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University of Essex

Colchester, UK
Email: dperez@essex.ac.uk

Abstract—While Monte Carlo Tree Search and closely related
methods have dominated General Video Game Playing, recent
research has demonstrated the promise of Rolling Horizon
Evolutionary Algorithms as an interesting alternative. However,
there is little attention paid to population initialization techniques
in the setting of general real-time video games. Therefore, this
paper proposes the use of population seeding to improve the
performance of Rolling Horizon Evolution and presents the
results of two methods, One Step Look Ahead and Monte Carlo
Tree Search, tested on 20 games of the General Video Game
AI corpus with multiple evolution parameter values (population
size and individual length). An in-depth analysis is carried out
between the results of the seeding methods and the vanilla
Rolling Horizon Evolution. In addition, the paper presents a
comparison to a Monte Carlo Tree Search algorithm. The
results are promising, with seeding able to boost performance
significantly over baseline evolution and even match the high
level of play obtained by the Monte Carlo Tree Search.

I. INTRODUCTION

Recent literature features General Video Game Playing
(GVGP) more and more, with various researchers using dif-
ferent Game AI frameworks for benchmarking general AI
agents [1][2][3]. The authors all seem to be in agreement that,
although this is a great challenge, its importance is undeniable,
exceeding video games.

GVGP is an area focused on developing Artificial Intel-
ligence agents able to achieve a high performance in any
previously unknown environment, therefore striving towards
General Artificial Intelligence through video games. Games
make an excellent domain for testing AI techniques, due
to their varying complexity and wide range of problems
presented. Additionally, experiments can easily be run multiple
times in a constrained scenario, with minimal costs in case of
errors and fast feedback, a stark contrast to other areas such
as robotics.

This study is carried out using the General Video Game
AI [4] corpus of games, which provides a large collection
of interesting and diverse real-time challenges. The GVGAI
competition1 has been running for 3 years now and it has
increased its coverage in 2016 through a Two Player Planning
Track [5] and a Level Generation Track [6]. There are several
other types of problems in development, such as a Learning

1www.gvgai.net

Track (which strips the agents of the Forward Model), Screen-
Capture Learning or Rule Generation.

As AI achieves super-human performance in even the most
complex of individual games, the more general approach
of GVGAI will become increasingly attractive. In 2016, AI
became super-human at Go [7], and this is speculation on our
part, but we believe StarCraft is likely to be dominated by AI
within the next few years.

The experiment described in this paper attempts to improve
upon a basic Rolling Horizon Evolutionary Algorithm (RHEA)
and obtain better performance when tested on a subset of
20 games of the GVGAI corpus. The proposed technique is
focused on generating a better than random initial population
from which to start the evolution process i.e. by seeding the
population. Two different methods are used to this end, a One
Step Look Ahead algorithm and Monte Carlo Tree Search,
their performance analyzed on multiple RHEA parameter con-
figurations (varying population sizes and individual lengths).

The rest of this document follows a typical structure. Section
II gives an overview of literature in this domain. Section
III covers the basic background information necessary on
the framework and algorithms used in this study. Section
IV reviews the experimental approach and setup. Section V
reports the results obtained and offers a detailed analysis.
Finally, Section VI wraps up the paper by drawing conclusions
and identifying future work.

II. RELEVANT RESEARCH

Evolutionary Algorithms (EAs) provide a simple, robust and
generally applicable approach for searching a wide variety
of spaces, and have been the subject of intensive research
for more than five decades. In terms of their application to
Game AI, much of the effort has been focused on evolving AI
agents, or on evolving game content (such as level design) [8]
[9], game rules or game parameters. Recently, it was shown
that Evolutionary Algorithms could be applied as any-time
and real-time decision making algorithms for use in Game AI,
adopting a similar simulation-driven approach to Monte Carlo
Tree Search, while being simpler to implement and offering
competitive performance [10]. This was initially done for one-
player games, but was extended to 2-player games in the form
of Rolling Horizon Co-Evolution [11].
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Various enhancements of EAs have been considered, in-
cluding hybridization. One example is the usage of evolu-
tion integrated into the Monte Carlo Tree Search simulation
step [12] or in the roll-out phase to evolve a better policy [13].
Recently, work has moved to incorporate tree structures or
Upper Confidence Bounds (UCB) into the evolution instead
for a guided and more informed process [14].

One thing that all Evolutionary Algorithms have in com-
mon, regardless of any additional features or the actual evolu-
tionary techniques used, is the initialization of the population.
There have been several attempts at exploring this particular
improvement. Kazimipour et al. [15] review all the various
methods present in literature and categorize them according to
various factors: randomness, compositionality and generality.
They identified several techniques which would work in a
general environment; however, they suggest that these methods
are computationally expensive, therefore not translating well
to real time games, for example, which is the domain this
paper focuses on.

In addition, Kim et al. [16] analyze the effects of initializing
an EA population using an optimal solution determined by a
Temporal Difference Learning algorithm in the game Othello.
This addition appears to lead to a significant improvement in
performance and future work in the area is encouraged.

The issue with initializing the population with pseudo-
random numbers is raised by Maaranen et al. [17], who
instead propose a quasi-random sequence method meant to
obtain more evenly distributed points in a multi-individual
population, in order to better explore the search space. This
technique is applied to a genetic algorithm and it is tested on
52 global optimization problems. Their results are promising,
suggesting a higher level of performance over the traditional
initialization method.

When it comes to General Video Game Playing, Monte
Carlo Tree Search (MCTS) methods have dominated so far
and their variations have been explored in various works, as
depicted in a survey by Browne et al. [18]. In the General
Video Game AI competition, Open-Loop MCTS emerged as
the most powerful method out of the sample controllers pro-
vided, standing at the base of multiple participant algorithms
and even the winner of the first edition of the competition (ran
in 2014), Adrien Couëtoux [4].

However, the Arcade Learning Environment (ALE) [19],
still in use by companies such as Google DeepMind [20], was
one of the first frameworks to allow testing of general agents
on video games, presenting the agents with the game through
screen capture and requiring an in-game action at every step.
Unlike GVGAI, there are limitations to ALE games definition.
While the performance achieved by Mnih et al [20] using
Deep Q-Networks (DQN) applied to the ALE environment
was impressive, their main goal was to show what could be
achieved just be learning to act given the screen capture of the
game and a reward function, a process that involves a lengthy
training period.

Our interest in the current paper is in methods which can
exploit the Forward Model (FM) of the game to achieve

intelligent behaviour instantly. Rolling Horizon Evolutionary
Algorithms (RHEA) show great promise in this respect. The
Forward Model is a game simulator which can be used to
rapidly test the consequences of taking a series of actions,
given the current game state. As mentioned above, Perez et
al. [10] tested RHEA techniques on the Physical Salesman
Traveling Problem and their results were competitive with
MCTS, encouraging research in the area.

III. BACKGROUND

A. General Video Game AI

GVGAI aims to provide a framework for benchmarking
general Artificial Intelligent agents. It currently offers 140
games in total, 100 of which are single player and 40 two-
player, some of which stochastic and all real-time. The study
in this paper is focused on the single player framework. The
games are played by the agents in black box mode, without
any knowledge of the rules (e.g. different scoring systems,
conditions for ending the game or types of objects in the game
- NPCs, portals, resources), but being able to query the current
game state for information on game objects.

In addition, future possible states may be simulated using
a Forward Model (FM), which requires an action the agent
would wish to perform and returns the game state resulting
from that action. However, it is worth noting that any states
returned by the FM may not be an accurate representation of
the real game due to stochasticity.

The agents have only 40ms to make decisions regarding
which action to play in the next game tick, except for the
initialization step at the start of a game, where they receive 1s
thinking time. A legal action must be provided at the end of
the allocated budget, which may vary in the games between
movement or special actions (such as shooting).

B. Evolutionary Algorithms

The algorithms used in this study are based on the Rolling
Horizon Evolutionary Algorithm (RHEA) [10], which encode
individuals as sequences of actions. The term “Rolling Hori-
zon” refers to the fact that the first action of the plan evolved
is executed in one game step, then the plan is reevaluated
and adjusted, looking one step further into the future, thus
slowly expanding the “horizon”. Each individual in the EA is
evaluated in a similar manner: the actions are simulated with
the use of a Forward Model (FM) following the sequence; the
value associated with the state reached at the end (approxi-
mated by a heuristic function) is used as the fitness value of
the individual.

RHEA’s evolution process consists of several iterations
(dictated by a fixed number, or a time or memory budget,
for example) beginning with population initialization. Subse-
quently, mutation, tournaments, crossover and other evolution-
ary methods are used to change individuals and produce new
ones. The offspring are evaluated through the steps described
above and assigned a fitness value, which leads to the decision
of keeping or discarding it in order to move to the next
generation with the best individuals found so far. At the end



of the process, the algorithm returns the first gene of the best
individual in the final population as the action to be played
in the game. The evolution is then repeated in the next game
tick in the new game state received.

C. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a search-based tech-
nique which consists of four steps, iterated over repeatedly
until a pre-defined budget is reached (a number of iterations,
memory or time, for example). The action returned at the end
of the process is the child of the root node considered the best
by a recommendation policy (e.g. the most visited child).

In the first step in the process, MCTS selects a non-terminal
and not yet fully expanded leaf of the tree via a tree policy.
Secondly, a child of the selected node is added to the tree.
Thirdly, it simulates ahead, using the new child as the root of
a Monte Carlo simulation, with the help of the FM provided
by the system. And finally, a heuristic is used to evaluate the
state reached at the end of the simulation step and all of the
parents of the selected node, up to the root of the tree, are
updated with this value.

The algorithm used in this paper implements an Open Loop
variant of this technique, concretely the sample controller from
the GVGAI competition. Open Loop means that only statistics
and not the actual game states are stored in the nodes of the
tree, the FM being used when traversing the tree to simulate
the game states. More details of Monte Carlo Tree Search,
together with its variations and applications can be found
in [18].

IV. APPROACH AND EXPERIMENTAL SETUP

The aim of this paper is to explore whether initializing
the population of an Evolutionary Algorithm with individuals
better than random produces an improvement in performance
when applied to General Video Game Playing.

This hypothesis was tested by using 2 different initialization
techniques to design variants of the vanilla RHEA, the baseline
algorithm in this study, A-Vanilla. Algorithm B-1SLA-S is
a seeding variant which employs a One Step Look Ahead
technique to select a better starting point in the search space.
Algorithm C-MCTS-S uses Monte Carlo Tree Search to seed
the RHEA for better analysis of the search space. A fourth
algorithm’s performance was compared against the RHEA
variants, an Open Loop Monte Carlo Tree Search (algorithm
D-MCTS), in the simple implementation of the GVGAI com-
petition sample controller.

The effect of the initialization techniques was tested on dif-
ferent configurations of the RHEA algorithm, with population
sizes (P ) and individual lengths (L) in the subsequent ranges:
P = {1, 2, 5, 10, 15, 20}, L = {6, 8, 10, 14, 16, 20}, following
the diagonal of the matrix these values would form. In the case
of algorithm D-MCTS, its roll-out depth was kept the same
as RHEA individual length in order to make the approaches
comparable. The largest value tested was 20 due to the fact
that, by allowing half of the budget for MCTS computation in
algorithm C-MCTS-S, higher values for population size and

TABLE I
NAMES, INDEXES AND TYPES OF THE 20 GAMES FROM THE SUBSET

SELECTED. LEGEND: S - STOCHASTIC, D - DETERMINISTIC.

Idx Name Type Idx Name Type
0 Aliens S 4 Bait D
13 Butterflies S 15 Camel Race D
18 Chase D 22 Chopper S
25 Crossfire S 29 Dig Dug S
36 Escape D 46 Hungry Birds D
49 Infection S 50 Intersection S
58 Lemmings D 60 Missile Command D
61 Modality D 67 Plaque Attack D
75 Roguelike S 77 Sea Quest S
84 Survive Zombies S 91 Wait for Breakfast D

individual length would result in the algorithm not being able
to evaluate even 1 whole population in the initialization step.

A. Games

All of the algorithms were tested on the same subset of
20 single-player games of the current GVGAI corpus. As the
aim was to observe performance in different game types, two
classifications were used in order to determine a set of games
fit for this experiment. Mark Nelson presented a large scale
analysis of a basic Monte Carlo Tree Search algorithm in 62
games, which were sorted based on the performance of this
algorithm [21]. Bontrager et al. used clustering techniques on
49 GVGAI games [22] based on various features to obtain
rough groups of similar games. The 20 games selected for
this experiment were uniformly sampled from both works for
a balanced set of 10 stochastic and 10 deterministic games
(see Table I for indices, names and types of these games, as
used in the rest of this paper).

In order to account for the stochastic aspect of the algo-
rithms used in this study, as well as half of the games included
in the set, each algorithm was run 100 times on each game (20
times on each of the 5 levels available). The budget offered for
decision-making in each game tick was 900 FM calls, which is
the average number of FM calls that A-Vanilla achieves in the
40ms of computational time in the complete 100 games in the
GVGAI-1P corpus. The choice of using FM calls instead of
CPU time was made in order to ensure that variations on the
machine used for running the experiments would not impact
the results, together with the fact that simulating the game
ticks is the most expensive part of each algorithm under test.

B. Vanilla RHEA (Algorithm A-Vanilla)

The algorithm described in this subsection is the baseline
used in the study and follows the same technique described
in [23]. It employs a pseudo-random initialization of the
population, each gene in the individuals taking on an integer
value returned by an RNG (Random Number Generator). Each
value is between 0 and N − 1 inclusive, where N is the
maximum number of legal actions which can be performed
from the current game state, therefore the integers mapping to
an in-game action.



The evolutionary process continues slightly differently de-
pending on the size of the population. When there is only 1
individual considered, a new one is mutated at each generation
and the individual with the highest fitness value is carried
forward to the next iteration. Uniform crossover is introduced
for population sizes of 2 or more and a tournament with size
2 is used to select the parents of the resulting offspring in
the cases where populations contain 3 or more individuals.
The mutation operator is random, the 1 gene of the individual
selected being changed to a different possible value, chosen
uniformly at random.

The fitness function consists of a simple heuristic, returning
the current game score of the state reached after advancing the
Forward Model through all the actions in the individual (or
until the end of the game). If an end-game state was reached
and it resulted in a loss or a win for the player, the value
returned is instead either a large penalty or a large reward,
respectively.

C. One Step Look Ahead Seeding (Algorithm B-1SLA-S)

The One Step Look Ahead (1SLA) algorithm is a simple
technique which exhaustively searches through the actions
available from the current state and associates each a Q value,
corresponding to the approximated value of the game state
reached after performing each action (the value is defined by
the same heuristic employed by RHEA). It then selects for
execution the action with the highest Q value.

Algorithm B-1SLA-S uses the same evolutionary process
as A-Vanilla described above, but the first individual in the
initial population is the solution recommended by the 1SLA
technique. L iterations of the algorithm are performed, one for
each gene in the individual: an exhaustive search is carried out
through all of the actions available from the current state, the
game state is advanced using the Forward Model, through the
best action found and the process is repeated until either the
end of the individual or the end of the game is reached. In the
second case, the rest of the individual is padded with randomly
selected actions.

If the population size is bigger than 1, the rest of the indi-
viduals are obtained by mutating the first individual obtained
from the 1SLA algorithm. This method was thought to reduce
random bias (the vanilla algorithm potentially not being able
to find the current best action because of the random seeding)
and to provide a better starting point for evolution.

D. Monte Carlo Tree Search Seeding (Algorithm C-MCTS-S)

Algorithm C-MCTS-S splits the budget received and uses
half of it to first run a Monte Carlo tree search on the current
game state, following the steps described in Section III-C. The
roll-out depth is set to the same value as the individual length
in A-Vanilla and the UCB1 formula (with constant C taking
the value

√
2) is applied as tree policy (see Equation 1).

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

The first individual in the initial RHEA population is then
seeded using the solution recommended by MCTS. Only the
first K relevant nodes are selected, by traversing the tree
through the most visited actions (the same method used by
algorithm D-MCTS when selecting its final action to play). A
node is relevant if it has been visited at least M = 3 times.
The rest of the individual (if any genes have not received a
value) is padded with randomly chosen legal actions.

V. RESULTS AND DISCUSSION

The analysis in this section uses a two-tailed Mann-Whitney
non-parametric U test to measure the statistical significance
of the results for each game (p-value = 0.05), applied to two
performance indicators: win rate and game score achieved.

In general, both seeding techniques improve the perfor-
mance of the vanilla algorithm much more when the popu-
lation size and individual length are small than when they in-
crease. This is in line with the findings in the study performed
by Gaina et. al [23], where Random Search (RS) emerged as
the best algorithm in the limited budget offered. Therefore, the
more the parameter values increase towards RS, the less the
impact of the seeding can be observed.

Table V presents an overall win rate comparison between the
two seeding variants and vanilla RHEA, across all games and
configurations. The bottom of the table sums up the number
of games in which one algorithm was significantly better than
the other two, leading to a total of unique games where a sig-
nificant improvement was noticed, in all configurations tested.
Table IV is a complete results example for the configuration
P = 1, L = 6 (see Figure 1 for visualization), the rest of the
tables being omitted due to space limitations.

A. Overall Seeding Comparison

The general trend observed in this study is that the MCTS
seeding variant performs significantly better than both algo-
rithms A-Vanilla and B-1SLA-S in 8 unique games for win
rate and 13 unique games for scores across all configurations,
while being significantly worse than either of the other two in
only 4 games for both win rate and score.

It is worth noting that there were a reduced number of games
in which A-Vanilla or B-1SLA-S turned out to consistently be
significantly better than C-MCTS-S: games with indices 36
and 91 (Escape and Wait for Breakfast, respectively) for both
win rate and score and game with index 50 (Intersection) for
score only. This is due to the poor performance of MCTS in
these games, which is improved in the seeded algorithm over
D-MCTS.

In addition, the MCTS seeding shows a steady improvement
in several games. The win rates in the games with indices 0,
13 and 22 (Aliens, Butterflies and Chopper, respectively) see
an increase to very close to 100% in all configurations. The
biggest improvement is observed in game 22, where the A-
Vanilla win rate for the smallest configuration (P = 1, L = 6)
is only 26% to begin with (p� 0.0001).

This leads to the conclusion that identifying the type of
game being played and applying the correct algorithm seeding



Fig. 1. Win rate of algorithms A-Vanilla, B-1SLA-S and C-MCTS-S with configuration P = 1, L = 6 in all 20 games.

TABLE II
PAIR-WISE SIGNIFICANCE COMPARISON BETWEEN VANILLA RHEA, ONE

STEP LOOK AHEAD SEEDED RHEA AND MCTS SEEDED RHEA.

Algorithm 1-6 2-8 5-10 10-14 15-16 20-20 Total
A-Vanilla 1 (1) 0 (0) 0 (1) 3 (5) 5 (8) 5 (10) 8 (11)
B-1SLA-S 6 (7) 1 (5) 0 (4) 0 (1) 0 (2) 0 (2) 6 (8)

A-Vanilla 2 (1) 2 (3) 2 (3) 4 (3) 2 (4) 2 (4) 4 (5)
C-MCTS-S 10 (16) 6 (11) 4 (7) 1 (5) 2 (5) 0 (5) 12 (16)

B-1SLA-S 2 (3) 2 (4) 2 (3) 3 (4) 2 (4) 2 (4) 3 (5)
C-MCTS-S 6 (11) 8 (11) 4 (9) 6 (12) 6 (11) 6 (11) 10 (13)

and parameters through a meta-heuristic would be highly
beneficial to a general AI agent. However, there are also
games such as 29 (Dig Dug), 58 (Lemmings) and 77 (Sea
Quest) in which the win rate for all algorithms remains at 0%,
these being particularly difficult games which require greater
exploration that neither technique can provide.

B. Pair-wise Seeding Comparison

Pair-wise significance comparison between algorithms A-
Vanilla, B-1SLA-S and C-MCTS-S on all the configurations
tested can be observed in Table II. The values represent the
number of games (out of 20 total) in which one algorithm was
significantly better than the other regarding victories, as well
as scores, in brackets. The totals sum up the unique games
in which one algorithm was significantly better than the other
across all configurations (maximum of 20).

1) A-Vanilla vs B-1SLA-S: The One Step Look Ahead
seeding appears to produce the best results where the RHEA
parameter values are very small (improvements in 6 games
for win rate and 7 games for score), a change being, however,
noticed halfway through the table where the seeding variant
actually becomes significantly worse than the vanilla version
in up to 5 games for win rate and 10 games for score. Overall,
across all configurations tested, the 1SLA seeding appears to
be worse than the baseline algorithm.

A study of the complete matrix of small parameter values
(P = {1, 2, 5}, L = {6, 8, 10}), where the difference in

performance is most observed, reveals that the variance in
individual length and population size have different effects.
On the one hand, increasing the size of the population results
in a decrease in the number of games it is significantly better in
when compared to A-Vanilla, which is due to the fact that the
seeding variant explores the search space much less, with only
one optimal solution mutated for all of its individuals. On the
other hand, the performance is proportional to the individual
length, suggesting that the directed search provided by 1SLA
is more effective in cases with big L values compared to A-
Vanilla’s random sampling.

2) A-Vanilla vs C-MCTS-S: With parameter values smaller
than P = 10, L = 14, the MCTS seeding is significantly better
than the vanilla version, the difference being most noticed,
again, when the parameter values are small. The decrease in
performance is thought to be caused by the roll-out depth of
MCTS exceeding the optimal range (10−12). Across all con-
figurations, MCTS seeding improves the baseline algorithm in
60% of the games for win rate and 80% for score.

Comparing the complete matrix of small parameter values
shows that the population size has a much greater negative
effect on the performance than the individual length. The lack
of impact of the individual length can be explained by the
proportional increase in the roll-out length of MCTS, therefore
keeping results comparable. However, the decrease observed
with population size increase suggests that the algorithm fails
to explore the search space as well as RHEA, therefore
balancing of other parameters should be considered.

For configuration P = 5, L = 10, there are two interesting
games to look in depth at. In the game with index 77 (Sea
Quest), C-MCTS-S increases the win rate of the baseline
algorithm from 31% to 68% (p� 0.0001) and the score from
1225.68 average points to 2485.43 (p� 0.0001). Another big
effect size is perceived in game 15 (Camel Race), in which,
although the win rates remain small, there is an increase from
2% to 8% (p = 0.026). Both games benefit from the balanced
exploration and exploitation provided by the MCTS solution
which stands at the base of the evolutionary process.



TABLE III
SIGNIFICANCE COMPARISON OF ALGORITHMS A-VANILLA, C-MCTS-S

AND D-MCTS IN ALL 20 GAMES AND ALL CONFIGURATIONS.

Algorithm 1-6 2-8 5-10 10-14 15-16 20-20 Total
A-Vanilla 2 (1) 2 (3) 2 (3) 2 (3) 2 (4) 2 (4) 3 (4)

C-MCTS-S 0 (2) 1 (1) 0 (3) 0 (0) 0 (1) 0 (1) 1 (7)
D-MCTS 2 (3) 0 (0) 0 (1) 1 (3) 0 (3) 0 (3) 3 (7)
Improved
Seeding 10 (15) 4 (10) 2 (4) 0 (5) 2 (5) 0 (4) 10 (15)

3) B-1SLA-S vs C-MCTS-S: When the two seeding tech-
niques are compared, C-MCTS-S achieves a consistently better
performance in 50% of the games for win rate and 65%
for scores, whereas being consistently significantly worse in
games with indices 36 and 91 (Escape and Wait for Breakfast,
respectively) for both win rate and scores and game 50
(Intersection) for score. In game 22 (Chopper), B-1SLA-S with
configuration P = 2, L = 8 achieves a 76% win rate, while
C-MCTS-S increases it to 100% (p � 0.0001). In addition,
significant improvements with large effect sizes can also be
noticed in games 60 (Missile Command, p = 0.016) and 84
(Survive Zombies, p = 0.033). However, in the game with
index 36 (Escape), in which the MCTS algorithm cannot find
a solution, the win rate drops from 30% for B-1SLA-S to 0%
for C-MCTS-S (p� 0.0001).

C. MCTS Comparison

Although the results indicate algorithm C-MCTS-S to be the
best in this setting, an analysis against a pure Monte Carlo Tree
Search technique was carried out to validate the findings. This
comparison can be seen in Table III, in which the values show
the number of games in which one algorithm was significantly
better than both the others in win rate (and scores, in brackets),
adding up to a total of unique games across all configurations.

The bottom line of Table III signifies the amount of games
in which, although C-MCTS-S was not the best algorithm,
the addition of MCTS seeding to RHEA made it in turn better
than the baseline algorithm. This takes into account the cases
where C-MCTS-S and D-MCTS were not significantly better
than each other, but they still achieved a higher performance
than A-Vanilla.

While A-Vanilla consistently obtains significantly more vic-
tories and higher scores in its best games (indices 36, 91 and
50), it must be highlighted that the apparent low performance
of C-MCTS-S is due to it not being significantly better than
D-MCTS. For the direct comparison between C-MCTS-S and
A-Vanilla, the reader is referred to Table II. In this case, the
MCTS seeding variant shows improvement over a wider range
of games, adding up to 50% games in which a larger win rate
was observed and 75% games in which the score increased.
The conclusion emerging is that MCTS seeding has a highly
beneficial effect, especially in low RHEA parameter values,
and further exploration of its advantages is encouraged.

VI. CONCLUSION

This paper presented an experiment focused on observing
how a better than random population initialization technique

affects the performance of Rolling Horizon Evolutionary Algo-
rithms (RHEA) in General Video Game Playing. Two different
seeding techniques were used for testing. First, a One Step
Look ahead method, which simply carries out an exhaustive
search through all actions available and chooses the best one at
each game step. Second, a Monte Carlo Tree Search (MCTS),
which took half the budget to process the game from the
current state and recommend a solution to serve as a starting
point for the evolutionary process. Experiments were carried
out in a balanced set of 20 games of the General Video Game
AI framework and using various configurations of RHEA
parameters (population size (P ) and individual length (L)).

The results suggest that both seeding variants offer a signif-
icant improvement in performance, considering both win rate
and in-game score, in particular when the P and L values are
small. However, as the parameter values increase, the benefit of
seeding decreases, indicating that the unique solution offered
by the initialization methods, which the evolution searches
around, loses value compared to the wider search space at
the disposal of Vanilla RHEA. A conclusion drawn from this
is that the seeding directed evolution should be combined
with better exploration of the game space in order to achieve
optimal results. Nevertheless, as the aim of these algorithms is
to attain a high level of play on all games, a positive result on
a relatively small sample of games negates the null hypothesis
and recommends deeper investigation.

An in-depth comparison between vanilla RHEA, the MCTS
seeding algorithm and Open Loop Monte Carlo Tree Search
was also performed. The findings of this study pinpoint the
fact that, as the evolution parameters increase towards Random
Search, so does the performance of RHEA compared to the
tree search based methods in several games where the search
space is too large for MCTS to traverse efficiently enough.
Furthermore, the MCTS seeding does not produce worse
results than simply MCTS. Therefore, this seeding technique
is shown to have great promise in this environment.

The next steps will be focused on developing the algorithm’s
exploration of the game space, through further use of tree
structures for hybridization, additional roll-outs and circular
buffers. Moreover, a wider range of games will be used to
ascertain that the difference in performance would indeed be
significant in an even more general setting.
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Population for Genetic Algorithms,” Computers and Mathematics with
Applications, vol. 47, no. 12, pp. 1885–1895, 2004.

[18] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Survey
of Monte Carlo Tree Search Methods,” in IEEE Trans. on Computational
Intelligence and AI in Games, vol. 4, no. 1, 2014, pp. 1–43.

[19] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade
Learning Environment: An Evaluation Platform for General Agents,”
Journal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level Control Through
Deep Reinforcement Learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[21] M. J. Nelson, “Investigating Vanilla MCTS Scaling on the GVG-
AI Game Corpus,” in Proceedings of the 2016 IEEE Conference on
Computational Intelligence and Games, 2016.

[22] P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching Games
and Algorithms for General Video Game Playing,” in 12 Artificial
Intelligence and Interactive Digital Entertainment Conference, 2016, pp.
122–128.

[23] R. D. Gaina, J. Liu, S. M. Lucas, and D. P. Liébana, “Analysis of Vanilla
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Game Algorithm P = 1, L = 6 P = 2, L = 8 P = 5, L = 10 P = 10, L = 14 P = 15, L = 16 P = 20, L = 20 Total

0
A-Vanilla 87.00 (3.36) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 97.83 (2.16)
B-1SLA-S 97.00 (1.71) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.50 (0.50)
C-MCTS-S 100.00 (0.00) 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)

4
A-Vanilla 4.00 (1.96) 5.00 (2.18) 9.00 (2.86) 8.00 (2.71) 11.00 (3.13) 5.00 (2.18) 7.00 (1.12)
B-1SLA-S 4.00 (1.96) 5.00 (2.18) 4.00 (1.96) 5.00 (2.18) 10.00 (3.00) 5.00 (2.18) 5.5 (1.88)
C-MCTS-S 6.00 (2.37) 6.00 (2.37) 7.00 (2.55) 7.00 (2.55) 5.00 (2.18) 6.00 (2.37) 6.16 (0.33)

13
A-Vanilla 78.00 (4.14) 83.00 (3.76) 94.00 (2.37) 96.00 (1.96) 91.00 (2.86) 92.00 (2.71) 89.00 (2.94)
B-1SLA-S 90.00 (3.00) 90.00 (3.00) 90.00 (3.00) 87.00 (3.36) 84.00 (3.67) 87.00 (3.36) 88.00 (1.04)
C-MCTS-S 95.00 (2.18) 99.00 (0.99) 100.00 (0.00) 99.00 (0.99) 98.00 (1.40) 97.00 (1.71) 98.00 (0.76)

15
A-Vanilla 4.00 (1.96) 7.00 (2.55) 2.00 (1.40) 7.00 (2.55) 5.00 (2.18) 7.00 (2.55) 5.33 (0.77)
B-1SLA-S 3.00 (1.71) 3.00 (1.71) 3.00 (1.71) 7.00 (2.55) 7.00 (2.55) 2.00 (1.40) 4.16 (0.83)
C-MCTS-S 5.00 (2.18) 5.00 (2.18) 8.00 (2.71) 5.00 (2.18) 4.00 (1.96) 5.00 (2.18) 5.33 (0.68)

18
A-Vanilla 1.00 (0.99) 2.00 (1.40) 7.00 (2.55) 6.00 (2.37) 8.00 (2.71) 6.00 (2.37) 5.00 (1.33)
B-1SLA-S 2.00 (1.40) 4.00 (1.96) 4.00 (1.96) 1.00 (0.99) 4.00 (1.96) 3.00 (1.71) 3.00 (0.61)
C-MCTS-S 9.00 (2.86) 12.00 (3.25) 8.00 (2.71)* 11.00 (3.13) 11.00 (3.13)* 11.00 (3.13) 10.33 (1.28)

22
A-Vanilla 26.00 (4.39) 74.00 (4.39) 95.00 (2.18) 99.00 (0.99) 97.00 (1.71) 98.00 (1.40) 81.5 (11.74)
B-1SLA-S 48.00 (5.00) 76.00 (4.27) 72.00 (4.49) 33.00 (4.70) 24.00 (4.27) 13.00 (3.36) 44.33 (8.43)
C-MCTS-S 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.00 (0.99)* 100.00 (0.00) 99.00 (0.99)* 99.67 (0.16)

25
A-Vanilla 0.00 (0.00) 2.00 (1.40) 2.00 (1.40) 7.00 (2.55) 9.00 (2.86) 8.00 (2.71) 4.67 (1.39)
B-1SLA-S 2.00 (1.40) 3.00 (1.71) 4.00 (1.96) 4.00 (1.96) 3.00 (1.71) 6.00 (2.37) 3.67 (0.33)
C-MCTS-S 4.00 (1.96)* 1.00 (0.99)* 2.00 (1.40)* 0.00 (0.00)* 5.00 (2.18)* 3.00 (1.71)* 2.50 (0.76)

29
A-Vanilla 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
B-1SLA-S 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
C-MCTS-S 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

36
A-Vanilla 15.00 (3.57) 32.00 (4.66) 33.00 (4.70) 44.00 (4.96) 42.00 (4.94) 39.00 (4.88) 34.16 (4.56)
B-1SLA-S 36.00 (4.80) 30.00 (4.58)* 33.00 (4.70) 31.00 (4.62) 33.00 (4.70) 37.00 (4.83) 33.33 (1.11)
C-MCTS-S 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.99) 0.16 (0.16)

46
A-Vanilla 2.00 (1.40) 4.00 (1.96) 3.00 (1.71) 1.00 (0.99) 3.00 (1.71) 3.00 (1.71) 2.67 (0.42)
B-1SLA-S 2.00 (1.40) 0.00 (0.00) 4.00 (1.96) 2.00 (1.40) 1.00 (0.99) 1.00 (0.99) 1.67 (0.53)
C-MCTS-S 3.00 (1.71)* 5.00 (2.18) 4.00 (1.96) 6.00 (2.37) 7.00 (2.55) 4.00 (1.96) 4.83 (0.57)

49
A-Vanilla 98.00 (1.40) 98.00 (1.40) 96.00 (1.96) 98.00 (1.40) 96.00 (1.96) 98.00 (1.40) 97.33 (0.57)
B-1SLA-S 96.00 (1.96) 97.00 (1.71) 97.00 (1.71) 98.00 (1.40) 97.00 (1.71) 99.00 (0.99) 97.33 (0.33)
C-MCTS-S 97.00 (1.71)* 100.00 (0.00)* 94.00 (2.37)* 100.00 (0.00) 97.00 (1.71) 100.00 (0.00) 98.00 (1.00)

50
A-Vanilla 79.00 (4.07) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 96.50 (3.50)
B-1SLA-S 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)
C-MCTS-S 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

58
A-Vanilla 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
B-1SLA-S 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00)
C-MCTS-S 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)* 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

60
A-Vanilla 35.00 (4.77) 46.00 (4.98) 51.00 (5.00) 57.00 (4.95) 58.00 (4.94) 59.00 (4.92) 51.16 (3.51)
B-1SLA-S 36.00 (4.80) 47.00 (4.99) 49.00 (5.00) 39.00 (4.88) 43.00 (4.95) 43.00 (4.95) 42.83 (2.02)
C-MCTS-S 63.00 (4.83) 62.00 (4.85) 59.00 (4.92) 67.00 (4.70) 69.00 (4.62) 64.00 (4.80) 64.00 (1.60)

61
A-Vanilla 23.00 (4.21) 26.00 (4.39) 28.00 (4.49) 26.00 (4.39) 29.00 (4.54) 31.00 (4.62) 27.16 (0.87)
B-1SLA-S 28.00 (4.49) 22.00 (4.14) 23.00 (4.21) 25.00 (4.33) 21.00 (4.07) 32.00 (4.66) 25.16 (1.02)
C-MCTS-S 30.00 (4.58) 25.00 (4.33) 26.00 (4.39) 28.00 (4.49) 24.00 (4.27) 26.00 (4.39) 26.50 (0.88)

67
A-Vanilla 75.00 (4.33) 79.00 (4.07) 89.00 (3.13) 96.00 (1.96) 92.00 (2.71) 96.00 (1.96)* 87.83 (3.24)
B-1SLA-S 70.00 (4.58) 72.00 (4.49) 85.00 (3.57) 89.00 (3.13) 83.00 (3.76) 82.00 (3.84) 80.16 (3.27)
C-MCTS-S 91.00 (2.86) 89.00 (3.13) 83.00 (3.76) 85.00 (3.57) 91.00 (2.86) 97.00 (1.71) 89.33 (1.32)

75
A-Vanilla 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
B-1SLA-S 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
C-MCTS-S 0.00 (0.00) 0.00 (0.00)* 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)* 0.00 (0.00)

77
A-Vanilla 33.00 (4.70) 42.00 (4.94) 31.00 (4.62) 44.00 (4.96) 58.00 (4.94) 59.00 (4.92) 44.50 (4.16)
B-1SLA-S 37.00 (4.83) 44.00 (4.96) 48.00 (5.00) 34.00 (4.74) 52.00 (5.00) 43.00 (4.95) 43.00 (2.90)
C-MCTS-S 58.00 (4.94) 51.00 (5.00) 68.00 (4.66) 50.00 (5.00) 56.00 (4.96) 63.00 (4.83) 57.67 (2.69)

84
A-Vanilla 23.00 (4.21) 39.00 (4.88) 43.00 (4.95) 40.00 (4.90) 45.00 (4.97) 49.00 (5.00) 39.83 (4.15)
B-1SLA-S 29.00 (4.54) 39.00 (4.88) 32.00 (4.66) 29.00 (4.54) 33.00 (4.70) 39.00 (4.88) 33.50 (1.68)
C-MCTS-S 40.00 (4.90)* 52.00 (5.00) 49.00 (5.00) 41.00 (4.92)* 43.00 (4.95) 45.00 (4.97) 45.00 (1.92)

91
A-Vanilla 35.00 (4.77) 65.00 (4.77) 68.00 (4.66) 76.00 (4.27) 71.00 (4.54) 72.00 (4.49) 64.50 (6.05)
B-1SLA-S 65.00 (4.77) 65.00 (4.77) 59.00 (4.92) 72.00 (4.49) 65.00 (4.77) 69.00 (4.62) 65.83 (2.12)
C-MCTS-S 9.00 (2.86) 11.00 (3.13) 29.00 (4.54) 21.00 (4.07) 24.00 (4.27) 11.00 (3.13) 17.50 (3.13)

Total
A-Vanilla 0 (0) 0 (0) 0 (0) 2 (0) 0 (0) 0 (1) 2 (1)
B-1SLA-S 2 (3) 0 (2) 0 (1) 0 (2) 0 (2) 0 (2) 2 (4)
C-MCTS-S 6 (11) 6 (10) 3 (7) 0 (5) 2 (4) 0 (4) 8 (13)

TABLE V
AVERAGE OF VICTORIES IN ALL 20 GAMES. BOLD STYLE INDICATES THAT THE ALGORITHM IS SIGNIFICANTLY BETTER IN THAT GAME THAN THE

OTHER TWO SEEDING VARIANTS, REGARDING AVERAGE VICTORIES. * SYMBOL INDICATES THAT THE ALGORITHM IS SIGNIFICANTLY BETTER IN THAT
GAME THAN THE OTHER TWO SEEDING VARIANTS, REGARDING AVERAGE GAME SCORE. THE BOTTOM OF THE TABLE ADDS UP THE NUMBER OF GAMES

IN WHICH THE ALGORITHM WAS SIGNIFICANTLY BETTER THAN THE OTHER TWO VARIANTS IN AVERAGE VICTORIES AND AVERAGE SCORES IN
BRACKETS. THE NON-PARAMETRIC WILCOXON SIGNED-RANK TEST WITH P-VALUE < 0.05 WAS USED TO DETERMINE SIGNIFICANCE.
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