1,334 research outputs found

    Morphing of Triangular Meshes in Shape Space

    Get PDF
    We present a novel approach to morph between two isometric poses of the same non-rigid object given as triangular meshes. We model the morphs as linear interpolations in a suitable shape space S\mathcal{S}. For triangulated 3D polygons, we prove that interpolating linearly in this shape space corresponds to the most isometric morph in R3\mathbb{R}^3. We then extend this shape space to arbitrary triangulations in 3D using a heuristic approach and show the practical use of the approach using experiments. Furthermore, we discuss a modified shape space that is useful for isometric skeleton morphing. All of the newly presented approaches solve the morphing problem without the need to solve a minimization problem.Comment: Improved experimental result

    Tetrisation of triangular meshes and its application in shape blending

    Full text link
    The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile technique for morphing, surface modelling, and mesh editing. We discuss an improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh in 3D space, we introduce a method to associate a tetrahedral structure, which encodes the geometry of the original mesh. 2. We use a Lie algebra based method to interpolate local transformation, which provides better handling of rotation with large angle. 3. We propose a new error function to compile local transformations into a global piecewise linear map, which is rotation invariant and easy to minimise. We implemented a shape blender based on our algorithm and its MIT licensed source code is available online

    From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    Get PDF
    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume

    3D mesh metamorphosis from spherical parameterization for conceptual design

    Get PDF
    Engineering product design is an information intensive decision-making process that consists of several phases including design specification definition, design concepts generation, detailed design and analysis, and manufacturing. Usually, generating geometry models for visualization is a big challenge for early stage conceptual design. Complexity of existing computer aided design packages constrains participation of people with various backgrounds in the design process. In addition, many design processes do not take advantage of the rich amount of legacy information available for new concepts creation. The research presented here explores the use of advanced graphical techniques to quickly and efficiently merge legacy information with new design concepts to rapidly create new conceptual product designs. 3D mesh metamorphosis framework 3DMeshMorpher was created to construct new models by navigating in a shape-space of registered design models. The framework is composed of: i) a fast spherical parameterization method to map a geometric model (genus-0) onto a unit sphere; ii) a geometric feature identification and picking technique based on 3D skeleton extraction; and iii) a LOD controllable 3D remeshing scheme with spherical mesh subdivision based on the developedspherical parameterization. This efficient software framework enables designers to create numerous geometric concepts in real time with a simple graphical user interface. The spherical parameterization method is focused on closed genus-zero meshes. It is based upon barycentric coordinates with convex boundary. Unlike most existing similar approaches which deal with each vertex in the mesh equally, the method developed in this research focuses primarily on resolving overlapping areas, which helps speed the parameterization process. The algorithm starts by normalizing the source mesh onto a unit sphere and followed by some initial relaxation via Gauss-Seidel iterations. Due to its emphasis on solving only challenging overlapping regions, this parameterization process is much faster than existing spherical mapping methods. To ensure the correspondence of features from different models, we introduce a skeleton based feature identification and picking method for features alignment. Unlike traditional methods that align single point for each feature, this method can provide alignments for complete feature areas. This could help users to create more reasonable intermediate morphing results with preserved topological features. This skeleton featuring framework could potentially be extended to automatic features alignment for geometries with similar topologies. The skeleton extracted could also be applied for other applications such as skeleton-based animations. The 3D remeshing algorithm with spherical mesh subdivision is developed to generate a common connectivity for different mesh models. This method is derived from the concept of spherical mesh subdivision. The local recursive subdivision can be set to match the desired LOD (level of details) for source spherical mesh. Such LOD is controllable and this allows various outputs with different resolutions. Such recursive subdivision then follows by a triangular correction process which ensures valid triangulations for the remeshing. And the final mesh merging and reconstruction process produces the remeshing model with desired LOD specified from user. Usually the final merged model contains all the geometric details from each model with reasonable amount of vertices, unlike other existing methods that result in big amount of vertices in the merged model. Such multi-resolution outputs with controllable LOD could also be applied in various other computer graphics applications such as computer games

    Application of morphing technique with mesh-merging in rapid hull form generation

    Get PDF
    ABSTRACTMorphing is a geometric interpolation technique that is often used by the animation industry to transform one form into another seemingly seamlessly. It does this by producing a large number of ‘intermediate’ forms between the two ‘extreme’ or ‘parent’ forms. It has already been shown that morphing technique can be a powerful tool for form design and as such can be a useful addition to the armoury of product designers. Morphing procedure itself is simple and consists of straightforward linear interpolation. However, establishing the correspondence between vertices of the parent models is one of the most difficult and important tasks during a morphing process. This paper discusses the mesh-merging method employed for this process as against the already established mesh-regularising method. It has been found that the merging method minimises the need for manual manipulation, allowing automation to a large extent

    µMatch: 3D shape correspondence for biological image data

    Full text link
    Modern microscopy technologies allow imaging biological objects in 3D over a wide range of spatial and temporal scales, opening the way for a quantitative assessment of morphology. However, establishing a correspondence between objects to be compared, a first necessary step of most shape analysis workflows, remains challenging for soft-tissue objects without striking features allowing them to be landmarked. To address this issue, we introduce the μMatch 3D shape correspondence pipeline. μMatch implements a state-of-the-art correspondence algorithm initially developed for computer graphics and packages it in a streamlined pipeline including tools to carry out all steps from input data pre-processing to classical shape analysis routines. Importantly, μMatch does not require any landmarks on the object surface and establishes correspondence in a fully automated manner. Our open-source method is implemented in Python and can be used to process collections of objects described as triangular meshes. We quantitatively assess the validity of μMatch relying on a well-known benchmark dataset and further demonstrate its reliability by reproducing published results previously obtained through manual landmarking
    • …
    corecore