234,353 research outputs found

    Multi-Sensor Event Detection using Shape Histograms

    Full text link
    Vehicular sensor data consists of multiple time-series arising from a number of sensors. Using such multi-sensor data we would like to detect occurrences of specific events that vehicles encounter, e.g., corresponding to particular maneuvers that a vehicle makes or conditions that it encounters. Events are characterized by similar waveform patterns re-appearing within one or more sensors. Further such patterns can be of variable duration. In this work, we propose a method for detecting such events in time-series data using a novel feature descriptor motivated by similar ideas in image processing. We define the shape histogram: a constant dimension descriptor that nevertheless captures patterns of variable duration. We demonstrate the efficacy of using shape histograms as features to detect events in an SVM-based, multi-sensor, supervised learning scenario, i.e., multiple time-series are used to detect an event. We present results on real-life vehicular sensor data and show that our technique performs better than available pattern detection implementations on our data, and that it can also be used to combine features from multiple sensors resulting in better accuracy than using any single sensor. Since previous work on pattern detection in time-series has been in the single series context, we also present results using our technique on multiple standard time-series datasets and show that it is the most versatile in terms of how it ranks compared to other published results

    A realization of classification success in multi sensor data fusion

    Get PDF
    The field of measurement technology in the sensors domain is rapidly changing due to the availability of statistical tools to handle many variables simultaneously.The phenomenon has led to a change in the approach of generating dataset from sensors. Nowadays, multiple sensors, or more specifically multi sensor data fusion (MSDF) are more favourable than a single sensor due to significant advantages over single source data and has better presentation of real cases.MSDF is an evolving technique related to the problem for combining data systematically from one or multiple (and possibly diverse) sensors in order to make inferences about a physical event, activity or situation. Mitchell (2007) defined MSDF as the theory, techniques, and tools which are used for combining sensor data, or data derived from sensory data into a common representational format. The definition also includes multiple measurements produced at different time instants by a single sensor as described by (Smith & Erickson, 1991)

    Principal Component Analysis – A Realization of Classification Success in Multi Sensor Data Fusion

    Get PDF
    The field of measurement technology in the sensors domain is rapidly changing due to the availability of statistical tools to handle many variables simultaneously.The phenomenon has led to a change in the approach of generating dataset from sensors. Nowadays, multiple sensors, or more specifically multi sensor data fusion (MSDF) are more favourable than a single sensor due to significant advantages over single source data and has better presentation of real cases.MSDF is an evolving technique related to the problem for combining data systematically from one or multiple (and possibly diverse) sensors in order to make inferences about a physical event, activity or situation. Mitchell (2007) defined MSDF as the theory, techniques, and tools which are used for combining sensor data, or data derived from sensory data into a common representational format. The definition also includes multiple measurements produced at different time instants by a single sensor as described by (Smith & Erickson, 1991)

    On Heterogeneous Neighbor Discovery in Wireless Sensor Networks

    Full text link
    Neighbor discovery plays a crucial role in the formation of wireless sensor networks and mobile networks where the power of sensors (or mobile devices) is constrained. Due to the difficulty of clock synchronization, many asynchronous protocols based on wake-up scheduling have been developed over the years in order to enable timely neighbor discovery between neighboring sensors while saving energy. However, existing protocols are not fine-grained enough to support all heterogeneous battery duty cycles, which can lead to a more rapid deterioration of long-term battery health for those without support. Existing research can be broadly divided into two categories according to their neighbor-discovery techniques---the quorum based protocols and the co-primality based protocols.In this paper, we propose two neighbor discovery protocols, called Hedis and Todis, that optimize the duty cycle granularity of quorum and co-primality based protocols respectively, by enabling the finest-grained control of heterogeneous duty cycles. We compare the two optimal protocols via analytical and simulation results, which show that although the optimal co-primality based protocol (Todis) is simpler in its design, the optimal quorum based protocol (Hedis) has a better performance since it has a lower relative error rate and smaller discovery delay, while still allowing the sensor nodes to wake up at a more infrequent rate.Comment: Accepted by IEEE INFOCOM 201
    • …
    corecore