19 research outputs found

    Morphing planar triangulations

    Get PDF
    A morph between two drawings of the same graph can be thought of as a continuous deformation between the two given drawings. A morph is linear if every vertex moves along a straight line segment from its initial position to its final position. In this thesis we study algorithms for morphing, in which the morphs are given by sequences of linear morphing steps. In 1944, Cairns proved that it is possible to morph between any two planar drawings of a planar triangulation while preserving planarity during the morph. However this morph may require exponentially many steps. It was not until 2013 that Alamdari et al. proved that the morphing problem for planar triangulations can be solved using polynomially many steps. In 1990 it was shown by Schnyder that using special drawings that we call Schnyder drawings it is possible to draw a planar graph on a O(n)×O(n) grid, and moreover such drawings can be found in O(n) time (here n denotes the number of vertices of the graph). It still remains unknown whether there is an efficient algorithm for morphing in which all drawings are on a polynomially sized grid. In this thesis we give two different new solutions to the morphing problem for planar triangulations. Our first solution gives a strengthening of the result of Alamdari et al. where each step is a unidirectional morph. This also leads to a simpler proof of their result. Our second morphing algorithm finds a planar morph consisting of O(n²) steps between any two Schnyder drawings while remaining in an O(n)×O(n) grid. However, there are drawings of planar triangulations which are not Schnyder drawings, and for these drawings we show that a unidirectional morph consisting of O(n) steps that ends at a Schnyder drawing can be found. We conclude this work by showing that the basic steps from our morphs can be implemented using a Schnyder wood and weight shifts on the set of interior faces

    Morphing Schnyder drawings of planar triangulations

    Full text link
    We consider the problem of morphing between two planar drawings of the same triangulated graph, maintaining straight-line planarity. A paper in SODA 2013 gave a morph that consists of O(n2)O(n^2) steps where each step is a linear morph that moves each of the nn vertices in a straight line at uniform speed. However, their method imitates edge contractions so the grid size of the intermediate drawings is not bounded and the morphs are not good for visualization purposes. Using Schnyder embeddings, we are able to morph in O(n2)O(n^2) linear morphing steps and improve the grid size to O(n)Ă—O(n)O(n)\times O(n) for a significant class of drawings of triangulations, namely the class of weighted Schnyder drawings. The morphs are visually attractive. Our method involves implementing the basic "flip" operations of Schnyder woods as linear morphs.Comment: 23 pages, 8 figure

    Morphing Contact Representations of Graphs

    Get PDF
    We consider the problem of morphing between contact representations of a plane graph. In a contact representation of a plane graph, vertices are realized by internally disjoint elements from a family of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent. These touchings also induce the same embedding as in the graph. In a morph between two contact representations we insist that at each time step (continuously throughout the morph) we have a contact representation of the same type. We focus on the case when the geometric objects are triangles that are the lower-right half of axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are one of the simplest families of shapes supporting this property. Thus, they provide a natural case to study regarding morphs of contact representations of plane graphs. We study piecewise linear morphs, where each step is a linear morph moving the endpoints of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time algorithm that decides whether there is a piecewise linear morph between two RT-representations of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs. As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph between every pair of RT-representations where the "top-most" triangle in both representations corresponds to the same vertex. This shows that the realization space of such RT-representations of any 4-connected plane triangulation forms a connected set

    Morphing Planar Graph Drawings with Unidirectional Moves

    Full text link
    Alamdari et al. showed that given two straight-line planar drawings of a graph, there is a morph between them that preserves planarity and consists of a polynomial number of steps where each step is a \emph{linear morph} that moves each vertex at constant speed along a straight line. An important step in their proof consists of converting a \emph{pseudo-morph} (in which contractions are allowed) to a true morph. Here we introduce the notion of \emph{unidirectional morphing} step, where the vertices move along lines that all have the same direction. Our main result is to show that any planarity preserving pseudo-morph consisting of unidirectional steps and contraction of low degree vertices can be turned into a true morph without increasing the number of steps. Using this, we strengthen Alamdari et al.'s result to use only unidirectional morphs, and in the process we simplify the proof.Comment: 13 pages, 9 figure

    Fast Spherical Drawing of Triangulations: An Experimental Study of Graph Drawing Tools

    Get PDF
    We consider the problem of computing a spherical crossing-free geodesic drawing of a planar graph: this problem, as well as the closely related spherical parameterization problem, has attracted a lot of attention in the last two decades both in theory and in practice, motivated by a number of applications ranging from texture mapping to mesh remeshing and morphing. Our main concern is to design and implement a linear time algorithm for the computation of spherical drawings provided with theoretical guarantees. While not being aesthetically pleasing, our method is extremely fast and can be used as initial placer for spherical iterative methods and spring embedders. We provide experimental comparison with initial placers based on planar Tutte parameterization. Finally we explore the use of spherical drawings as initial layouts for (Euclidean) spring embedders: experimental evidence shows that this greatly helps to untangle the layout and to reach better local minima

    Periodic planar straight-frame drawings with polynomial resolution

    No full text
    International audienceWe present a new algorithm to compute periodic (planar) straight-line drawings of toroidal graphs. Our algorithm is the first to achieve two important aesthetic criteria: the drawing fits in a straight rectangular frame, and the grid area is polynomial, precisely the grid size is O(n 4 Ă— n 4). This solves one of the main open problems in a recent paper by Duncan et al. [3]

    Moving Vertices to Make Drawings Plane

    Get PDF
    A straight-line drawing δ\delta of a planar graph GG need not be plane, but can be made so by moving some of the vertices. Let shift(G,δ)(G,\delta) denote the minimum number of vertices that need to be moved to turn δ\delta into a plane drawing of GG. We show that shift(G,δ)(G,\delta) is NP-hard to compute and to approximate, and we give explicit bounds on shift(G,δ)(G,\delta) when GG is a tree or a general planar graph. Our hardness results extend to 1BendPointSetEmbeddability, a well-known graph-drawing problem.Comment: This paper has been merged with http://arxiv.org/abs/0709.017
    corecore