84,109 research outputs found

    Monte-Carlo tree search with heuristic knowledge: A novel way in solving capturing and life and death problems in Go

    Get PDF
    Monte-Carlo (MC) tree search is a new research field. Its effectiveness in searching large state spaces, such as the Go game tree, is well recognized in the computer Go community. Go domain- specific heuristics and techniques as well as domain-independent heuristics and techniques are sys- tematically investigated in the context of the MC tree search in this dissertation. The search extensions based on these heuristics and techniques can significantly improve the effectiveness and efficiency of the MC tree search. Two major areas of investigation are addressed in this dissertation research: I. The identification and use of the effective heuristic knowledge in guiding the MC simulations, II. The extension of the MC tree search algorithm with heuristics. Go, the most challenging board game to the machine, serves as the test bed. The effectiveness of the MC tree search extensions is demonstrated through the performances of Go tactic problem solvers using these techniques. The main contributions of this dissertation include: 1. A heuristics based Monte-Carlo tactic tree search framework is proposed to extend the standard Monte-Carlo tree search. 2. (Go) Knowledge based heuristics are systematically investigated to improve the Monte-Carlo tactic tree search. 3. Pattern learning is demonstrated as effective in improving the Monte-Carlo tactic tree search. 4. Domain knowledge independent tree search enhancements are shown as effective in improving the Monte-Carlo tactic tree search performances. 5. A strong Go Tactic solver based on proposed algorithms outperforms traditional game tree search algorithms. The techniques developed in this dissertation research can benefit other game domains and ap- plication fields

    Monte Carlo Approaches to Parameterized Poker Squares

    Full text link
    The paper summarized a variety of Monte Carlo approaches employed in the top three performing entries to the Parameterized Poker Squares NSG Challenge competition. In all cases AI players benefited from real-time machine learning and various Monte Carlo game-tree search techniques

    Fast Approximate Max-n Monte Carlo Tree Search for Ms Pac-Man

    Get PDF
    We present an application of Monte Carlo tree search (MCTS) for the game of Ms Pac-Man. Contrary to most applications of MCTS to date, Ms Pac-Man requires almost real-time decision making and does not have a natural end state. We approached the problem by performing Monte Carlo tree searches on a five player maxn tree representation of the game with limited tree search depth. We performed a number of experiments using both the MCTS game agents (for pacman and ghosts) and agents used in previous work (for ghosts). Performance-wise, our approach gets excellent scores, outperforming previous non-MCTS opponent approaches to the game by up to two orders of magnitude. © 2011 IEEE

    Population seeding techniques for Rolling Horizon Evolution in General Video Game Playing

    Get PDF
    While Monte Carlo Tree Search and closely related methods have dominated General Video Game Playing, recent research has demonstrated the promise of Rolling Horizon Evolutionary Algorithms as an interesting alternative. However, there is little attention paid to population initialization techniques in the setting of general real-time video games. Therefore, this paper proposes the use of population seeding to improve the performance of Rolling Horizon Evolution and presents the results of two methods, One Step Look Ahead and Monte Carlo Tree Search, tested on 20 games of the General Video Game AI corpus with multiple evolution parameter values (population size and individual length). An in-depth analysis is carried out between the results of the seeding methods and the vanilla Rolling Horizon Evolution. In addition, the paper presents a comparison to a Monte Carlo Tree Search algorithm. The results are promising, with seeding able to boost performance significantly over baseline evolution and even match the high level of play obtained by the Monte Carlo Tree Search
    • …
    corecore