3,366 research outputs found

    The moduli space of matroids

    Get PDF
    In the first part of the paper, we clarify the connections between several algebraic objects appearing in matroid theory: both partial fields and hyperfields are fuzzy rings, fuzzy rings are tracts, and these relations are compatible with the respective matroid theories. Moreover, fuzzy rings are ordered blueprints and lie in the intersection of tracts with ordered blueprints; we call the objects of this intersection pastures. In the second part, we construct moduli spaces for matroids over pastures. We show that, for any non-empty finite set EE, the functor taking a pasture FF to the set of isomorphism classes of rank-rr FF-matroids on EE is representable by an ordered blue scheme Mat(r,E)Mat(r,E), the moduli space of rank-rr matroids on EE. In the third part, we draw conclusions on matroid theory. A classical rank-rr matroid MM on EE corresponds to a K\mathbb{K}-valued point of Mat(r,E)Mat(r,E) where K\mathbb{K} is the Krasner hyperfield. Such a point defines a residue pasture kMk_M, which we call the universal pasture of MM. We show that for every pasture FF, morphisms kM→Fk_M\to F are canonically in bijection with FF-matroid structures on MM. An analogous weak universal pasture kMwk_M^w classifies weak FF-matroid structures on MM. The unit group of kMwk_M^w can be canonically identified with the Tutte group of MM. We call the sub-pasture kMfk_M^f of kMwk_M^w generated by ``cross-ratios' the foundation of MM,. It parametrizes rescaling classes of weak FF-matroid structures on MM, and its unit group is coincides with the inner Tutte group of MM. We show that a matroid MM is regular if and only if its foundation is the regular partial field, and a non-regular matroid MM is binary if and only if its foundation is the field with two elements. This yields a new proof of the fact that a matroid is regular if and only if it is both binary and orientable.Comment: 83 page

    Quantum energy inequalities and local covariance II: Categorical formulation

    Full text link
    We formulate Quantum Energy Inequalities (QEIs) in the framework of locally covariant quantum field theory developed by Brunetti, Fredenhagen and Verch, which is based on notions taken from category theory. This leads to a new viewpoint on the QEIs, and also to the identification of a new structural property of locally covariant quantum field theory, which we call Local Physical Equivalence. Covariant formulations of the numerical range and spectrum of locally covariant fields are given and investigated, and a new algebra of fields is identified, in which fields are treated independently of their realisation on particular spacetimes and manifestly covariant versions of the functional calculus may be formulated.Comment: 27 pages, LaTeX. Further discussion added. Version to appear in General Relativity and Gravitatio

    The Absolute Relativity Theory

    Full text link
    This paper is a first presentation of a new approach of physics that we propose to refer as the Absolute Relativity Theory (ART) since it refutes the idea of a pre-existing space-time. It includes an algebraic definition of particles, interactions and Lagrangians. It proposed also a purely algebraic explanation of the passing of time phenomenon that leads to see usual Euler-Lagrange equations as the continuous version of the Knizhnik-Zamolodchikov monodromy. The identification of this monodromy with the local ones of the Lorentzian manifolds gives the Einstein equation algebraically explained in a quantized context. A fact that could lead to the unification of physics. By giving an algebraic classification of particles and interactions, the ART also proposes a new branch of physics, namely the Mass Quantification Theory, that provides a general method to calculate the characteristics of particles and interactions. Some examples are provided. The MQT also predicts the existence of as of today not yet observed particles that could be part of the dark matter. By giving a new interpretation of the weak interaction, it also suggests an interpretation of the so-called dark energy

    Rational motivic path spaces and Kim's relative unipotent section conjecture

    Full text link
    We initiate a study of path spaces in the nascent context of "motivic dga's", under development in doctoral work by Gabriella Guzman. This enables us to reconstruct the unipotent fundamental group of a pointed scheme from the associated augmented motivic dga, and provides us with a factorization of Kim's relative unipotent section conjecture into several smaller conjectures with a homotopical flavor. Based on a conversation with Joseph Ayoub, we prove that the path spaces of the punctured projective line over a number field are concentrated in degree zero with respect to Levine's t-structure for mixed Tate motives. This constitutes a step in the direction of Kim's conjecture.Comment: Minor corrections, details added, and major improvements to exposition throughout. 52 page

    Orientation theory in arithmetic geometry

    Full text link
    This work is devoted to study orientation theory in arithmetic geometric within the motivic homotopy theory of Morel and Voevodsky. The main tool is a formulation of the absolute purity property for an \emph{arithmetic cohomology theory}, either represented by a cartesian section of the stable homotopy category or satisfying suitable axioms. We give many examples, formulate conjectures and prove a useful property of analytical invariance. Within this axiomatic, we thoroughly develop the theory of characteristic and fundamental classes, Gysin and residue morphisms. This is used to prove Riemann-Roch formulas, in Grothendieck style for arbitrary natural transformations of cohomologies, and a new one for residue morphisms. They are applied to rational motivic cohomology and \'etale rational â„“\ell-adic cohomology, as expected by Grothendieck in \cite[XIV, 6.1]{SGA6}.Comment: 81 pages. Final version, to appear in the Actes of a 2016 conference in the Tata Institute. Thanks a lot goes to the referee for his enormous work (more than 100 comments) which was of great help. Among these corrections, he indicated to me a sign mistake in formula (3.2.14.a) which was very hard to detec
    • …
    corecore