偽 2 》 … 々 " . 

n 

is invariant to GMEF^^, ^ i f and only i f [ L. > 3N, which implies > W when 

or L 均 N when 

The proofs of Props.4.12 to 4.14 can be observed on the threshold set at level g. 

Props.4.11 and 4.12 indicate that the multilevel erosion filter is edge preserving . But the 

preservation of edge depends on the sequence of appearance of falling edge and rising edge. 

I f a falling edge appears before a rising edge, a negative region is found. By Prop.4.12, a 

negative region of any length is invariant to the multilevel erosion filter with index N and 

forcing level iV+1. On the other hand, i f a falling edge follows a rising edge, a positive region 

is enclosed by the edges. Unless the length of the positive constant region is greater than or 

equal to 3N, the region is not invariant to the standard multilevel erosion filter. I f the signal 

is an increasing signal, i.e. the gray level increases gradually, the signal at level g is invariant 

to the multilevel erosion filter i f the number of consecutive l，s in the threshold set at level 

g satisfy Prop.4.1. This means that the length of the region those value is greater than or 

equal to g must be at least 3N. The preservation of monotonic sequence is given by 

Props.4.13 and 4.14. It should be noted that at the maximum level of the monotonic sequence, 

a constant region of at least 3N points must be found. This complies with Prop.4.11. 

However, at the minimum level of the sequence, any number of points wi l l be preserved. In 

summary, the multilevel erosion filter is biased towards regions of lower intensities. Fig.4.8 

displays some examples of 1-D invariant signals. The multilevel erosion filter used is with 

index 2. Hence, for positive details, the number of consecutive points of constant value must 
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not be less than 6. Fig.4.8(a) shows a positive region of 7 points, which is greater than the 

minimum length of 6 points for A staircase signal, which is a monotonic increasing 

signal，is shown in Fig.4.8(b). The number of points at the level 10 or above is greater than 

6. I f the number of points at this top level is less that 6，by Prop.4.11, the points originally 

of value 10 wi l l be converted to 5. I f the number of consecutive 5，s is still less than 6，this 

level wi l l be converted to the next lower level. This operation proceeds until Prop.4.11 is 

satisfied. Fig.4.8(c) is a negative region. Fig.4.8(d) gives an examples of an input sequence 

which is increasing when ^<10 and decreasing when x>l6. 

G1(x) G2(x) 
10 25 

： : ^ ^ ^ ： = : 

= : . . . : : : : : : : 

0 • - ； ‘ ~ I ~ I ~ I ~ I ~ 1 ~ I ~ I I ~ I ~ I ~ I ~ I ~ I ~ I ~ ~ i I _ I _ J 0 LI__L-I__I__I__I__I__I__ 
1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 

X X 

(a) (b) 
G3(x) G4(x) 10 12 p 

：圓：圓 
0 U_I__I__I_I_I_I__I__I__I_I__I_I_I__I__I_I__I__I__ J 0 L__I_I__I__I__1_I__ 

1 2 3 4 5 6 7 8 9 10 11 )2 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

X X 

(c) (d) 

Figure 4.8 Examples of One-dimensional Invariant Signal to GMEF3 2 (a)Positive region of length 7 (b)A 
discrete monotonic sequence(staircase) (c)Negative regions of length 1 and 2 (d)A combination of monotonic 

sequence, increasing when x<10 and decreasing when x>16. 

The dual to the multilevel erosion filter with index N and forcing level N+1 can be 

deduced by complementing the root signal structures of the multilevel erosion filter with the 

same index and forcing level. 
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Two-Dimensional Multilevel Multi-structuring Element Erosion Filter 

The standard 2-D multilevel multi-structuring element erosion filter is first considered, 

i.e. the forcing level of the multilevel erosion is set to its minimal, which is equal to N+l. 

The multilevel erosion filter with the minimal forcing level can be analyzed using the 

classical threshold decomposition. The root signal structure analysis of the 2-D multilevel 

erosion filter follows the same approach as in the analysis of the binary erosion filter. The 

sufficient condition for a single point wide open curve with gray level g is first derived. A 

line is defined as a connection of points with constant gray level g. The relative coordinates 

between the end points of a single point wide open curve is used to characterize its invariance 

to a filter. A positive open curve is an open curve whose gray level is greater than its 

surroundings. A negative detail is a region of constant gray level which is of lower intensity 

than its surroundings. 

Since the standard erosion filter uses the classical threshold decomposition, the root signal 

structures follow from the binary structures. Therefore, in spite of repeating all the binary root 

signal properties, we have: 

Property 4.15 (Root Signal Structure of Standard Erosion Filter) A constant region of value 

g is invariant to a standard multilevel erosion filter i f the threshold set at level g is invariant 

to the 2-D binary erosion filter with the same index. 

A single point wide line of L points with constant gray level g and m segments which 

is surrounded by regions of lower gray levels wi l l be preserved by a standard erosion filter 

with index N, i f the relative coordinates between the end points of the line satisfies (4.10)， 

i.e. Props.4.4 and 4.5. By Prop.4.2, a constant region of any size and any shape which is of 

intensity lower than its surroundings is invariant to the 2-D GMEF^+w 

In binary 2-D signals, the unions of invariant signals are root signal to the binary erosion 

filter. In multilevel signals, the union operation is replaced by the logical OR operation. 

Hence, the following property is resulted. 
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P—ty 4.16 {Logical Operations) Let and G.W, JCE Z \ be invariant multilevel signals 
to GMEF卿. 

1. The logical AND of G , ( x ) md G , ( x l which is denoted as G , ( X ) A G , ( X ) , is invariant to 

GM五Fn+I，N i f 

i. G^(x)aG2(x) = 0，or 

i i . G i (X)AG2(X) = Gi(jc) or G i W A G ^ J C ) = G2(JC). 

2. The logical OR of G , ( x ) and G2W, which is denoted as G ^ ^ v G ^ W , is invariant to 

3. The complement of G,(x) is invariant to GMEFn_ i f G^Cx) is also invariant to 

For regular and irregular root signal structures, please refer to Props.4.7 to 4.9. 

Props.4.11 to 4.14 accounts for the signal requirements in preserving edges and monotonic 

regions. 

The performance of a multilevel multi-structuring element erosion filter depends mainly 

on the binary signals decomposed by the selective threshold decomposition. The selective 

threshold decomposition is a modification of the classical threshold decomposition. 

Modification includes: 

1. Threshold levels are taken from a set of sorted data. In a multilevel erosion filter, the 

threshold levels are selected from the pixels masked by the (2A^+1) by (2N+V) window 

of the filter. 

2. Binary filtering at the current threshold level is skipped i f the current threshold level 

equals to the previous one. This reduces repeated binary filtering at the same threshold 

level as the value of the pixels within the (2A^+1) by (2A^+1) square window may not be 

all distinct. 

3. A forcing level, /，is introduced. I f the rank of the threshold level equals to f’ then 

threshold decomposition is carried out even the current threshold level equals to the 

previous one. 
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In a multilevel erosion filter, the forcing level/ranges from N+1 to 2N+1. The single 

point wide open curves are not invariant to multilevel erosion filters with forcing level greater 

than N+l. An irregular signal may be invariant to these filters i f the signal is a closed curve, 

or a open curve those ends are clustered. Fortunately, there is no change in other invariant 

structures such as closed curves and rectangular details. This can be explained by the fact that 

a match by a T,^ structuring element requires at least 2N+1 connected points. Hence, the 

forcing level 於27V+1 has no effect on the result. 

Property 4.17 {Clustering at the Ends of Open Curve) Let I be an open curve of constant gray 

level g. I is invariant to GMEF,^ where N+\<f<2N+\ i f constant regions which are composed 

of at least /g 's are found at the ends of I. 

Property 4.18 {Closed Curve or Rectangular Details) I f the invariant structure is either a 

positive closed curve or a rectangular detail, variations o f / f r o m N+1 to 2N+1 do not affect 

the invariance of the structure. 

Proof: 

At any point on a positive closed curve, there must be at least 2N+\ pixels of value g 

which are included by the (2Ar+l) by (27V+1) moving window. Hence, if N+1 华2N+1, then 

the closed curve is still invariant. Moreover, as a positive rectangular detail can be treated as 

union of invariant positive rectangular closed curve. Therefore, Prop.4.18 is proved. 

The root signal structures to the dual filter of a multilevel erosion filter with index N and 

forcing level f can be deducted by complementing those of the multilevel erosion filter. 

Fig.4.9 shows some examples of root signals of the dual filter with N=2. Fig.4.9(a) is a line 

of 6 points at gray level 9. A negative impulse of magnitude 1 is found near the upper right 

angle of the signal. The signal is invariant to GMEF^ j since each threshold set is invariant 

to BMEF2. Fig.4.9(b) is a stacking of rectangular regions. Each region satisfies Prop.4.8. The 

signal is invariant to both GMEF、: and GMEF头二. Fig.4.9(c) is a root signal to GMEF^ ̂ .̂ The 

signal is a stacking of rectangular constant regions with values ranging from 5 to 10. The 

negative rectangular details in Fig.4.9(c) are of size greater than or equal to those given by 

Prop.4.8. The multilevel erosion dual filter is insensitive to positive details. In other words, 

all positive details wi l l be preserved. This property is shown in Fig.4.9(d) as the positive 
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impulse is preserved. 

7丨7丨7|7丨7|7|7丨7丨 I? | 7 | 7 | 7 | 7 1 7 ^ 7 
Z-9_7L7_7_7L7L7_ 7_^8_8_8_8_¥Z 

7L7L9_7L7L7_7_7_ 一iJEUL 
\ l \ l \ l \ l \ l \ l \ l \ l \ I7I7I7I7I7I717I7" 

(a) (b) 

9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 丨 6 | 5 | 4 丨 6 丨 7 丨 8 | 7 | 7 

9 | 9 |8 Is Is |8 Is Is Is \e 1 5 16 16 1 7 17 丨8 

(c) (d) 

Figure 4.9 Examples of Invariant Signals to Multilevel Erosion Filter (a)GMEFn (bjGMEFn and GMEF42 
(c)GMEFj/ and GMEF^/ (d)GMEFs/ ‘ ‘ ‘ 
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Root Signal Analysis of CG," 

A C G , N filter is a two-pass operation. A signal is first filtered by a multilevel erosion 

filter, and then by the dual of the multilevel erosion filter. The root signal structure is similar 

to those of the multilevel erosion filter and its dual. 

Property 4.19 Let G{x) be a signal which is invariant to both GMEF^^ and i.e. 

GMEF^/G{x)) = G(x) and GMEF^/(G(x)) = G(x) 

G(x) is also invariant to CG^^. 

I f a signal satisfies Property 4.19，then the minimal number of points in the signal 

depends on the forcing level. I f the forcing level/equals to A^+1, the minimal number of 

points in a constant region is 3N. is not biased towards regions of higher intensities 

nor lower intensities as much as does. Edges and monotonic regions are preserved 

i f Property 4.11，4,13 and 4.14 are satisfied. Rectangular details and irregular details are 

already discussed in the previous subsections. 

In CGf N, a special type of signal structure exists. This is the vibrating point. A vibrating 

point is defined as a point those value is toggled after each subfilter pass. A vibrating point 

is resulted at a positive region which is not invariant to GMEF⑶ or at a negative region 

which is not invariant to GMEF^^^. In 1-D CG^^ filtering, numerous vibrating points are 

found. For example, a signal sequence [gJu[容]l[《2]l2，where and after 

filtered by GMEF^^ becomes 

2]Li 1 ] ^ ( L - 3 ( L m o d A 0 ) [容 [容 2] ̂ (L-3(LmodA0)[容 2]乙2 

since (L-3(Lmod/V))/2 is not invariant to GMEF^^^. The above intermediate output signal wi l l 

be converted back to [gi ]u [容]l[容2]l2 after the dual filter pass. Another example of vibrating 

point is given. Another signal sequence [g，i]L’i[<?,]L’[g,2]L’2， 

where 3A^-l^ '>2iV+L L\.L\>?>N 

and is input to the filter. The intermediate output is the input signal itself. In this 

example, positive regions of length less that 2N+1 are resulted. I f g\=g\=S and 容，=3，L =5 

and L\=L\=6, the output of CG32 is [5]6[3]i[5]i[3]i[5]i[3] J5]6. The regions of [5]^ are not 

desirable. 

Although the intermediate output is transparent to a user, it is worth mentioning that such 
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vibrating structure is invariant to CG,^. The invariant signals produces by vibrating points 

does not comply with the properties described previously. Obviously, the length of a constant 

neighbourhood consecutive points of identical value is reduced to 2N+L 

The analysis of 2-D vibrating point is very complicated. Vibrating points occurs at the 

regions which are not invariant to both GMEF,^ and its dual. However, owing to the 

geometrical correlation of the neighbourhood points, the effect of vibrating point is not as 

serious as the 1-D case. Detailed analysis of vibrating structures are not performed. Fig.4.10 

shows two vibrating structures. Figs.4.1(Xa) and (b) show two vibrating points which occurs 

at a negative region and a positive region respectively. These vibrating points are obtained 

by filtering a real image called Baboon with CO^. It is quite interesting that not all filtered 

images possess such vibrating structures. 

98 58 69 69 47 158167167128126 
88 47 47 47 47 102169169169154 

86 47 47 47 47 154168168169155 
76 66 75 52 70 146126 96 142169 

(a) (b) 

98 58 69 69 47 158167167128126 
88 47 47 47 47 102169169169154 
117 47 48 47 47 142168167169145 
86 47 47 47 47 154168168169155 
76 66 75 52 70 146126 96 142169 

(c) (d) 
j ^^ 

H I : Vibrating Point 

Figure 4.10 Examples of Vibrating Points of CG4 2 (a) and (b) are the taken from the output of CG4 2 (c) and 
(d) are the outputs of GMEF4 2 using (a) and (c) as inputs. The vibrating point is shaded. 
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4.2.2 Rate of Convergence of Multi-Structuring Element Erosion Filter 

The rate of convergence of a filter is defined as the number of filter passes required to 

bring any nonroot signal to its root. The faster the rate of convergence, the lesser the number 

of passes needed. The convergent rate of the binary erosion filter wil l first be considered. 

Analysis of the 2-D binary filter follows the 1-D case. Finally, the 2-D multilevel erosion 

filter convergent rate wil l be elaborated. 

4.2.2.1 Convergent Rate of Binary Multi-structuring Element Erosion Filter 

The following properties are concerning the rate of convergence of the 1-D binary erosion 

filters. Although our main objective is the 2-D filters, studies of the 1-D binary filters help 

us to gain insight about those of the 2-D filters. 

Property 4.19 A signal [1]^, L < 27V+1, is removed by a 1-D BMEF^ after one pass. 

Proof: 

I f the length of the consecutive l，s is less than that of the structuring element, then 

erosion simply produces no 1 after the first pass. This implies that the signal is removed after 

one pass. 

Property 4.20 For any nonroot signal [ 1 ] l， 2 1 M让 < 3 N , a filter pass of a 1-D BMEF^ trisects 

the nonroot signal into 3 equal portions of length equal to L'<N+\, where L，= L mod N. 

Proof: 

As 2N+\^<2>N, so we have 3 7 V - L H . Perform filtering from left to right, at the (L-
2N+IR to the AT points, since both T̂ N and J'2N structuring elements are not matched, so 

these points are cleared to [0]3N_L after one pass of the 1-D BMEF^. The number of points 

counted from the left side that are preserved is N-{3N-L)=L-2N, which is equal to LmocW, as 

L>2N+\. Similarly, the number of points counted from the right side that is preserved by the 

BMEF^ after one pass is LmocW. At the middle region of [1]l，the (iV+iy^ to the (L-(iV+l))出 

points are also preserved by 7\n structuring elements. This counts up to another LmocW region 

o f [ l]LmodN. 
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By Property 4.19 and 4.20, an important property concerning the rate of convergence of 
the 1-D BMEFn can be considered. 

P哪吻 4.21 {Convergence of 1-D signals) In 1-D binary erosion filters, at most two passes 

are required to convert any nonroot signal to its invariant. 

Proof: 

Case i. Binary positive regions. I f L is greater than 37V in [1]^, then the signal is invariant 

and no filter pass is needed. I f L<2N, by Property 4.19，one pass is required to remove the 

region. I f 2N+1 让<3N, by Property 4.20，[1]^ is cut into three separated regions [1][,。如 after 

the first pass. Since LmodN <2N+1, an additional pass is required to remove these residual 

signals. Thus, at most two passes are needed for the conversion of any nonroot signal to root 
signal. 

Case ii. Binary negative regions. By Property 4.2，a region of [0]l is invariant to the 1-D 

BMEFn. 

The 1-D binary erosion filter has a very fast convergent rate, only two passes are needed 

for the convergence of all binary signals. Moreover, the convergent rate is independent of the 

size of the structuring element. The following properties are about the convergent rate of the 

2-D BMEF阶 It is expected that the convergent rate analysis of the 2-D binary filters wi l l be 

more complicated, as the geometrical structures of the signal are taken into account. However, 

we arrive at some interesting properties. We follow the same approach as in the root signal 

analysis. Firstly, we consider the convergent rate of single point wide curves, and the 

followed by rectangular details. Finally, that of irregular details are considered. 

Property 4.22 (Convergence of Single Point Wide Curves) At most two passes are required 

to converted a single point wide line /，either closed or open, to its root. 

Proof: 

There are two types of curves, open and closed, to be considered. 

Case i. Open Curves. The convergent rate of open curve is considered first. Two more 

cases are found. Case (a) L < 3N. The length of I is less than the minimal invariant length. 

By some mapping of the coordinates, the curve can be transformed to a 1-D line. The 
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convergent rate of the transformed I follows from Prop.4.21. 

Case (b) L>3N but the relative coordinates between the end points do not satisfy Property 

4.5，i.e. kx l+ky l -m < W - 1 for all subcollections of W connected points on /. This implies 

that no invariant line can be selected from L Thus, I can be decomposed into lines of length 

less that 3N. I f there exist some invariant components in I, then the nonroot components wi l l 

be removed after at most two filter passes. Hence, the result follows. 

Case ii. Closed curve. I f the closed curve can be represented as the union of at least two 

invariant open curves, then no pass is required since the line is already invariant. However, 

i f Prop.4.7 fails, the closed curve can be regarded as the union of an invariant line(if any) and 

a nonroot signal. Therefore, at most two passes are needed. 

Property 4.23 Any nonroot signals which are bounded by a rectangle of size where h， 

w < N+l, are removed by BMEF^ after one pass. 

Property 4.24 {Convergence of 2-D signals) Any nonroot signal is converted to its root by 

BMEFn in at most two passes. 

Proof: 

A detail can be classified into regular and irregular in shape. 

Case i. Rectangular details. The largest nonroot rectangular detail must be a subset of the 

rectangles of size given by Property 4.8. Without loss of generality, suppose that the nonroot 

structure is a rectangle of size denoted by d^. The rectangle d^ can be regarded 

as the union of the translates of rectangular boundary B” which is defined in Prop.4.8. Since 

Bt can be converted to its invariant structure by at most two passes (Prop.4.22), so at most 

two passes are required for rectangular details. 

Case ii. Irregular details. An irregular detail can be represented as a union of its invariant 

components and its nonroot components. It is proved that some nonroot components are 

invariant to the BMEF^ (Prop.4.9). For the remaining nonroot components, at most two passes 

are needed for the convergence. 

As a result, at most two passes are required for the convergence of any 2-D binary 

signals. This result is encouraging. The convergent rates (number of filter passes) of other 

nonlinear filters, such as the median filter, increase as the length of the filter window as well 
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as the size of the input signal increases. 

4.2.2.2 Convergent Rate of Multilevel Multi-structuring Element Erosion Filter 

In a sequential computer, the filter window moves from left to right and from top to 

bottom on an input image. Binary filtering at each threshold set is processed sequentially. 

Hence，the convergent rate of the multilevel erosion filter depends on the number of binary 

filtering, which is proportional to the size of the (2iV+l) by (27V+1) window. 

Property 4.25 (Convergence of 2-D GMEF卿、The maximum number of passes required for 

(7M£7^n+i，n to bring any nonroot signal to its root is 2[(2A^+l)2-(A^+2)]. 

Proof: 

There are at most (2N+lf distinct threshold levels in a (2N+1) by (2A^+1) window. As 

thresholding starts from the ( iV+ lp ranked data and ends at the ( ( 2 A ^ + o n e . Therefore, 

the maximum number of threshold level is By Prop.4.24, at most two passes 

are needed for the convergence of a signal. Hence, the result follows. 

It is obvious that the root signal to GMEF^^ is also invariant to GMEF^,^^. However, the 

reverse is not true. The property below shows the convergent rate of filtering the root signals 

of GMEFf-i N by GMEF⑶.It is reminded that only the invariant open curves of GMEF^.^ N can 

be changed by GMEFf次 Closed curves and rectangular details are invariant to GMEF^^ 
(Prop.4.18). 

Property 4.26 Let L be the number of points of a single point wide (except at the ends) open 

curve /L of value g which is invariant to GMEF^,^^, fe {N+2,...,2N+l}. The number of passes 

required to convert to the root of GMEFf^ is 

l[L-(2Â+l)]+2, if L is odd 
< 2 … ( 4 , 1 7 ) 

—[L-2N] + \, if L is even. 
2 
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Proof: 

Case i. L is odd. Suppose k is a single point open curve except at the ends, which is the 

worst case for convergence. By thresholding the multilevel signal at g. I f the ends of are 

clustered by i+l I 's, then the curve k is also invariant to GMEF、代n. I f i l，s are found at the 

ends of k，then GMEF,^ removes one point are each pass on both sides. When the filtered 

curve is reduced to (2A^+1) points, 2 more passes are needed (Property 4.24). The total 

number of passes is [L-(27V+l)]/2+2. 

Case ii. L is even. When the line is reduced to a length of 2N points, one pass is needed to 

remove the remaining curve completely, hence, the total number of passes required is [L-

2A^/2+1. Thus, the upper bound of the number of passes to bring the root of GMEF^.^ ̂  to that 

of GMEFf N is proved. 

Convergent Rate of Two-dimensional CGf N 

The convergence of the filter CG^^ is difficult to define. Ideally a signal is invariant to 

CGf N i f the signal is a root to both the dual filter pair. However, this is not possible owing 

to the presence of vibrating points. A signal G(x) is said to be invariant to CGfN i f 

CGf^iG(x)) = G(jc), \/xeD. 

Property 4.27 (Convergence of 2-D CGN+I,N) The maximum number of passes required for 

C G N+ I N to bring any nonroot signal to its root is 2[(2A^+l)^-(A^+2)]. 

Proof: 

A pass in C G N+ I ,N includes a GAfEF制 ’n pass followed by its dual. The multilevel signal 

converges from the maximum and minimum levels and moves towards the level within these 

bounds. After at most two binary filter passes, the multilevel erosion filter and its dual wi l l 

proceed to the next level. This wi l l stop until both filters operate on the same gray level. Thus 

the total number of passes required is Vibrating point may be resulted. 

Consider the worst case, i f only one of the subfilter (either the multilevel erosion filter or its 

dual) can proceed to the next gray level, then a total number of 2[(2A^+l)^-(A^+2)] is needed. 

The number of passes required to bring the root signals of CGf.̂  N to those of CGf N can 

also be treated by Property 4.26. 
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4.3 Statistical Analysis 

The performance of the multi-structuring element erosion filter can be described by the 

statistics of input images. However, accurate statistical descriptions of input images are 

difficult to obtain. In Section 4.2, deterministic properties have been discussed to evaluate 

how well the filter preserves fine details. In the following discussion, the noise attenuation 

resulted by the multi-structuring element erosion filter is described by a simple model. A 

constant signal on which noise are added is used. The corrupted signal is denoted by G(x)’ 

xeZ^ which is a /:-level signal. 

In this section, the probability measure function of 1-D multi-structuring element erosion 

filters is described. The probability measure function of the 2-D multi-structuring element 

erosion filter using 3-pixel long structuring elements are also derived. Ideally, a general 

description of the probability measure function of 2-D multi-structuring element erosion filters 

using different forcing level should be given. However, it is not possible to obtain the 

expression since the number of structuring elements increase exponentially as TV increases and 

are geometrically related. 

4.3.1 Output Distribution of Multi-structuring Element Erosion Filter 

The statistical analysis of the multilevel element erosion filter is based on the statistical 

threshold decomposition [Arce86] [Arce88]. Let {G(x),xeZ^} be an independent, identically 

distributed (i.i.d.), discrete random sequence, with a probability space where the 

sample sequence Q={0,1,2,...,/:-!}. The event space B is the power set and P is the probability 

measure function defined on B. P(F) assigns a non-negative real number to every member F 

of B. Random variables ；Ci(。，。."，《„) are said to be independent, identically distributed i f and 

only i f ； = ^ (Q , /=l,2，...，n. Hence, the distribution of the random variables x̂  

equal to that of x. The thresholded binary sequence {5j(jc)} is also i.i.d. with a probability 

space {Qb，5b，Pb}，where the sample space is the binary power set and is the 

probability measure function defined by 

P [ G W < y - l ] = P [ 5 / G W ) = 0 ] = F ( j - l ) 
and P[5/G(jc)) = l ] = 1 - F ( j - l ) 

where Sj(G) is the binary set thresholded by the classical threshold decomposition at level j. 
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4.3.1.1 One-Dimensional Statistical Analysis of Multilevel Multi-structuring 
Element Erosion Filters 

A general expression of the probability measure function of the 1-D multilevel erosion 
filters is derived. It is assumed that the input signal is a constant signal with additive noise 

(Gaussian, uniformly distributed noises or impulses). The constant signal is original at zero 
level. 

Property 4.28 I f {GMEF,^^{G(x)) : xeZ] and {BMEF^(S^(G(x))) : xeZ, l<j<k-l} are the k-

level, and thresholded multistage filtered signals, then the probability measure function is : 

PXGMEFf^(G(x))<j] 

3N-2 1 . ( 4 . 1 9 ) 
=m+F(/)Hl -F(/)]' ( “1 ) . [1 - 顺 + E ( ( ,+1 ) -3 ( ( /+ l )mo_ ) . [ l -FO')y 

i=0 i=2N 

where F(j) is the probability measure function of the i.i.d. input sequence defined in (4.18). 

The proof of Property 4.28 is in Appendix III. It can be seen that by setting/to N+l, the 

probability measure function of the standard 1-D multilevel erosion filter with index N is 

resulted. The probability measure function of the dual filter to the 1-D multi-structuring 

element erosion filter is derived. The expression of the probability measure function is quite 

different from those of the median based nonlinear filters, as geometrical structures of the 

signal are taken into accounted. For example, the output of filtering a region of [g]2N+i，the 

is [g]i[g，]N-i[容]1[容，，]N-i[容]1. However, i f the same signal is fed to a 1-D median filter of a 

2N+1 points moving window, the output wi l l be L ^ ] 2 N+ I itself. Therefore, the output of 

GMEFf N depends on the current location of the moving window. 
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Property 4.29 I f { G 她 i V ( G ⑷） : 花 Z } and : ；CEZ, l<j<k.l} are the k-

level，and thresholded binary filtered signals which are dual to {GMEF,^^(G(x))} and 

{BMEF^(S^(G(x)))} respectively, then the probability measure function is : 

P^[GMEF^/(Gix))<j] 
2N-1 

= 1 - 1 -F ( />F ( /> [1 - 卿 2 . Y ( / + 糊 / 
_ … ( 4 . 2 0 ) 

La 麵 

3N-2 -

+ E 0 + l -3( ( /+ l )modA0)-F( /y +2| / - (A^hl) ] . i^(/严+ l [ l_彻] i=2N 

The proof of Property 4.29 is in Appendix III. The probability measure function of the 

1-D multilevel filter with index N and forcing level N+1 is: 

2N-1 
= m ^ F u n i -F(j)y [ ( /+ i ) . [ i -F{i)Y , ” i 、 

/ : 0 . . . (4 .Z1； 

3N-2 

+ E ( “ l - 3 ( ( / + l ) m o _ . [ l -F(j)V . 
i=2N 

It can be seen that a partial ordering exists between PXGMEFf^(G(x))<j] and 

PXGMEFf ,,^,(G(x))<j] which implies that: 

Props.4.28 and 4.29 reveal that as the length of the structuring element increases, the 

noise suppression of the filter increases as well. I f the forcing level is different from A^+1, an 

additional term 2\f-(N+1 )]F(j)[ 1 is included in the expression. The derivation of this 

term can be found in the proof of Prop.4.28 in Appendix HI. Therefore, the noise suppression 

is even better i f the forcing level is increased. 

4.3.1.2 Two-Dimensional Statistical Analysis of Multilevel Multi-structuring 
Element Erosion Filter 

A general expression for the 2-D multilevel filter is very complicated. Not only the 

values of the points, but also the geometrical structure should be taken into account. The 
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following two properties give the probability measure function of the multilevel erosion filters 
with index 1. 

P哪吻 4.奶 IF {GMEF,,(G(X)) : xeZ'} and {BMEF,{S,iG(x))) : xsZ\ 1 料-1}，where 
戶{2，3}，are the Wevel, and thresholded multistage filtered signals, then the probability 
measure function is : 

=P,[BMEF^(S.JG(x)))=0] (4 23) 
=F(f} - F ( j ) ] {l -F(/-)]-f8-F(/y-[l -F(j)f 

and 

PXGMEF^^(G{x))<j] = P^[GMEF^^(G(x))<j] + S F ( j y i l - F ( j ) f i l - F { i y ] . . . ( 4 . 2 4 ) 

where F(j) is the probability measure function of the i.i.d. input sequence. 

It can been seen that by varying the forcing level from 2 to 3，an additional term is added 

to the expression as seen in (4.24). Therefore, i f the input noise distribution is unchanged, the 

noise suppression of the filter increases i f the forcing level is increased. Similarly, the 

probability measure function of the dual to the 2-D ”/={2，3} is given by Property 

4.31. 

Property 4.31 I f {GMEF,/(G(x)) : xeZ^} and {BMEF,%{G{x))) : 1<7<^-1 } , ^ { 2 , 3 } , 

are the /:-level and thresholded binary filtered signals which are dual to {GMEF^^{G{x))} and 

respectively, then the probability measure function is : 

PXGMEF^/{G{x))< n 
:PXBMEF^\S.,{G(x))) =0] 

R … ( 4 . 2 5 ) 

= 1 - U - F { j ) ^ F { j y n - F ( j ) f { l +8F(/>[1 -F(j)f 
+ 8F(/)2.[i-F(j)f^SF(j)Hl - 棚 4 +哪3.[i —卿4]-

and 

P^[GMEF^/(G(x))<j] (4 26) 

=P^[GMEF,/(G(x))<j] - S F ( j n i - F ( j ) V i l - ( l - F { j ) y ] 

where F(j) is the probability measure function of the i.i.d. input sequence. 
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Under the corruption of impulsive noise, the probability of getting an impulse at the 

filtered image is also helpful to quantify the performance of a filter. Let the Breakdown 

Probability be the probability of an impulse which is output by a multi-structuring element 

erosion filter, and p be the occurrence probability of an impulse at the input image. It is 

assumed that the impulse is of unique polarity, either positive or negative but not both. The 

breakdown probability in homogeneous region is described. This model of impulse is used 

owing to the bias of the multilevel erosion filter. For example, a GMEF,^ filter cannot 

remove negative impulses. 

Property 4.32 Let p be the probability of an impulse occurring at the input, then the 

breakdown probabilities for the 2-D multi-structuring element erosion filter PXGMEF^ I(G(JC))] 

and its dual P,[GM£Ff/(G(jc))], /={2,3}, are : 

PXGMEF^^iGix))] 

for positive impulse …(4.27) 
= ^ +8：^3.[1一；?]2 + 8.厂4.[1_计 + 8 , [ 1 _冲 } |， 

P, for negative impulse 

and 

=力 [ G M 五⑷ ) ] - - / 7 ] 2 . [ 1 - P \ for positive impulse -(4.28) 
P, for negative impulse 

The breakdown probabilities of the dual filters are: 

PXGMEF^/{G(X))] 

p’ for positive impulse 
… ( 4 . 2 9 ) 

1 - • ； ] + 8 • 广 [ 1 - 计 扣 w g 辽 飯 

and 

PXGMEF^/(G(x))] 
p， for positive impulse …(4-30) 

^^PXGMEF^/{G{x))] - 8/72-[1 -pf .[l -(l - p ) \ for negative impulse 

The ordering of probability measure functions as well as the breakdown probabilities is 
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true even the filters are 2-D. Hence, 

The probability measure function of the dual to multilevel erosion filter possesses a reverse 
partial ordering relation. 

Two-dimensional Statistical Analysis of CGfj, f={2，3} 

The probability measure function of CG,, can be derived by replacing the input 

probability measure F(j) function of GMEF,^' by the probability measure function of 

G 腳 f ’ N . 

Property 4.33 I f {CG,,(G(x))} is output of the 2-D CG,, using an ^-level input signal, then 

the probability measure function of the filter with a forcing level of 2 is: 

=1 - { l -广(/)]8{l +8广(/).[1 .. (4.31) 

where Fy)=P^[GMEF2j(G(x))<J]. Similarly, the probability measure function the filter with 

a forcing level of 2 is: 

P^[CG,/G(x))<j] 

= 1 - { l - F " ( j ) -F" ( / ) ]8{ l (432) 

- - ( 1 -F"(/)y] 

where F " (/)=Pr[GMEF,^,(G(x))<jl 

The breakdown probability of CGfj can also be derived. 

Property 4.34 Let p be the probability of an impulse occurring at the input, then the 

breakdown probabilities for the 2-D multi-structuring element erosion filter PXCG2j[G](x)] 

and PXCG^,i[G](x)] are : 

P [CG, , (GW) ] …(433) 

= 1 -p] "{l +8./?2.[1 + + 
and 
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= - … ( 4 . 3 4 ) 

It can be observed that the breakdown probability of is independent of the 

polarity of the impulse. I f the impulses are positive impulses, the dual filter has no effect to 

further suppress positive impulses of the filtered signal or vice versa. 

4.3.2 Discussions on Statistical Properties 

The multi-structuring element erosion filter is biased towards lower intensity regions of 

an image. On the contrary, its dual performs in the opposite manner and tends to preserve 

higher intensity details. The combination of the multi-structuring elements is almost 

symmetric about the median of the gray level. Comparisons of probability measure functions 

of other detail preserving filters are made. The multi-structuring element erosion filters are 

compared with the unidirectional multistage median filters with subfilter length 5 and 7 points 

and the bidirectional multistage median filters with subfilter filter length 3 and 5 points. In 

our simulation, a homogeneous signal is superimposed by noise of gaussian and uniform 

distributions, resulting in a multilevel signal of 200 levels. Figs.4.11 and 4.12 indicate the 

plots of probability density functions of these filters. The probability density function is the 

first derivative of the probability measure function. The degree of bias of a filter can be 

observed easier using its density function. I f the filter is median unbiased, the density function 

is symmetrical about the median; otherwise, the density function is skewed. The unidirectional 

filter with subfilters of length 2N+\ is denoted as umed^. The bidirectional filter with 

subfilters of size AN+\ is denoted as bmed阶 

The input Gaussian distribution is with a mean of 100 and a standard deviation of 30. 

Pronounced bias for GMEF21 and its dual are observed. This is explained by the definition 

of the multi-structuring element erosion filter. Morphological erosion operates on the regions 

of higher intensity only. CG21 shows a very little bias towards the lower intensity region. The 

bmed2 filter has the best Gaussian noise suppression. The bmed^ also has good performance 

under Gaussian noise. The CG: ” umed^ and umed^ perform poorer than the bidirectional 

median filters. The noise attenuation by the multi-structuring element erosion filter is not as 

good as those of the multistage median filters, especially the bidirectional one. The 
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bidirectional multistage median filter has higher rejection on Gaussian noise since the number 

of pixels used equals to 4N+1，which in unidirectional one and in multi-structuring element 

erosion filter 2N+1 are used. However, the noise attenuation of CG^, and the unidirectional 

multistage filters umed, and umed, are quite similar. Under uniformly distributed noise, the 

bidirectional median filter outperforms the others. The umed, has better performance than the 

CG21 and umedi. 

Since the multistage median filter is a median unbiased estimator. It follows that the 

expectations of the multistage filter are approximately equal to the expectation of the input 

i f the standard deviation is not too large. The results in Table 4.2 seem to comply with this 

fact. When the standard deviation of the input distribution is 10 or 30，the expectation is 

approximately equal to that of the input. This can also be observed in Fig.4.11 as the curve 

of probability measure functions of umed】，umed^，bmed^ and bmed^ are highly symmetric 

about the median. Expectations of CGf ,̂ which are less that the median values of the input, 

are also complied with the plot on Fig.4.12. 

Filter Gaussian Distribution Mean - 100 Uniform 

S.D. = 10 S.D. = 30 S.D. = 50 Distribution 

Input 1 0 ^ ^ 95.6 100.5 

GMEF^, ^ ^ 98.4 95.9 

GMEF^f 100^ 102.4 108.0 104.2 

CG2,I ^ 99.0 102.5 99.5 

umed^ 100.0 100.0 103.1 100.5 

umed^ 100.5 101.4 105.0 100.5 

bmed^ 100.0 100.0 103.2 100.5 

bmed^ 100.6 101.7 105.5 104.2 

Table 4.2 Expectations of Various Filters under Gaussian and Uniform Distribution 

It can be observed that the CG^^ filters are not median-unbiased. This is owing to the 

bias of the multilevel erosion filter and its dual. The filter CG^^ therefore tends to preserve 

details of lower intensities. 
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In the analysis of breakdown probabilities, impulses of unique polarity is assumed. The 

impulse is either salt (positive impulses) or pepper (negative impulses). Mixture of salt and 

pepper is not used in the simulation, since the multi-structuring element erosion filters are 

highly biased. Moreover, as the multistage median filters are unbiased estimators, any change 

in polarity of impulse causes no effect on the breakdown probability. Tables 4.3 and 4.4 

summarize the breakdown probabilities of GMEF,,^ GMEF,,\ CG^,, umed,，umed,^ bmed, 
and bmedi. 

P GMEF, , GMEF,/ GMEF, , GMEF. f CG,, CG^ 
0.063 0.063 0.007 0.063 0.003 0.007 0 . 0 0 3 ~ 

0.007 0.063 0.003 0.063 

0.125 0.125 0.042 0.125 0.026 0.042 0.026 

0.042 0.125 0.026 0.125 

0.250 0.250 0.189 0.250 0.148 0.189 ~ ~ 

0.189 0.250 0.148 0.250 

0.375 0.375 0.352 0.375 0.320 0.352 0.320 

0.352 0.375 0.320 0.375 

0.500 0.500 0.495 0.500 0.482 0.495 0.482 

0.495 0.500 0.482 0.500 

Table 4.3 Breakdown Probabilities for some Multi-structuring Element Erosion Filters 

Probability, p umed: umed^ bmed^ bmed� 
0.063 0.005 0.001 0.003 0.0001 

0.125 0.035 0.014 0.019 0.003 

0.250 0.176 0.131 0.116 0.054 

0.375 0.348 0.328 0.288 0.227 

0.500 0.500 0.500 0.500 0.500 

Table 4.4 Breakdown Probabilities for Multistage Median Filters 
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Again the bidirectional multistage median filters, bmed, and bmed!, have the lowest 

values of breakdown probabilities. Those of multi-structuring element erosion filters and their 

duals are highly dependent on the polarity of the impulse. I f positive impulse is filtered by 

GMEF,,\ all impulses wi l l be preserved. The breakdown probability of CG^, takes the 

minimal values among those of GMEF,, and its dual, which lies between those of umed, and 

隱d] when p<0.250. Recalling that the minimal preservable details of GMEF,, are of 3 or 
I 

4 pixels. 

4.4 Chapter Summary 

Both the root signal structures as well as the rate of convergence of the erosion filter, 

binary and multilevel, are treated. The root signals of the 1-D binary erosion filters are 

accounted by Props.4.1 and 4.2. The filter tends to preserve negative details of any length. 

Positive details are preserved unless at least 3N consecutive pixels of identical values are 

present. The analysis of 2-D root signal structures is more difficult. We started at the root 

structures of single point wide open curves, followed by single point wide closed curves, and 

rectangular details and finally irregular details. 2-D binary root signal structures are given by 

Props.4.3 to 4.10. The size of the minimal preservable rectangular details is summarized in 

Table 4.1. By extending the binary root signal structures, those of the multilevel erosion filters 

are examined. It can be shown that the multilevel erosion filter is edge preserving, and can 

preserve monotonic region, provided that Props.4.11 to 4.14 are satisfied. In the last section 

of root signal analysis, the CG^^ is analyzed. As the CG^^ is a two-pass operation, vibrating 

structures are resulted. 

Convergent rate analysis is another aspect in the deterministic properties of the filter. It 

is proved that the binary filter, both 1-D and 2-D, has a constant convergent rate. At most two 

passes are demanded for transforming any nonroot signal to its root. For multilevel erosion 

filter, with forcing level/, the upper bound for the convergent rate is given by Prop.4.25. The 

maximum number of passes for the convergence of the roots of a multilevel with forcing/-! 

by the filter with forcing level f is also derived. 

A general formula for the probability measure function is obtained for the 1-D multi-

structuring element erosion filters, while that for the 2-D one is too complicated to be 
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described. In the latter case, it is still possible to have the expression for N=1 and different 
forcing levels. 

Multi-structuring element erosion filter is not a median unbiased estimator as most of the 

median based nonlinear filters do. This is not desirable as the filter wil l tend to preserve 

details of either lower or higher intensity. The sequential application CG,, help to alleviate 

this problem by reduce this bias. A strictly symmetrical probability density function is still 

not obtainable, although simulation results show that the density function is quite symmetric. 

In other words, the sequential filter CGf ̂  is not median-unbiased. 

Comparisons have been made between another detail preserving nonlinear filter family, 

the multistage median filters, for rating the noise attenuation of the erosion filters. Since we 

are only able to obtain the probability measure function of 2-D multi-structuring element 

erosion filter for N:L The unidirectional multistage median filters with subfilters those length 

are 5 and 7，and the bidirectional one with length 3 and are compared. Simulations using 

Gaussian, uniform and uni-polarity impulse are done. It is revealed that the multi-structuring 

element erosion filter is of comparable performance to the unidirectional multistage median 

filter, but is less powerful that the bidirectional one. 
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Chapter 5 Performance Evaluation 

5.1 Introduction 

Robust estimation theory has served as an excellent tool for nonlinear filtering. The 

best known and the most widely used order statistic filter is the median filter which is from 

estimation theory. But the performance of the median filter in 2-D case is not as good as the 

1-D case, derivations of median filters are implemented which include weighted median 

filters，FTR-hybrid median filters and multistage median filters. Although analysis of these 

filters are available, these analyses are based on a simpler model in which the noise is added 

on a homogeneous signal. However, real signals do not often follow this model. Therefore, 

performance comparison and evaluation using real images must be done. 

In some literature, performance of a new filter is compared with the moving average 

filter and the standard 2-D median filter. Nevertheless, such comparison gives limited 

information about the performance of the new filter. This is because the moving average filter 

and the median filter are notorious for their edge blurring and detail removal properties. For 

a new nonlinear image filter, it should be taken for granted that the filter must outperform 

these filters. Moreover, the usefulness of a filter should be compared to those of better 

performance. This provides a selection guide for those who want to apply a nonlinear filter 

for some specific applications. In fact, there is no image filter which outperforms all other 

filters in all aspects. For example, the L-filter^ has the highest suppression in short-tailed 

additive white noise, however, it performs poorly in salt-and-pepper noise. As a result, 

different applications require different nonlinear filters. 

In this chapter, the performance of the multilevel erosion filter is compared against 

the multistage median filter. The multistage median filter, according to Pitas and 

Venetsanopoulous, has the best detail and edge preserving property. Also, the filter is 

computationally simple and is effective in suppressing salt-and-pepper noise. 

'Refers to Chapter for the definition of the L-filter 
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5.2 Performance Criteria 

There is no universally accepted, or standard criteria for measuring the quality and 

grading the performance of an image processing system. Usually the performance of a filter 

is evaluated using the mean-square-error (mse), the mean-absolute-error (mae), a subjective 

visual criteria and the computation requirement. The last criterion first considers the numbers 

of comparison, addition and multiplication needed per output pixel. In addition, the number 

of passes required to bring the input images to an invariant image is accounted as well. The 

subjective criterion usually grades a filtered image on the distortion resulted by the filter with 

the original image. The mean-square-error and the mean-absolute-error are defined as: 

A f - l N-\ 

mse -———: ...(5.1) 
M-l N-1 
L E W 

and 

M-l 
J^J^lGixJ-GCx)] 

mae = J——: ...(5.2) 
M-l N-l 
E E GW 

where G(x) and G(x)，jc=(;ci而)eZ: are the original and the filtered images. 

In our simulation, grayscale images of size 512 by 512 and 256 gray levels are used, 

i.e.M=iV=512. Fig.5.1 shows the original test images used. The images are Lenna, Baboon, 

Peppers and Bridge. These are quite frequently used as test images. 

Comparisons of the multi-structuring element erosion filter are made against the 

multistage median filters. Pitas and Venetsanopoulous has already compared the performance 

of various nonlinear filters in their work [Pitas92]. 
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Among those filter described in [Pitas92], the multistage median filter has excellent 

performance on following four aspects: 

1. Good noise attenuation on positive and negative impulse (salt-and-pepper noise) 

2. Detail preserving 

3. Edge Preserving 

4. Computation Complexity. 

Moreover, the minimal size of details that can be preserved by the filter chosen for 

comparison should be equal. For example, i f CG二]^ is to be compared, the filter used in the 

comparison should be able to preserve details of length at least 3 points. The performance of 

CG21, CG31 and CG32 wi l l be evaluated. Therefore, the unidirectional multistage median 

filters with subfilters of lengths 5 and 7，denoted as umedL^ and umed飞,and the bidirectional 

multistage median filters with subfilters of lengths 3 and 5，denoted as bmed^ and bmed2 

respectively, are compared. 

In the noise suppression comparison, an input image wi l l be filtered repeatedly until 

the root image is produced. A visual comparison on the number of noise suppression wi l l be 

given. The distortion of the root image is compared against the original noise free image. The 

mean-square-eiTor and mean-absolute-error are used to quantify the efficiencies of noise 

attenuation as well as the image distortion. Lower the mean-square-error and mean-absolute-

error, lower the distortion resulted by the filter during noise suppression. Subjective visual test 

is used in concluding the goodness of preservation of details and edges. 

« 

4.3 



B ， I J P I M ^ p L j ： 

K 隱 
�Lerma (b)Baboon 

llrtlS^ nmm 
mm — _ 一 — _ i 

(c)Peppers — ' —— (d)Bridge 
Figure 5.1 Test Images Used (a)Lerma (b)Baboon (c)Pepper (d)Bridge 
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5.2.1 Noise Suppression 

In this test, images which are corrupted by three kinds of noise wil l be filtered. Salt 

and pepper noise, impulsive noise which is of uniformly distributed magnitudes and Gaussian 

white noise are added to the original images. The invariant signal wil l be compared with the 

original one. In salt-and-pepper test, equal number of positive and negative impulses are 

added. Fig.5.2 shows the original image-Peppers, the corrupted Peppers and the filtered 

images by various filters. Fig.5.2(a) shows the input image in which Peppers is corrupted by 

7500 salt and pepper which corresponds to a probability of occurrence of impulses of 0 06 ! _ _ 
IMIl•磁 

(a)Peppers Corrupted by 7500 salt and 7500 pepper j^jcG^“ 
一 — — — “ — • • — _ _ _ _ 
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一“ . — ‘ — . . - ， 

圏 睡 ‘ --- — ,...— , 

纖 _ : 
(e)bmedj (ejbmed! 

Figure 52 (a)Peppers corrupted by 15000 Salt-and-pepper, and the Filtered Images by (b)CG2j (c)CG3 i 
(d)CG3 2 (e)umed2 (fiumedj (gjbmedj (h)bmed2 

Six different input images corrupted by different numbers of salt-and-pepper noise are 

used for each tested images.The numbers of salt and pepper are 0，5000，10000，15000， 

20000，30000, 40000 and 50000 which correspond to probabilities of occurrence of impulses 

of 0.02, 0.04, 0.06, 0.08，0.11，0.15 and 0.19. Among all the filtered images, the bmed^ and 

the CG32 have the best salt-and-pepper noise suppression, since most of the impulses are 

removed. The results of the CG31, the bmed^ and the umed^^ have several clusters of impulses 

still remaining. The umedi performs poorly. However, CCr2,i has the worst performance. This 
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complies with the breakdown probability calculations in Chapter 4. The probability of 

occurrence of noise is 0.06. According to Table 4.1, we can arrange the filters in ascending 

order of breakdown probabilities, i.e. bmed^，CG3.2, umed)’ CG3,, bmed,, umed, and CG计 By 

considering the number of impulses left after filtering, the sequence holds. The following 

Figs, show the filtered images of CG〗’” CG]’” CG, ,, umed:, umed], bmed, and bmed? Figs.5.3 

and 5.4 are the outputs of the above mentioned filters under impulsive noise those magnitudes 

are uniformly distributed and Gaussian noise respectively. A l l outputs are root to the 

corresponding filters. Fig.5.3(a) is a Lenna corrupted by 15000 impulsive noise. Fig.5.4 is 

a Lenna corrupted by Gaussian noise with an overall signal to noise ratio of 15dB 

mm. (a)Lenna Corrupted by IWOO Impulses (byFiiter^d by 'CG2 ] 

IP；/ WQ m • 
(c)Filtered by CG^ j (d)Filtered by CG32 
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(emitered by umed, “ (e)Filtered by umed, 

i WJI icj 
M m (e)Filtered by bmed! (h) Filtered by bmed^ 

Figure 5.3 (a)Lenna corrupted by 15000 Impulsive Noise those Magnitudes are uniformly distributed, and 
the Filtered Images by (b)CG2j fcjCG^ ̂  � C G � � : (ejumed: (f)umedj (g)bmedj (hjbmed� 
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Fig.5.4 exhibits the filtered images by these filters. The input image is a Lenna added with 

Gaussian noise. The signal to noise ratio of the input image is 15dB. 

顯 _ 
(a)Lenna Corrupted by Gaussian Noise '(b)Filtered by CG^ ] 

-一‘-

醒 _ 
(c)Filtered by CG,, — (d)Filtered by CG,’, 
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(e)Filtered by umed, (f)Filtered by umed, 

擺 
(g)Filtered by bmedj (h)Filtered by bmed� 

Figure 5.4 (a)Lenna corrupted by Gaussian Noise (S/N : 15dB), and the Filtered Images by (bjCGjj (cjCGj j (d)CG32 (e)umed2 (fiumed^ (g)bmedj (h)bmed2 
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Another type of impulses is defined by L i [Li90]. According to Li, a small isolated 

feature which is visually different from its surroundings can be classified as an impulsive 

noise. In the following discussion, such impulsive noises are modelled by impulses those 

magnitudes are uniformly distributed. Images which are corrupted by this type of impulsive 

noise are tested. Again, the numbers of impulses are 0，5000, 10000，15000, 20000, 30000 

and 40000. Gaussian white noises are also added to Lenna, the resulting input images are of 

5，10, 15, 20 and 25 dB in signal-to-noise-ratios. 

Although the bidirectional median filters have the best noise suppression, too much 

signal distortion is resulted. This can be accounted by the mean-square-error and the mean-

absolute-error. Fig.5.5 shows the mean-square-error of the filtered images under salt-and-

pepper noise. A l l test images are used. Figs.5.5(a), 5.5(b), 5.5(c) and 5.5(d) show the mean-

square-error's of the filtered images by the above mentioned filters. Each graph gives the 

mean-square-error's of the filtered images under different noise corruptions. The x-axis gives 

the probabilities of occurrence of impulses. The y-axis is the logarithms of the mean-square-

error's. The mean-square-error can be regarded as an amplification of error by squaring the 

difference between the images. Under the salt and pepper noisy environment, impulses are 

either of the greatest and the lowest magnitudes. Therefore, the higher is the mean-square-

error, the higher is the image distortion. It can be observed that one point is missing in all 

mean-square-error plots. The point corresponds to a zero mean-square-error when the original 

image is tested. As the probability of impulses increases, the performance of CG^ ̂  becomes 

the best. At a noisier environment, the bidirectional multistage median filter is the best. 

Referring to the figures, CG31 has the best performance in most conditions. The mean-square-

error of CG3 ̂  always ranks among the lowest two mean-square-errors. Although CG21 and 

umed^ are good at lower noise environment, its performance with respect to the mean-square-

error criterion deteriorates rapidly as the number of impulses increases. 

When the total number of impulses is 15000, the CG3j has the lowest mean-square-

error. This implies that the filtered images by the CG^ i gives the least distortion. 

Fig.5.6 shows the mean-absolute-error of the filtered images. The mean-absolute-error 

accounts for the absolute difference between the filtered images and the original one. I f a 

constant signal is embedded with noise, the mean-absolute-error indicates the average of 
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absolute gray level shift per pixel. A l l the data within the image are treated with unity weight. 

This is different from the mean-square-error, by which the weight of the difference is 

proportional to the difference itself. Hence, the mean-absolute-error does not amplify the 

difference. In particular, the mean-absolute-eiror wil l give the shift of gray level resulted by 

the noise. Therefore, the lower is the mean-absolute-error, the lesser is the gray level shift, 
and the higher is the image fidelity. 
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Similar to the case of the mean-square-error, CG:，” performs best in reducing the 

mean-absolute-eiTor when the noise probabilities is low enough. The difference between the 

mean-absolute-eiTor of the CG ,̂, and the umed, is distinguishable. Results reveal that CG, , 
maintains the least mean-absolute-error i f the number of impulses is well below 10000. In 

other words, the probability of impulses occurrence p is equal to or below 0.04. As the 

number of impulses increases, CG, ,, CG�工,umed^ and bmed, produce error of comparable 
values. However, on the whole, CG^ , seems to have better performance among these filters. 

7 

Table 5.1 summaries the performance of rejecting salt and pepper noise with different 

probabilities. 

Probability, p Filter 

^0-04 CG^,；, umed^ 

0.04 <p< 0.06 umed) CG^, 

0 . 0 6 <p< 0 . 2 0 C G 3 / , C G 3 , , , umed,, bmed, 

Table 5.1 Selection Guide of Nonlinear Filters under Salt and Pepper Noise 

Impulsive noise those magnitudes are uniformly distributed are added to the test image 

Lenna. The numbers of impulsive noise contaminations are 0，5000, 10000，15000, 20000， 

30000 and 40000. These correspond to probabilities of occurrence of impulses of 0.02，0.04， 

0.06，0.08，0.11，0.15 and 0.19. Figs.5.7(a) and 5.7(b) show the mean-square-error and the 

mean-absolute-error of the root images respectively. Under the mean-square-error criterion, 

the CG21 and the CG31 outperforms other filters. The umed) performs as good as the CG21 

under low noise environment. As the environment becomes more noisy (>15000), the 

performance of CG3j becomes the best. The CG21 has the lowest mean-absolute-error under 

all test conditions as shown in Fig.5.7(b) and is followed by the umed^. The CG31 exhibits 
« 

poorer performance under the mean-absolute-error criterion. Both the bidirectional median 

filters have the worst performance in these criteria. 

Gaussian noise are added to Lenna. The resulted images are of different signal-to-

noise-ratios ranging from SdB to 25dB. Figs.5.8(a) and 5.8(b) show the mean-square-error and 

the mean-absolute-error of the filtered images. Under both criteria, the multilevel multi-
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structuring element erosion filters CG^,, CG3, and CG3, and the unidirectional median filters, 

Mm喊，and umed,, perform poorly. However, the bidirectional median filters, bmed, and 

―知,have the best performance because the bidirectional median filters consider more 
points that other filters. 

5.2.2 Subjective Criterion 

A filter with high noise rejection power may not be good at preserving edges and 

details. Fig.5.9 displays enlarged pictures at the left eye of lenna. The probability of 

occurrence of impulses is 0.08 which is corrupted by 10000 salt and 10000 pepper 

approximately. The eyes are taken from the filtered images of this corrupted Lenna. Fig.5.9(a) 

is the enlarged left eye of the original Lenna. Figs.5.9(b), 5.9(c) and 5.9(d) are the root 

images to CG让 CG^ ^ and CG3 2 respectively. The output of the unidirectional median filters, 

職吨 and umed^ are given in Figs.5.9(e) and 5.9(d). Those of the bidirectional filters bmed^ 

and bmed^ are shown in Figs.5.9(g) and 5.9(h) respectively. Each square block in the enlarged 

view represents a pixel on the filtered image. Let us first describe the fine details in the eye. 

The eyeball of Lenna contains 3 distinct gray levels which clearly cut the eye into different 

regions. A darker ring separates the iris from the eyeball. Inside the iris is the pupil which 

is represented by a darker circle. Surrounding the eyeball is the eyelashes. Separate eyelash 

can be observed clearly. The eyebrow is composed of two almost homogeneous regions of 

gray levels. Shadows on the hat are also important details to be preserved. 

CG21 performs poorly since much impulses remain after repeated filtering. CG31 has 

very good noise rejection, except that there are two patches of impulses, one is at the rib of 

Lenna's hat and the other is at the right edge of the enlarged view. Details in the eyeball as 

well as the shadow on the hat can still be observed clearly. Eyelashes are preserved although 

little blurring is resulted. CG32 removes all the impulses. umed2 cannot remove all the 

impulses, and some impulses are converted to values which seem to be visually uncorrelated 

with their neighbourhoods. In other words, some salt-and-pepper impulses are converted to 

another type of impulses. These pixels are distinguishable and are regarded as artifacts caused 

by the filter. These are not desirable as they are visually uncomfortable. The result of umed: 

is similar but higher noise rejection is attained. The bidirectional multistage median filters 
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have very pronounced noise rejections, however, most details are destroyed. The blurring 

effect is more significant in bmed^. Therefore, among these filter, CG3, has better detail 
preservation properties. 

Another important characteristics of the nonlinear image filter is the preservation of 

edges. Referring to Fig.5.9 again, the rib of Lenna's hat is an example of a sharp edge. 

Jittering of edges are resulted in CG”, CG飞umed, and umed,. Pixels of perceptually 

different gray levels are located along the edge. Hence, a smooth edge is changed into a zig 

zag shape. CG计 bmed^ and hmed^ have relatively little jittering effects. However, the 

bidirectional filters tend to average the gray levels, which result in reduction of image 

contrast. In conclusion, CG31 outperforms other filters in the preservation of edges. 

Artifacts are also resulted by the multilevel erosion filters i f impulses appear at an 

edge or on the boundary of an object. In Fig.5.9(d), it can be seen that all spatially 

uncorrelated output pixels are found in those locations where a matching of structuring 

element is found. However, the same explanation cannot be applied to those of the 

unidirectional median filters. Since these filters have not accounted for the geometrical 

structures of a signal, isolated visually uncorrelated pixels are found. As the length of the 

subfilter of the unidirectional median filter increases, more artifacts are produced. 
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國 ⑷ (h) 

⑷ (d) 

� ( f ) 

(g) (h) 
Figure 5.9 Enlarged View of Lenna Eyes for Comparisons of Edge and Detail Preservation (a)Original 

(b)CG2,j (cjCGjj (d)CG3,2 (e)umed2 (Pumedj (g)bmed, (f^bmed� 
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5.2.3 Computational Requirement 

Computation Complexity 

Computational complexity is defined as the numbers of additions, multiplications and 

comparisons required per pixels of an image. The lesser are the numbers of these operations, 

the more efficient is in computing the filter. The definition of the multilevel erosion filter is 

already given in Chapter 3. We consider the simplest multilevel erosion filter, the standard 

multilevel erosion filter. For each pixel, the values within the {2N+\) by {2N+\) window is 

sorted. Thresholding begins from the ( iV+ l f threshold level of the sorted set. The 

determination of the output at a point requires information contained in a (4A^+1) by (47V+1) 

window centred at the point. This should not be confused with the {2N+1) by {2N+\) window 

in which the threshold levels are taken. During the thresholding of the (4A^+1) by ( 4制） 

window，(47V+l)2 comparisons are required. I f a quick sorting algorithm is used, the number 

of comparisons needed can be summarized as follows. 

Number of Comparisons Required 

Operations Average Worst 

Sorting Threshold Levels 0((2A^+l)^log2(2A^+l)^) {2N+\fl2 
Thresholding (4厕)2 (4N+lf 

Table 5.2 Number of Comparisons Required in the Formation of Threshold Sets in Multilevel Erosion Filtering 

In a selectively thresholding of the image data masked by a (4A^+1) by (4A^+1) 

window, suppose that each point is compared independently. A binary comparison is used to 

compare a bit at a point. I f the output can be determined by considering the first structuring 

element only, then the number of binary comparison is 2N+\. For the worst case, i f the output 

is determined until the last structuring element, then the number of binary comparison is 

3(2iV+l)(7.22N-2N+3). An average number of comparisons is The 

numbers of binary comparisons are given in Table 5.3. 
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Binary Comparisons Required For Binary Erosion Filtering 

Best Average Worst 

Table 5.3 Number of Binary Comparisons Required for Binary Erosion Filtering 

Suppose that the output the multilevel erosion filter is determined at the 产 level, then 

the average number of binary comparisons required is 2[/-(A^+l)][3(7.22^-

2N+3)(2iV+i)]+(2iV+l)[3(7.22N-2N+3)_i)/2. In addition, the average number of integer 

comparisons is (2A^+l//2+27(4A^-l)l 

Table 5.4 shows the comparisons required by the subfilters of the unidirectional 

multistage median filter and the bidirectional median filter with index N. There are four 

subfilters in the unidirectional median filter, and two for the bidirectional one. The output of 

the multistage median filter is the median of the outputs of the subfilter. Therefore, the 

number of comparisons needed for finding the median of the medians is negligible. 

Unidirectional Median Filter, umed^ Bidirectional Median Filter, bmed^ 

Average Worst Average Worst 

0{{2N+\)\og^{2N+\)) 2{2N+lf 0 _ + l ) l o g 2 ( 4 i V + l ) ) ( 4 _ 2 

Table 5.4 Number of Integer Comparisons Required by Multistage Median Filters 

It can be seen that the multilevel erosion filter is more computational intensive than 

the multistage median filters. The number of integer comparisons required by the multilevel 

erosion filter is OiNhogJ^f-)- However, the multistage median filter is OiNlogJ^-

Table 5.5 gives the time of computation for these filters. The computer used is a 

DEC5240 workstation. The time is input dependent, however, an average is listed. 

CG21 CG31 CG32 umed2 umedj bmed^ bmed^^ 

Time(s) 120 120 650 15 60 60 200 

Table 5.5 Computation Time Required for Different Filters(One Pass) 
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Owing to the large number of comparisons required by the multilevel erosion filters, 

the time for each filter pass is much more that the multistage filters. Therefore, we can 

conclude that the multilevel erosion filters have the worst performance in computation 
complexity. 

Rate of Convergence in Real Images 

The theoretical bound for the rate of convergence of the multilevel erosion filter has 

been analysed in Chapter 4. The rates of convergence using different input images are given 

in the following tables. 

Impulses CG,1 CG3, CG,^ umed, umed, bmed, bmed, 
0 6 3 5 8 9 N 3 4 4 7 

0 . 0 2 6 2 2 7 8 1 1 3 0 — 3 8 

0 . 0 4 6 ^ 8 9 \ 2 3 0 4 4 — 

0 . 0 6 6 ^ 8 9 U 3 0 3 5 一 

0 . 0 8 5 2 2 ^ 9 [0 3 0 4 7 — 

O . H 5 ^ 9 9 1 3 ^ 3 4 

0 . 1 5 5 N 6 8 1 3 3 5 3 1 

0 . 1 9 I 5 I 2 1 I 7 I 9 I 1 3 I 2 7 I 3 0 I 
Table 5.6 Convergent rate of Lenna Based Test Images 

Impulses CG2.1 CG31 CG32 umedi umed^ bmed� bmed^ 
0 7 ^ 9 8 1 2 5 0 2 8 

0 . 0 2 7 3 4 9 8 \ A 5 0 2 9 

0 . 0 4 6 3 4 9 8 U 3 5 3 0 

0 . 0 6 6 3 4 9 8 13 ^ 2 8 

0 . 0 8 6 3 4 9 7 \5 3 9 2 8 

0 . 1 1 6 ^ 9 1 0 \5 ^ 3 0 

0 . 1 5 6 3 0 8 9 1 2 ^ 2 8 

0 . 1 9 7 I 3 3 I 1 0 I 1 1 I 1 1 I 2 4 I 2 6 I 
Table 5.7 Convergent rate of Baboon Based Test Images 

The CG21 has the least number of passes for the conversion of root signal. The 

multilevel images usually required no more than 7 filter passes for convergence. The CG3 2 

also required very few passes for convergence. However, the bidirectional median filters and 

the CG31 perform poorly since more than 20 passes are needed for convergence. The 
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unidirectional median filters，umed, and umed], have the moderate rates of convergence 
among the filters tested. 

Although the standard multilevel erosion filter requires the least number of passes, the 

overall performance is still worse than other filters used in the comparison. This is because 

it takes too much computation time for each erosion filter pass. The unidirectional filters have 

the best computation performance. 

5.3 Chapter Summary 

Comparisons have been made to evaluate the performance of the multi-structuring 

element erosion filters against the multistage median filters. Performance criteria are based 

on the mean-square-error, the mean-absolute-error, a subjective visual criteria and the 

computation requirement. Real images such as Lenna, Baboon, Peppers and Bridges are used 

for testing. A table is constructed for the selection of filter which suit for some range of 

impulses occurrence. In fact, the mean-square-error and the mean-absolute-error among these 

detail preserving filter are very close to each other. For Gaussian noise, the multi-structuring 

element erosion filter is not as suitable as the multistage median filter, since Chapter 4 has 

already shows that the bidirectional filter is the best in handling Gaussian noise. 
<j 

In the preservation of details as well as edges, the multi-structuring element erosion 

filter has better performance. This may be due to the geometric consideration of the filter. 

However, the median is a point estimator which does not take into account the geometric 

relation of the pixels. 

Unfortunately, in the computation aspect, the unidirectional multistage median filter 

definitely outperforms our new filter with forcing level other than.(7V+l). the number of filter 

passes required to convert the input image to its roots is far less for the former filter. In 

conclusion, the multi-structuring element erosion filter can be regarded as a good detail 

preservation nonlinear filter. 
\ 
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Chapter 6 Recapitulation and Suggestions for Further Work 

6.1 Recapitulation 

The objective of the work is to develop a morphological image filter which can 

suppress salt-and-pepper noise effectively and efficiently, while preserves details and edges. 

At present, most of the best detail preserving nonlinear filters are median based filter, or more 

precisely, robust estimator based. Examples of these detail preserving filters include the 

multistage median filters, the multistage max/median filters, the finite impulse response 

median hybrid filters and the adaptive L-filters (linear combinations of order statistic). 

Although the motive for the development of mathematical morphology was to describe the 

geometrical structure of a signal, currently all morphological filters are not detail preserving. 

To achieve this goal, a filter called multi-structuring element erosion filter is designed. In 

Chapter 1，the background for the need of nonlinear filtering is examined. Nonlinear filters 

are motivated by the deficiencies of linear filters. Different families of nonlinear filters are 

briefly discussed. 

An overview of nonlinear filtering techniques which are based on robust estimation 

theory and mathematical morphology are presented in Chapter 2. In robust estimator based 

filters, most of the discussions are on the median filter and its deviations as median filtering 

is the most frequently used nonlinear filtering technique. Emphasis are put on the definition 

and performance of some median based detail preserving filters. From which we are able to 

conclude that geometric structures of a signal must be considered in order to preserve details. 

This leads us to an alternative in nonlinear filtering techniques. An introduction on 

mathematical morphology is given. The definitions as well as the applications in nonlinear 

filtering are presented. Moreover, it is discovered that the morphological filters based on the 

opening and closing transformations are not detail preserving. This gives rise to the idea of 

the multi-structuring element erosion filter. 

The definition of the multi-structuring element erosion filter is given in Chapter 3. The 

filter is composed of many subfilters. Each subfilter is a morphological erosion of a binary 

signal with a specific structuring element. The overall output of the filter is the union of all 

those of its subfilters. The chapter first begins with the definition of the structuring elements 
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used in the filter. A signal pattern is a structuring element in the filter i f T. 1 to T.4 of Def.3.1 

are all satisfied. The total number of structuring elements used by the filter is 

where N is the index of the filter. I f the index of the filter is N, the length of all structuring 

elements is 2N+L Direct extension of the binary filter to multilevel signals using the principle 

of threshold decomposition (classical threshold decomposition) is not applicable owing to the 

high computation complexity and poor noise suppression. A modification of the classical 

threshold decomposition by Fitch et al called the selective threshold decomposition is 

proposed to help alleviating the computation requirement. In selective threshold 

decomposition, a limited number of threshold levels are used instead of all the threshold 

levels as in the classical threshold decomposition. By means of the selective threshold 

decomposition, a family of multilevel erosion filters is defined. The multilevel filters are 

characterized by two parameters, the filter index N and the forcing level/. The forcing level 

is a parameter introduced by the selective threshold decomposition, which takes values from 

I f the forcing level is set to the minimum value, i.e. N+i, the filter is called 

the standard multilevel filter. By varying the forcing level, the properties of the filter varies. 

Chapter 4 describes the deterministic and statistical properties of the multi-structuring 

element erosion filter. The deterministic properties disclose the signal structures which are 

invariant to the filter. In Section 4.2，the sizes of the minimal preservable details are analyzed. 

Estimations of the rate of convergence of the filter follow. The results are quite encouraging. 

For the binary erosion filter, at most two passes are needed to convert any nonroot signals 

to their roots. The convergent rates for other detail preserving filters are functions of the sizes 

as well as the indices of the filters. 

Statistical analysis are also presented in Chapter 4. A general expression of the 

probability measure function of the 1-D multilevel erosion filter is derived using the method 

of statistical threshold decomposition [Arce88]. The breakdown probabilities, which is defined 

as the probability that an impulse is output，is evaluated. In the 2-D case, only the probability 

measure function and the breakdown probability are derived for filter with index equal to 1. 

The expression for higher index is not obtained owing to the geometrical correlation among 

the points which make the expression too complicated. The probability measure functions and 

the breakdown probabilities of the multistage median filter, both the unidirectional and the 

bidirectional, are compared against those of the 2-D multilevel erosion filter with index equal 
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to 1. It is shown that the multilevel erosion filter outperforms the unidirectional multistage 

median filter and is of comparable performance in salt-and-pepper noise rejection as by the 

bidirectional one. Under Gaussian and uniform noise distributions, the unidirectional median 

filters have similar noise rejection to those of the multilevel filter. 

Chapter 5 gives a performance comparison using real images between the multistage 

median filter and the multi-structuring element erosion filter. Standard images, such as Lenna, 

Baboon, Bridge and Peppers are used for evaluation. The comparison is made according to 

the following criteria : the mean-square-error, the mean-absolute-error, a subjective test and 

the computation complexity. Test images are corrupted by salt-and-pepper noise, impulsive 

noise and Gaussian white noise. Our filter produces images with good visual quality, in the 

sense that the number of clusters of impulses are always among the least while preserving 

details. Moreover, the new filter does not result the artifacts which appears in other median 

based filter. This is because the new filter always transforms an impulse into value which are 

visually correlated with its neighbourhood. Artifacts wil l be resulted by the new filter i f the 

impulse occurs on the boundary an object. However, the new filter is computational 

complicated. A detailed calculation of the computational requirements is given in Chapter 5. 

Conclusively, we have proposed a new nonlinear image filter and have compared the 

performance of this filter against the multistage median filter. The new filter possesses some 

properties which are different from the multistage median filter. Firstly, the convergent rate 

of non-recursive median based filter is dependent on the size of the input signal. A standard 

1-D median filter of window size 2N+1 requires a number of passes of 3(L-2)/2(N+2). The 

number of passes required increases as the size of the input signal increases. In binary multi-

structuring element erosion filtering, at most 2 passes are needed for the convergence which 

is independent of both the window size and the input signal. Secondly, a pixel is preserved 

by a-median based filter i f the value of the pixel is the median of those pixels spanned by the 

subfilters. Hence, a preserved pixel does not imply that it is visually correlated with its 

neighbourhoods. However, the new filter performs filtering by considering the geometric 

features of a signal. I f an impulse occurs near the boundary of an object, the erosion filter 

always converts it to a value which are spatially correlated with its neighbourhood. On the 

other hand, owing to the lack of consideration of geometrical structures, median based filters 

may fail to produce visually correlated output and generate artifacts. Thirdly, it is observed 
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that the new filter, especially the standard one, also posseses good edge and detail preserving 

properties and good noise suppression while the non-standard filter has good noise 

suppression. Therefore, non-standard multi-structuring element erosion filter can be applied 

together with the standard one. A non-standard filter can be used to break down the clustered 

impulses，and a standard filter is used for better rate of convergence. This scheme not only 

help to improve the convergent rate, but also reduces the computation complexity. 

In summary, we have developed a new nonlinear image filter which possesses good 

detail and edge preserving properties. In particular, the binary filter has a constant rate of 

convergence. These nice properties seem to outweigh the non-recursive median filters. 

Nevertheless, the only drawback of the filter is the computation complexity. 

6.2 Suggestions for Further Work 

There are-plenty of works that can be continued. First of all，a general expression for 

the probability measure function is not derived. A general expression can help to reveal the 

noise suppression capability of the filter under different noise distributions. It has been 

mentioned that our filter is computational intensive. Obviously, one can proceed to design a 

fast algorithm for the implementation of the filter on a sequential computer. However, the 

numbers of binary comparison is still hinder its software implementation. Therefore, it seems 

better to consider the hardware implementation of our filter. 

6.2.1 Probability Measure Function for the Two-dimensional Filter 

In Chapter 4, the general expression for the probability measure function cannot be 

obtained for the 2-D multi-structuring element erosion filter. This is owing to the geometrical 
« 

correlation between the points. A point in the (47V+1) by (4A^+1) window may be utilized by 

several structuring elements. It is very difficult to account for such correlation. Arce have 

attempted to perform statistical analysis of 2-D closing-opening filters [Arce87] by the Monte 

Carlo method so that the output distribution of the morphological filter can be simulated. 

Owing to the computation complexity of the multilevel erosion filter, the Monte Carlo method 

is not feasible. Although a rough idea of the output distribution can be predicted from the 

1-D probability measure functions and that of multilevel erosion filter with index 1. It is ideal 
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to obtain such expression. 

6.2.2 Hardware Implementation 

The binary multi-structuring element “ 

erosion filter with index N can be represented 

as a logic operation on the bits inside the (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) 

moving window of size (4A^+1) by (4iV+l). In 
, . . , , . . .L (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) 

a binary signal, the value at a point is either a ‘ 
0 or a 1. I f a matching between the structuring (-2,0) (-1,0) (0,0) (1,0) (2,0) 

element and the signal is found, the logic (-2 1) (-1 1) (o 1) (11) (12) 

AND of those relevant bits must be a 1. The 
. . . ^ L (-2,2) (-1,2) (0.2) (1,2) (2,2) 

union of erosion can be represented as the 

logic OR of all the outputs of the erosion with 

different structuring elements. As a result, the L 
Figure 6.1 Relative Coordinates within a 5x5 window 

operation can be expressed in a minimal sum-

of-products logic function. Fig.6.1 shows a 5x5 window of the binary erosion filter with index 

1. Denote p^ ̂  be the point at {a,b). The binary erosion filter with index 1 at the threshold 

level j of a multilevel signal G{x) which is defined on Z^ is : 

BMEF^{S.{G{x))) 

=Po’oPo,iPo’-i + Po,oPi,oP-i,o + Po,oPi.iP-i,-i + Po,oPi,-iP-i,i 

+ Po,oPi,oP-i,i + Po,oPuoP-i,-i + Po,oPo,-iP-i,i + Po,oPo,-iPi,i 

+ Po,oP.i,oPi,-i + Po,oPoi,oPu + Po,oPo,lP-l,-l + Po,oPo,lPl,-l 

+ Po,oP-l,lP-2,l + Po,oP-UlP-2,2 + Po.oP-l,lP-l2 + Po,oPo,lP-1,2 ..(6.1) 
+ Po,oPo,lPo,2 + Po,oPo,lPl,2 + Po’oPlJ\2 + 口0,1,1口2，2 

+ P0,0PuP2,l + Po,oPl,oP2,l + P0,0Pl,0P2,0 + /̂O.Ô  1,0̂ 2,-1 、 

+ Po,oPu-lP2,-l + P0,0Pl,-lP2,-2 + P0,0Pl,-lPl,-2 + Po,oPo,-lPl,-2 

‘ + P0,0P0,-lP0,-2 + P0,0P0,-lP-l,-2 + P0,0P-l,-lP-l,-2 + 'Po,oP-l,-lP-2,-2 

+ P0,iP-l,-lP-2,-l + P0’0P-l’0P-2，-l + ^0,0^-1,0^-2,0 + Po,oP-l,oP-2,l 

where 5j(G)is the threshold signal at level j and x is the centre of the (4A^+1) by (4A^+1) 

window. 

The binary erosion filter can be implemented solely by AND and OR logic operations. 

Fig.6.2. exhibits a block diagram of the hardware implementation of the multilevel filter. 
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Figure 6.2 Block Diagram for Hardware Implementation of Multilevel Erosion Filter 

By Lemma 3.1, the output of the multilevel multi-structuring element erosion filter is 

restricted to those values in the (2A^+1) by {2N+\) window. Therefore, the threshold level 

generator reads the data masked by the (2iV+l) by (2A^+1) window as threshold levels. I f the 

forcing level / is set to the minimal value, i.e. f=N+l, no sorting for the threshold value is 

required. I f the forcing level is not N+Y, sorting is needed to reject those threshold levels 

which are not utilized in the binary filtering. For example, i f the forcing level is N+2’ the first 

to the N+1 threshold levels have no contribution to the output of the filter. Hence, these levels 

can be discarded. The threshold device slices the region of an input signal, which is masked 

by the (4A^+1) by (4A^+1) window, into binary signals. This window contains all the 

information to determine the output. An array of binary multi-structuring element is set up. 

Each binary filter is identical and is implemented by the logic function in (6.1). The output 

of each binary filter is stacked by the stacking device. The stacking device is in fact a binary 

comparator. The comparator finds out the maximum gray level at which the binary output is 

1. The output of the multilevel is therefore this maximum gray level. 
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The merits of hardware implementation of the filter is on the rate of convergence. In 

Chapter 4，it has been shown that at most two passes are required for the conversion of 

nonroot signal to its root. The rate of convergence of multilevel erosion filter is equal to 

2((胁 l )2- ( iV+2)) i f the index of the filter is N. Moreover, since the multilevel erosion filter 

commutes with the stacking property, binary filtering at the 产 threshold level wi l l not affect 

the output of that at the ( M f level. The rate of convergence of the multilevel filter is given 

by Property 4.25. Owing to the assumption that a sequential computer is used, we can only 

proceed to the next gray level until the current level is converged. However, such sequential 

operation is not necessary as the outputs of each level are independent to each others. In other 

words，the output of the multilevel filter is the same i f each threshold set is processed 

simultaneously. This speeds up the operations of the filter with forcing level N+Y. Only two 

passes can bring all nonroot signals to their roots. Also，the number of passes is independent 

of the index of the filter. 

Nevertheless, i f the forcing level is not N+1’ the rate of convergence is no longer two 

passes only. Chapter 4 shows that the rate of convergence depends on the length of the 

invariant signal at forcing level/- I . Although the number of filter passes are not bound to two 

only, the implementation can still reduce the total number of passes. 

« 
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Appendix I Proof of Theorem 3.1 
It can be seen that as the length of a structuring element is 2組，al l structuring elements 

can be bounded in a (2AM) by (2A^+1) window. The structuring elements in a subgro叩 can 

further be classified into the following types: 

1. [Type 1] Structuring elements that end at a corner (corners) of the window. 

2. [Type 2] Structuring elements that end at the centre row/column of the window, but 

excluding the horizontal and the vertical structuring elements. 

3. [Type 3] Structuring elements that end at opposite edges of the window. 

4. [Type 4] Structuring elements that end at adjacent edges of the window. 

In the following, C�and £•丨’ /=1，2’3，4，denote the corner and the edge indicated by the 

figures. 

i.Type 1 structuring elements. 

c丄 I I I I I I I r r n N For a structuring element that ends at one 

：-• = = = = = = = ：：： of the corners of the (2A^+1) by (2"+1) 

• window, the structuring element must be of the 
• E3 

‘ shape as shown in Fig.A 1.1. The lower right 
• 2 

Ei I I I ~ _ i ~ : i ： ：：： -j triangle in the window, which is shaded in 

2 Fig.A 1.1 consists of the structuring element 

绍参 which started at C, and passes through the 

_ point (0,0). Generally, the pixel ( i j ) which lies 

I I I I I ！！T in the shaded region has two connected pixels 
C O -N ^ - 2 - 1 0 1 2 . . . N-2 N C 3 • n-1 (iJ+1) and (/+W+1). Therefore, the number of 

• : region of structuring element construction , , , , , ^ , , Type 1 structuring elements in the shaded Figure Al.l Type I structuring elements 
region is There are 8 such triangular 

regions, resulting in structuring elements. 

Excessive number of diagonal structuring element is counted. In each triangular region, the 

corresponding diagonal is counted. There are actually only 2 diagonals. Also, Type 1 

structuring element excludes the 4 structuring elements which end at (Q’N)’ ( N f i ) , (-Nfi) and 

(0,-AO. Thus, the number of Type 1 structuring elements is 2n+3-6. 

ii.Type 2 structuring elements. In Fig.A 1.2, consider the structuring start from Ey to E】.The 

A l . l 



number of structuring elements start from a point on the shaded region of E, and end at the 

shaded region of E, are (2^-^-1) by excluding the one which ends at the corner Q or C3. 

Hence，the number of Type 2 structuring element 8(2^-^-1) since there are 8 segments of 
edges. 

C i | | | I I I I M Ci ~ I I • , E/ … ： 
— 11]-:, 

E . — — = : 舊 ： ： 口 
== 二二表 =二 ； ：： I 

一 急 
C2 二 = = 二 : c : - - —— — . 1 

-N . . . - 2 - 1 0 1 2 . . . N-1 N -N . . . - 2 - 1 0 1 2 . . . N-1 N 
E C 3 C C 3 
C 2 t 2 

• : component of structuring element • ： component of structuring element 
• : region for structuring element construction • : region for structuring element construction Figure A1.2 Type 2 Structuring Elements Figure A1.3 Type 3 Structuring Elements 

iii.Type 3 Structuring elements. Without loss of generality, consider the structuring elements 

start from the upper left quadrant to the lower right quadrant of the window. First of all, the 

number of structuring elements which begin at {-N,i) are considered. The number of paths 

from (cN,i) to the origin of the window is ^Q. The length of the structuring element which 

is left to the centre is IN pixels. The offset of the end point relative to the centre is i. Thus 

the offset i must be only accomplished by i pixels only owing to the definition of a valid 

structuring element. The number of paths from this end point to the centre is therefore equal 

to the number of ways to select from the 2N pixels a group of i pixels, which is equal to nQ, 

where NCi=A^!//!(A^-/)!. In Fig.A 1.3，the number of valid paths from the point (-N4) to the 

centre is Therefore, the total number of Type 3 structuring elements started at the point 

(-NJ) is NCi(2N-l). The total number of structuring elements start from the upper half of E^ 

(including the centre level) to the lower half of E〗is therefore : 

For the edge pairs E^ and E2, the number of valid structuring elements is 2(2^-1)^-1. A -1 is 

subtracted from the number since the horizontal structuring element is counted twice. The 

total number of Type 3 structuring elements is 2[2(2^-l)^-l] when both the edges pairs and 

E2，五3 and E4 are taken into account. 
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i 0 i 0 
=(2"-l)2 

. . . E C v Q 
i 0 

iv.Type 4 Structuring Elements 

二 ： - - - ； - - — “ ； 

U H ： . i ^ H 
-N . . . - 2 - 1 0 1 2 . . . N-1 N -N . . . - 2 - 1 0 1 2 . . . N-1 N C 2 C C 3 C 2 C C 3 

C 2 C 2 
# : component of structuring element 
• ： region for structuring element construction 

(a) (b) 

Figure A1.4 Type 4 Structuring Elements 

There are two cases to be considered. Fig.A 1.4(a) shows the first case, a structuring element 

start at the upper half of E^ and end at the right half of E4, must contain the points x^ and X2. 

The number of structuring element is equal to (2n-1-1)2. The second case is illustrated in 

Fig.A 1.4(b), the structuring element must contain x^ and at least one point at the centre level, 

say Xy The number of segments which passes the point x^ is (l^^'^-l). The number of segments 

which possess pixels along the centre level is (2^-2), since the structuring which ends at the 

centre level is excluded. The total number of Type 4 structuring elements is 

1)(2N-1-2)]. 

The number of structuring elements in a subgroup is the sum of the number of these four 

types of structuring elements. 
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Appendix II ： Shape of Structuring Elements for N=1 and N=2 

This appendix displays the shape of 7]n structuring elements used for iV=l and N=2. 

A structuring element belongs to T,^ i f the origin of the structuring element is at the centre. 

Only T\n structuring element are given since T2N structuring elements are of the same shape 

but different locations of origin. A structuring element belongs to i f its origin is at one 

of its end points. Fig.A2.1 shows the shapes of all structuring elements. Those of 7]〗is 

depicted in Fig.A2.2. 

• I I•丨 |叫 | o | 

_o = 1 = I I I L J I I I I | o | I . I I 
(a) (b) (c) (d) 

z o n I I I I 丨叫 | o | 
o_ _o T = 1 = 一 " i " — I I L L J I I I I | o | | ‘ | 

(e) (f) (g) (h) 

I T T I ] I I I I |叫 | o | 
一 互 1 = = 1 = = 7 — • I | o | 丨 |參 

(i) (j) (k) (I) 

參：pixel to be considered 〇:Origin 

Figure A2,l Tjj Structuring Elements 
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_ ja; I , /b) , ^ (二) (d) (e) (f) (g) (h) 

r h t t t i F f f f l n H E F f f f f l F F I F R F F F R TOTTI 
嵌 三 l E j E E - l E E - i ^ i i ) 

• 圓 圓 圓 _ _ _ _ 
_ _ _ _ _ _ 圓 國 ⑵ ^ f f l ^ f f l H H ^ i t t i H I 
棚 關 圓 斷 三 i | E i i ⑶ 

ros ^ f f l H 4 t t i [ t t f l i h f t W W t 
二 E m I | - I I h E i i ⑷ 

•圓__圓圓國瓶、 

• • M S ^ " i i ^ i i l i c i ! i i c i - c e ) 

p n I I M ^ I M I I I I I I I I I I I I |」#| I I P I」 I 丨 M I I I I I I I I I 
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Appendix III Proofs of Properties in Chapter 4 
In this appendix, the proofs of following properties wi l l be given. 

1. Property 4.9 

2. Property 4.28 

3. Property 4.29 

4. Property 4.30 

Proof of Property 4.9: 

It is obvious that the invariant components of d^^ is unaltered by BMEF^. I f there is 

no invariant component, then d^^ must not be root signal to BMEF阶 Suppose that a nonroot 

component of L points are connected to some connected regions 1。and on some 

invariant signals. Let /[’ be the concatenated curve by /[，/口 and 

i. Existence of TV-point connected regions. Suppose that there exists at most one such 

connected region. The length of the nonroot component must be less than 3N. After the 

concatenation of a region of L，points to the nonroot component, i f the concatenated 

component becomes then a contradiction is resulted. Since i f this concatenated component is 

invariant to the filter, then it must belong to 1。Therefore, at least two regions of connected 

points are found. Consider the worst case, i f the nonroot component is a single point, then at 

least N connected points on some invariant components are connected to this point. The 

minimal number of connected points for a structuring element matching is N. 

i i. I f there exist at least two such regions as described by i, a concatenated signal of at least 

2N+1 points is resulted. The nonroot signal wi l l be preserved i f Property 4.3 is satisfied. 

Proof of Property 4.28: 

Using the total law of probability, P^[GMEFf^(G(x))<j] can be written as: 

= = 0\SjJG(x)) = OyP^SjJGix)) = 0] … ⑷ . ” 
+ P^[BMEF^(SjJG(x))) = 0 I = ^(GW) = 1]. 

According to the definition of multi-structuring element erosion filter, i f the value at 

X equals to 0，the output must be zero. 
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Hence, 

PXBMEF^{S.^^{G{x))) = = 0] = 1 and P[S. ^(G(x)) = 0] = F(j) 

•••’ PrlBMEF^(S.JG(x))) = OlS.JG(x)) = 0] -P^[SJGM) = 0] = FQ'). 

As the second term in (A3.1) can be written as by the total law of probability, 

P^[BMEF^(S.JG(x))) = OlS.JG(x)) = 1] 
=户声五F"(《+i(GW))=0 ⑴)=1 and case 1] 

• P扣“從 1丨〜 ⑵ ) = 1] …(A3.2) 
+ P^[BMEF^{S.JG(x)))=0 I S.JG(x)) = l and case 2] 

'PXcase 2\SjJG(x)) = l] 

where case 1 and case 2 are as follows. 

Case 1. [1]L c [l]2N+i 

I f Ẑ  < 2N+1, then neither of the T^^ nor Tin structuring element matchings are 

possible. The centre of the window, can be at any location along L. The limiting value of 

L is IN, thus, 

IN / 
Pr[case 1 and = 1] = T ' F ( j f i l -F(j)Y …(A3.3) 

Case 2. [IJ^n.i e [1]^ c [1]3n 

Using Property 4.20，filtering by a multi-structuring element erosion filter trisects [1]l 

into three equal portions [l]LmodN. Thus, 

Pr[case 2 and S.JG(x)) = 1] = J： p — m o d AO y ⑴ 2 . [ i ⑦]/ …⑷.4) 
i=2N+l� 1 J 

In addition, the probability measure function of a 1-D multi-structuring element filter 

with a forcing level /，where are described. The root of GMEFf^^ ̂  is also 

invariant to GMEFf^. On the contrary, i f a signal point is not preserved by GMEF�,then it 

is not matched by GMEFf+⑶ as well. Moreover, i f the centre of the binary filter window lies 

between the first to the \f-(N+l)f^ and the [L-(f-(N+l)f^ to the last position on [1]l，these 

[l]，s wi l l be set to [0]'s upon filtering. Hence, an addition term: 

oo 

( 1 - 2 \ f - ( N + l ) y F ( j f i l - F ( j ) V = 2\f-(N^l)]'F(jyn-mr''…卿） 
i=2N+l 

is added. Hence, Property 4.28 is proved. 
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Proof of Property 4.29: 

From the definition of the dual filter, we have 

GMEF^/(G(x))<j j 

(^-1) -GMEFfN、G\x))< j . -(AS.e) 
GMEF^^{G\x))< (k-1) - j 

Thus, the probability measure function can be expressed as : 

••• PrlGMEF^^(G%x))> ( k - l ) - j ] = l-P^[GMEF^/G%x))< ( k - l ) - j - l ] 
—Pr[GMEF^/G\x))< ( k - l ) - j - l ] = 0] 

Since, 

= I 丄 If Gc魄j 
, 、 “ [ O ifG%x)<j 

_ . 1 if (k-l)-G(x)>j 
一 [ O if (k-l)-G(x)<j 

_ , 1 if G(x)<ik-l)-j 
“ [ O if G{x)>k-j 

we have 

= 1 - F ( k - j - l ) 

which implies, 

讽 c ⑶ ) = ] = l - F ( j ) . ...(A3.7) 

By Property 4.28， 

2N-1 

= 1 - m E + w ) ' .••(as.S) 
_/=0 … • 

3N-2 
+ ( /+1-3(( /+ l )mod州) .FC/y 

i=2N • 

(4.20) of Property 4.29 can be obtained by subtracting (A3.8) from 1. 
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Proof of Property 4,30: 

Using the total law of probability, 

PXBMEF^{S.^^{G{x))) = 0] 
=PXBMEF^{S.^^{G{x))) = 0\SjJG(x)) = OyP ̂ [S.JG(x)) = 0] …(A3.9) 

+ PXBMEF^(S.JG(X))) = 0\S.JG(x)) = l]-P[5,,(G(jc)) = 1]. 

By the same argument as in Property 4.28’ the first term in which P 辟 ⑷ = 0 ] is 
considered equals to F(j). 

Figure A3.1 indicates the cases needed to be considered when 5j^,[G](jc)=l. 

A ^ 

i = : I = = 

(a) (b) (c) 
d2 e3 

； I I I I I I 

-^V H. = = I = Z = = 1 1 5 二 6 = = = = = 

z z z z i ^ i z z i r - 二 H 臺 二 -I p l o ] I I I I I I I I I I i p l ^ l q o “ 6 
(d) (e) ' 

Figure A3.1 Cases for the derivation of probability measure function 

There are 8 pixels in the N^(x) neighbourhood. 

Case 1. A l l N^{x) pixels are zero 

I f all the N^{x) points are less than 7, then on the threshold signal at level j，all Ng(x) 

points are zero. 

= 0 | 讀 1 and S.JG(x)) = 1] = 1 

and PXcase 1 and = 1] = -F(/) ] 

Case 2. One out of the 8 N^Cx) is equal to 1 
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I f any one out of the N,(x) neighbourhood is equal to 1，then b” b^ and b, must not 

be equal to 1; otherwise, a T^^ structuring element matching wi l l be resulted. 

仪 2 and = 1] = [1 -F ( / - ) ] (M [1 -F(f)my.F(/y 
1 ."(A j . 11) 

Case 3. Two adjacent N^(x) are equal to 1 

The number of combinations of I 's which are adjacent to each other is 1 and 
1 ， V / 

no structuring element matching i f q to ĉ  are all non unity. 

P』ca仪 3 and SjJG(x)) = 1] = [1 - / ^ W l f j ] [ 1 (八]⑵ 

= 哪 141 V( / ) ]3 . 

Case 4. Two, but not adjacent N^{x) are equal to 1 

Figure A3.1(d) shows the two possible cases when there are two out of the N^{x) are 

equal to 1 and these l，s are not adjacent to each other. Pixels d̂  to d^ or J / to d^' must be 

non-unity in order to facilitate a condition that no structuring element is matched. 

Pr[case 4 and = 1] = S'F(jy^'[l - F ( j ) f . …(A3.13) 

Case 5. Three out of N込(̂ x) are equal to 1 

Figure A3.1(e) and A3.1(f) indicate the two combinations that 7]n structuring elements 

are not matched. No T谢 structuring element is matched i f in each situation ê  to ê  and/； to 

/v are non unity. Hence, the probability of achieving neither Tin and r2N are matched is: 

Pr[case 5 and = I] = S'F(jyHl - F ( j ) ] \ …(A3.14) 

Moreover, there are two forcing levels when N=L The probability measure function 

of GMEF21 is expressed. Similar to the proof of the 1-D filter, the probability of 丁2„ 

structuring element matching with the minimal number of pixels is : 

8-F(/y-[l - F ( j m i -F( / ) ' ] …(A3.15) 

By summing up these probabilities, the probability measure function is resulted. 
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