7,352 research outputs found

    Evaluating testing methods by delivered reliability

    Get PDF
    There are two main goals in testing software: (1) to achieve adequate quality (debug testing), where the objective is to probe the software for defects so that these can be removed, and (2) to assess existing quality (operational testing), where the objective is to gain confidence that the software is reliable. Debug methods tend to ignore random selection of test data from an operational profile, while for operational methods this selection is all-important. Debug methods are thought to be good at uncovering defects so that these can be repaired, but having done so they do not provide a technically defensible assessment of the reliability that results. On the other hand, operational methods provide accurate assessment, but may not be as useful for achieving reliability. This paper examines the relationship between the two testing goals, using a probabilistic analysis. We define simple models of programs and their testing, and try to answer the question of how to attain program reliability: is it better to test by probing for defects as in debug testing, or to assess reliability directly as in operational testing? Testing methods are compared in a model where program failures are detected and the software changed to eliminate them. The “better” method delivers higher reliability after all test failures have been eliminated. Special cases are exhibited in which each kind of testing is superior. An analysis of the distribution of the delivered reliability indicates that even simple models have unusual statistical properties, suggesting caution in interpreting theoretical comparisons

    Strict bounding of quantities of interest in computations based on domain decomposition

    Full text link
    This paper deals with bounding the error on the estimation of quantities of interest obtained by finite element and domain decomposition methods. The proposed bounds are written in order to separate the two errors involved in the resolution of reference and adjoint problems : on the one hand the discretization error due to the finite element method and on the other hand the algebraic error due to the use of the iterative solver. Beside practical considerations on the parallel computation of the bounds, it is shown that the interface conformity can be slightly relaxed so that local enrichment or refinement are possible in the subdomains bearing singularities or quantities of interest which simplifies the improvement of the estimation. Academic assessments are given on 2D static linear mechanic problems.Comment: Computer Methods in Applied Mechanics and Engineering, Elsevier, 2015, online previe

    Proportional sampling strategy: A compendium and some insights

    Get PDF
    There have been numerous studies on the effectiveness of partition and random testing. In particular, the proportional sampling (PS) strategy has been proved, under certain conditions, to be the only form of partition testing that outperforms random testing regardless of where the failure-causing inputs are. This paper provides an integrated synthesis and overview of our recent studies on the PS strategy and its related work. Through this synthesis, we offer a perspective that properly interprets the results obtained so far, and present some of the interesting issues involved and new insights obtained during the course of this research. © 2001 Elsevier Science Inc. All rights reserved.postprin

    Test case selection with and without replacement

    Get PDF
    Previous theoretical studies on the effectiveness of partition testing and random testing have assumed that test cases are selected with replacement. Although this assumption has been well known to be less realistic, it has still been used in previous theoretical work because it renders the analyses more tractable. This paper presents a theoretical investigation aimed at comparing the effectiveness when test cases are selected with and without replacement, and exploring the relationships between these two scenarios. We propose a new effectiveness metric for software testing, namely the expected number of distinct failures detected, to re-examine existing partition testing strategies.postprin

    A GPU-accelerated package for simulation of flow in nanoporous source rocks with many-body dissipative particle dynamics

    Full text link
    Mesoscopic simulations of hydrocarbon flow in source shales are challenging, in part due to the heterogeneous shale pores with sizes ranging from a few nanometers to a few micrometers. Additionally, the sub-continuum fluid-fluid and fluid-solid interactions in nano- to micro-scale shale pores, which are physically and chemically sophisticated, must be captured. To address those challenges, we present a GPU-accelerated package for simulation of flow in nano- to micro-pore networks with a many-body dissipative particle dynamics (mDPD) mesoscale model. Based on a fully distributed parallel paradigm, the code offloads all intensive workloads on GPUs. Other advancements, such as smart particle packing and no-slip boundary condition in complex pore geometries, are also implemented for the construction and the simulation of the realistic shale pores from 3D nanometer-resolution stack images. Our code is validated for accuracy and compared against the CPU counterpart for speedup. In our benchmark tests, the code delivers nearly perfect strong scaling and weak scaling (with up to 512 million particles) on up to 512 K20X GPUs on Oak Ridge National Laboratory's (ORNL) Titan supercomputer. Moreover, a single-GPU benchmark on ORNL's SummitDev and IBM's AC922 suggests that the host-to-device NVLink can boost performance over PCIe by a remarkable 40\%. Lastly, we demonstrate, through a flow simulation in realistic shale pores, that the CPU counterpart requires 840 Power9 cores to rival the performance delivered by our package with four V100 GPUs on ORNL's Summit architecture. This simulation package enables quick-turnaround and high-throughput mesoscopic numerical simulations for investigating complex flow phenomena in nano- to micro-porous rocks with realistic pore geometries
    • …
    corecore