457 research outputs found

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Polyhedral graph abstractions and an approach to the Linear Hirsch Conjecture

    Full text link
    We introduce a new combinatorial abstraction for the graphs of polyhedra. The new abstraction is a flexible framework defined by combinatorial properties, with each collection of properties taken providing a variant for studying the diameters of polyhedral graphs. One particular variant has a diameter which satisfies the best known upper bound on the diameters of polyhedra. Another variant has superlinear asymptotic diameter, and together with some combinatorial operations, gives a concrete approach for disproving the Linear Hirsch Conjecture.Comment: 16 pages, 4 figure

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than ndn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    A counterexample to the Hirsch conjecture

    Full text link
    The Hirsch Conjecture (1957) stated that the graph of a dd-dimensional polytope with nn facets cannot have (combinatorial) diameter greater than ndn-d. That is, that any two vertices of the polytope can be connected by a path of at most ndn-d edges. This paper presents the first counterexample to the conjecture. Our polytope has dimension 43 and 86 facets. It is obtained from a 5-dimensional polytope with 48 facets which violates a certain generalization of the dd-step conjecture of Klee and Walkup.Comment: 28 pages, 10 Figures: Changes from v2: Minor edits suggested by referees. This version has been accepted in the Annals of Mathematic

    Not all simplicial polytopes are weakly vertex-decomposable

    Full text link
    In 1980 Provan and Billera defined the notion of weak kk-decomposability for pure simplicial complexes. They showed the diameter of a weakly kk-decomposable simplicial complex Δ\Delta is bounded above by a polynomial function of the number of kk-faces in Δ\Delta and its dimension. For weakly 0-decomposable complexes, this bound is linear in the number of vertices and the dimension. In this paper we exhibit the first examples of non-weakly 0-decomposable simplicial polytopes

    Graphs of Transportation Polytopes

    Get PDF
    This paper discusses properties of the graphs of 2-way and 3-way transportation polytopes, in particular, their possible numbers of vertices and their diameters. Our main results include a quadratic bound on the diameter of axial 3-way transportation polytopes and a catalogue of non-degenerate transportation polytopes of small sizes. The catalogue disproves five conjectures about these polyhedra stated in the monograph by Yemelichev et al. (1984). It also allowed us to discover some new results. For example, we prove that the number of vertices of an m×nm\times n transportation polytope is a multiple of the greatest common divisor of mm and nn.Comment: 29 pages, 7 figures. Final version. Improvements to the exposition of several lemmas and the upper bound in Theorem 1.1 is improved by a factor of tw
    corecore