research

Orientation theory in arithmetic geometry

Abstract

This work is devoted to study orientation theory in arithmetic geometric within the motivic homotopy theory of Morel and Voevodsky. The main tool is a formulation of the absolute purity property for an \emph{arithmetic cohomology theory}, either represented by a cartesian section of the stable homotopy category or satisfying suitable axioms. We give many examples, formulate conjectures and prove a useful property of analytical invariance. Within this axiomatic, we thoroughly develop the theory of characteristic and fundamental classes, Gysin and residue morphisms. This is used to prove Riemann-Roch formulas, in Grothendieck style for arbitrary natural transformations of cohomologies, and a new one for residue morphisms. They are applied to rational motivic cohomology and \'etale rational \ell-adic cohomology, as expected by Grothendieck in \cite[XIV, 6.1]{SGA6}.Comment: 81 pages. Final version, to appear in the Actes of a 2016 conference in the Tata Institute. Thanks a lot goes to the referee for his enormous work (more than 100 comments) which was of great help. Among these corrections, he indicated to me a sign mistake in formula (3.2.14.a) which was very hard to detec

    Similar works