2,294 research outputs found

    Segmentation-assisted detection of dirt impairments in archived film sequences

    Get PDF
    A novel segmentation-assisted method for film dirt detection is proposed. We exploit the fact that film dirt manifests in the spatial domain as a cluster of connected pixels whose intensity differs substantially from that of its neighborhood and we employ a segmentation-based approach to identify this type of structure. A key feature of our approach is the computation of a measure of confidence attached to detected dirt regions which can be utilized for performance fine tuning. Another important feature of our algorithm is the avoidance of the computational complexity associated with motion estimation. Our experimental framework benefits from the availability of manually derived as well as objective ground truth data obtained using infrared scanning. Our results demonstrate that the proposed method compares favorably with standard spatial, temporal and multistage median filtering approaches and provides efficient and robust detection for a wide variety of test material

    Color Image Enhancement via Combine Homomorphic Ratio and Histogram Equalization Approaches: Using Underwater Images as Illustrative Examples

    Get PDF
    The histogram is one of the important characteristics of grayscale images, and the histogram equalization is effective method of image enhancement. When processing color images in models, such as the RGB model, the histogram equalization can be applied for each color component and, then, a new color image is composed from processed components. This is a traditional way of processing color images, which does not preserve the existent relation or correlation between colors at each pixel. In this work, a new model of color image enhancement is proposed, by preserving the ratios of colors at all pixels after processing the image. This model is described for the color histogram equalization (HE) and examples of application on color images are given. Our preliminary results show that the application of the model with the HE can be effectively used for enhancing color images, including underwater images. Intensive computer simulations show that for single underwater image enhancement, the presented method increases the image contrast and brightness and indicates a good natural appearance and relatively genuine color

    An evaluation of intrusive instrumental intelligibility metrics

    Full text link
    Instrumental intelligibility metrics are commonly used as an alternative to listening tests. This paper evaluates 12 monaural intrusive intelligibility metrics: SII, HEGP, CSII, HASPI, NCM, QSTI, STOI, ESTOI, MIKNN, SIMI, SIIB, and sEPSMcorr\text{sEPSM}^\text{corr}. In addition, this paper investigates the ability of intelligibility metrics to generalize to new types of distortions and analyzes why the top performing metrics have high performance. The intelligibility data were obtained from 11 listening tests described in the literature. The stimuli included Dutch, Danish, and English speech that was distorted by additive noise, reverberation, competing talkers, pre-processing enhancement, and post-processing enhancement. SIIB and HASPI had the highest performance achieving a correlation with listening test scores on average of ρ=0.92\rho=0.92 and ρ=0.89\rho=0.89, respectively. The high performance of SIIB may, in part, be the result of SIIBs developers having access to all the intelligibility data considered in the evaluation. The results show that intelligibility metrics tend to perform poorly on data sets that were not used during their development. By modifying the original implementations of SIIB and STOI, the advantage of reducing statistical dependencies between input features is demonstrated. Additionally, the paper presents a new version of SIIB called SIIBGauss\text{SIIB}^\text{Gauss}, which has similar performance to SIIB and HASPI, but takes less time to compute by two orders of magnitude.Comment: Published in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 201

    Characterisation of S185 steel under monotonic loading by a feature tracking method

    Get PDF
    In this work, the mechanical behaviour of S185 steel under monotonic loading was characterised by using an image feature-based tracking method. Tensile tests on three types of cylindrical specimens were carried out, in particularly using smooth and notched specimens. Target features were painted on the specimen surfaces and tracked in images sequences in order to estimate the experimental load-displacement curves. Finite element analyses of the non-linear behaviour of steel components were also performed, being the parameters of the different plasticity employed determined by fitting the experimental and numerical data

    Dynamic Programming Approach to Image Segmentation and its Application to Pre-processing of Mammograms

    Full text link
    Images egmentationis an importent componento f imagop rocessings irce significantt ime can be savedi f a region of interest is extracted by al efficient segmentationa lgorithm. A dynamic programming image segmentation algorithnr is presented. The algorithm is applicable to images with a large matrix of gray levels of pixel values and generatesa path separatingt he object from the background.T he report of a.na pplication of the proposed algorithm to digitised mammotramsc omplementsit s description

    Illumination Processing in Face Recognition

    Get PDF

    NN-VVC: Versatile Video Coding boosted by self-supervisedly learned image coding for machines

    Full text link
    The recent progress in artificial intelligence has led to an ever-increasing usage of images and videos by machine analysis algorithms, mainly neural networks. Nonetheless, compression, storage and transmission of media have traditionally been designed considering human beings as the viewers of the content. Recent research on image and video coding for machine analysis has progressed mainly in two almost orthogonal directions. The first is represented by end-to-end (E2E) learned codecs which, while offering high performance on image coding, are not yet on par with state-of-the-art conventional video codecs and lack interoperability. The second direction considers using the Versatile Video Coding (VVC) standard or any other conventional video codec (CVC) together with pre- and post-processing operations targeting machine analysis. While the CVC-based methods benefit from interoperability and broad hardware and software support, the machine task performance is often lower than the desired level, particularly in low bitrates. This paper proposes a hybrid codec for machines called NN-VVC, which combines the advantages of an E2E-learned image codec and a CVC to achieve high performance in both image and video coding for machines. Our experiments show that the proposed system achieved up to -43.20% and -26.8% Bj{\o}ntegaard Delta rate reduction over VVC for image and video data, respectively, when evaluated on multiple different datasets and machine vision tasks. To the best of our knowledge, this is the first research paper showing a hybrid video codec that outperforms VVC on multiple datasets and multiple machine vision tasks.Comment: ISM 2023 Best paper award winner versio
    corecore