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ABSTRACT 

In this work, the mechanical behaviour of S185 steel under monotonic loading was 

characterised by using an image feature-based tracking method. Tensile tests on three types of 

cylindrical specimens were carried out, in particularly using smooth and notched specimens. 

Target features were painted on the specimen surfaces and tracked in images sequences in 

order to estimate the experimental load-displacement curves. Finite element analyses of the 

non-linear behaviour of steel components were also performed, being the parameters of the 

different plasticity employed determined by fitting the experimental and numerical data. 

 

INTRODUCTION 

Monotonic fracture on steel components can occur due to extreme loading conditions as 

support settlements, industrial plant shutdown and accidental loads. For ductile or plastic 

monotonic fracture, several models have been proposed as, for instance, empirical models, 

void growth models, porosity-type models and continuum damage mechanics (CDM) based 

models (Coppola, 2009). In this work, the models proposed by Gurson-Tvergaard-Needleman 

(Gurson, 1976; Tvergaard, 1984), Johnson-Cook (Johnson, 1985) and Kanvinde-Deierlein 

(Kanvinde, 2007) were used for modelling monotonic loading. The constitutive parameters of 

these models need to be estimated from suitable experimental approaches. Tensile tests 

coupled with an image-based feature tracking method (Xavier, 2009) were used to estimate 

the load-displacement material response. 

Smooth (CL), large notch (CES) and small notch (CE) cylindrical specimens were machined 

from a S185 structural steel plate. These specimens were tested on a servo hydraulic 

INSTRON 8801 universal testing machine at room temperature. Circular marks were painted 

on the surface of the specimens and tracked in the images acquired during the tests at an 

acquisition frequency of 1 Hz. The image based tracking was done using a computational 

algorithm that allows the measurement of the displacements of the target features in a 

sequence of images acquired during the deformation of test sample. The load-displacement 

experimental curves obtained using the image tracking algorithm was used to calibrate the 

finite element models, which included a plasticity model with isotropic hardening. Numerical 

analyses using ANSYS
®

 12.1 (ANSYS, 2009) were conducted to compute the necessary 

parameters (stress-strain and triaxiality histories) to calibrate the Johnson-Cook (JC) and 

Kanvinde and Deierlein (KD) fracture criteria. Concerning the GTN model, its calibration 

was based on an explicit finite element analysis in ABAQUS
®

 6.10 (ABAQUS, 2010). 
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MODELS FOR MONOTONIC DUCTILE FRACTURE 

Johnson-Cook (JC) (Johnson-Cook, 1985), Gurson-Tvergaard-Needleman (GTN) (Gurson, 

1976) and Kanvinde and Deierlein (KD) models were used in this study to predict the 

monotonic fracture in S185 structural steel components. In the present section, these models 

are introduced. 

The JC model allows to obtain the ductile/damage curve and provides the relation between the 

equivalent strain at fracture and a monotonic function of the stress triaxiality (Wierzbicki, 

2005), and can be expressed as follows: 

 1 2 3expfε C C C η    (1) 

where the stress triaxiality, η , is defined by the ratio between the hydrostatic pressure, p , 

and the Von Mises equivalent stress, VMσ , as follows: 

VM

p
η

σ
   (2) 

1C , 2C  and 3C  are constants that characterise the material and are determined using the 

monotonic tensile tests data, addressing distinct stress triaxialities and fracture strain. In this 

work, the JC model was calibrated by means of an experimental program of tensile tests 

performed in cylindrical specimens. The determination of the stress triaxiality in the critical 

region is complex, since it is variable during the loading process. To overcome this 

shortcoming the following equation was used: 
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where f  is the strain at fracture. 

Regarding the GTN model, it assumes that the microdefects and microcavities in the material 

microstructure can be accountable during the damage evolution process due to an external 

load. Hence, this process is based on micromechanical assumptions as growth, nucleation and 

coalescence of voids inside the material. As such, failure occurs when the void volume 

fraction, f , reaches the critical value (Gurson, 1976): 

0

V
f

V
   (4) 

where V represent the voids volume within an initial volume of material, 0V . 

According to the GTN model, the reduction of resistance is addressed by the introduction of 

the yield surface described by the plastic potential, GursonF , (Broggiato, 2007): 
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where s  represent the current yield stress, 
eq  is the equivalent stress 1q , 2q  are materials 

parameters related with the interaction of microvoids and the relationship 2

3 1q q  is assumed, 
*

vf  is the effective void volume fraction defined as (Broggiato, 2007): 
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where vf  is the current void volume fraction, Cf  and Ff  are the failure porosity and critical 

porosity respectively. The evolution of void volume fraction can be divided into two parts: 

void growth rate and the void nucleation rate: 
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where p

v  represents the equivalent macroscopic plastic strain rate, Nf  denotes the effective 

particle of the void nucleation, N  is the mean void nucleation and NS  is the standard 

deviation of the normal distribution (Broggiato, 2007). 

An ultra-low-cycle fatigue model developed for fatigue life prediction was the Kanvinde and 

Deierlein (KD) model (Kanvinde, 2007). However this model proposed corresponds to a 

generalization of a model for monotonic ductile fracture. Metallic materials contain voids in 

their microstructures, which may grow under the action of plastic deformation. Race and 

Tracey (Kanvinde, 2007) reported that, for a single spherical void in an infinite continuum, 

the void growth rate can be described as: 

/ exp(1.5 ) PdR R C d    (8) 

where R  represents the average radius, C  is a material constant and Pdε  is the incremental 

plastic strain. Integrating Eq. (8) and assuming void growth to be the controlling parameter of 

the monotonic fracture, the failure criterion for monotonic damage may be expressed as: 

 
0

exp 1.5
p critical

monotonic p monotonicVGI d VGI 


    (9) 

where monotonicVGI  is the void growth index, that is compared to a critical value, 
critical

monotonicVGI . 

Thus, monotonic ductile fracture occurs when voids present in the material microstructure 

reaches the critical void growth index during the monotonic loading, as described by Eq. (9). 

 

 

 



Porto/Portugal, 22-27 July 2012 

4 

FEATURE TRACKING METHOD 

In the framework of experimental solid mechanics, several interferometric and white-light 

optical methods have been proposed in the last decades for assessing the displacement or 

strain a region of interest (Rastogi, 2000; Grédiac, 2004). These techniques contrast with 

conventional strain gauges or extensometers by the fact that they provide full-field data and 

are contact-free. Among them, non-interferometric techniques, based on image and signal 

processing and analysis, have been increasingly used, such as the techniques of image 

correlation (Sutton, 2009; Pan, 2009), features tracking (Rotinat, 2001; Dahl, 2009) and grid 

(Surrel, 1996; Avril 2004). This class of techniques differs in terms of post-processing, but 

they share the same underlying principle of assessing the deformation of an object by 

analysing the geometrical deformation of a defined pattern, that assumed to be perfectly 

attached to the material surface under analysis. In the DIC method, the target surface has a 

random (speckle) texture pattern, which can exist naturally or be artificially defined using an 

aerosol spray or by airbrush painting. In the grid technique, a grid pattern (e.g., crossed 

vertical and horizontal lines) of a given pitch is transferred (glued) to the surface of interest. 

Both these techniques provide full-field displacements of a (quasi-) planar object and have 

been applied to a variety of mechanical and fracture problems, taking advantage of good 

balance between spatial resolution and resolution. However, there are certain case studies in 

which neither a random nor a periodic pattern can be conveniently defined on the surface 

under evaluation. This is the case, for instance, when wet specimens are used, or when the 

specimens have complex curved surfaces, or even when a very short period of time is 

available between the specimen preparation and testing. Moreover, when dealing with large 

deformation, either delamination of the painting used in the speckle pattern or significant grid 

pitch variation can occur when choosing the DIC or grid methods, respectively, making 

measurements unreliable. In such cases, an image feature-based tracking method can be a 

suitable alternative. This class of technique only requires few marks (local features) over the 

region of interest, which can be quickly transferred (painted) to a background surface. 

Normally, this technique does not have the same spatial resolution than counterpart DIC and 

grid methods, but can be suitable for measuring strains over uniform or moderate gradient 

fields (Dahl, 2009; Franke, 2007). 

A feature tracking method was used in this work, based on algorithms of image processing 

and analysis (Xavier, 2009). In this method, it was assumed that: 1) few target points or 

features were defined on the surface of interest; 2) these marks follow the material 

deformation during the loading process. It should be noted that, for the purpose of this study, 

the low spatial resolution of this approach was not critical, since uniform strain/stress fields 

were expected over the regions of interest. Hence, this assessment image based technique 

relies on the tracking of the centroids of the target features. The strain state in the material can 

then be estimated by computing the change in the relative length among adjacent centroid 

occured during the deformation. Between the reference (0) and a given deformed 

configurations (t), the in-plane linear strains ( t0,  with  2,1  directions) can be 

estimated by (Fig. 1a): 
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where 
1,

0,



 ii

tL  represents the change of length between two adjacent centroids, 
1,

0,

iiL  is the 

initial length in the reference state, and 1,,1  ni   with n  representing the total number 

of target features in the image along the   direction. 

In order to solve Eq. (10), the in-plane coordinates of the centroids ( x ) needed to be 

determined using techniques of image processing and analysis. The flowchart of the proposed 

tracking method is shown in Fig. 1b. In a first step, the images of the material sample under 

analysis have to be acquired before (0) and after (t), the deformation. A camera-lens optical 

system can be used aiming at a region of interest with suitable magnification. Usually, 

saturated images are acquired, in order to enhance the contrast between the target features (of 

black colour) and the uniform substratum of the material (of white colour). The acquired 

images can be cropped before the post-processing step so that a sub-image in which the target 

features are limited can be defined. Therefore, regions in the field of view outside the 

specimen under evaluation (typically, these regions correspond to dark zones of the 

surrounding environment or scene) are systematically eliminated. This step can be especeally 

advantageous in image segmentation and classification tasks, allowing a suitable definition of 

areas of both target features and scene background. A transformation of a grey level 

image, ),( yxf , into the correspondent binary image, ),( yxg , was then achieved by using a 

traditional thresholding algoritm with a suitable threshold value T. In the resultant binary 

image, the pixels labeled as 1 (one) correspond to target features, whilst pixels set to 0 (zero) 

are associated with image scene background. This classification is convenient for further 

image processing and analysis. Morphological operates were then applied to the binary 

images to eliminate some usually errors and imprecisions that occur in the detection of the 

target features over the region of interest: (i) the marks painted over the material surface can 

be imaged with a pronounced variation of light intensity distribution, from which it can be 

difficult to define a single closed region in the image segmentation step; (ii) natural spots of 

the material reflected over the surface of the specimen may be imaged with a grey level 

intensity closer to the one of the target features, resulting, after the segmentation, into a binary 

image with parasite stains over the region of interest. This image enhancement step consists in 

a combination of the erosion and dilation operations in order to completely fill and define the 

target features and/or remove the erroneous stain regions in the image background that 

persisted after the segmentation step. Finally, for each image, the total number of target 

features ( n ) and their centroid locations ( x ) are calculated. From the coordinates found, 

the distance between two adjacent centroids can then be determined as: 

iiii xxL    11,

             )1,,1(  ni    (11.a) 

and 
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Finally, the information resultant from the acquired images is used to solve Eq. (10) for 

yielding an estimation of the strain state on both 1(x) and 2(y) directions. 
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(a) (b) 

Fig.1 (a) Schema of the target features; (b) Flowchart of the image feature-based tracking method used. 

 

EXPERIMENTAL WORK 

Material and tested method 

In order to identify the parameters of the models for monotonic ductile fracture proposed in 

this work, monotonic tensile tests were performed in three sets of smooth (CL) and notched 

(CE and CES) cylindrical specimens, which geometries are shown in Figure 2, 3 and 4, 

respectively. These specimens were extracted cut and then machined from a S185 structural 

steel plate with a thickness of 8mm. The monotonic tensile tests were carried out on a servo 

hydraulic INSTRON 8801 universal testing machine, at room temperature. A periodic pattern 

suitable for the image based tracking method used was painted in cylindrical specimens with a 

pitch of 5 mm, as illustrated in Figure 5. The processing of the images acquired during the 

tensile tests allowed obtaining the load-displacement experimental curves. 

 

 
Fig 2. Geometry of the smooth cylindrical specimen (CL) used in monotonic tensile tests (dimensions in mm) 
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Fig 3. Geometry of the cylindrical specimens with small notch (CE) (dimensions in mm) 

 

 
Fig 4. Geometry of cylindrical specimens with large notch (CES) (dimensions in mm) 

 

1 2 3

5 mm
 

Fig 5. Smooth cylindrical specimen (1) and notched cylindrical specimens with high (2) and low (3) notch 

severity. 

 

The specimens were polished and painted using matte white aerosol spray for defining a 

uniform background pattern. Dark circular marks with about 2 mm in diameter were then 

pained on the specimen along the longitudinal direction as shown in Figure 5. These marks 

were spaced by 5 mm over the region of interest. Images were recorded by an 8-bit Baumer 

Optronic FWX20 digital camera (pixel resolution of 1624×1236 pixels) coupled with an 

Opto-Enginnering TC 23 36 telecentric lens (Table 1).This lens is more expensive and 

eventually larger and heavier than normal lenses of similar focal length, but can keep 

invariant the magnification factor of the optical system in a given working distance range. 

The lens aperture, the LED lighting intensity and the shutter time were set in order to achieve 

image saturation (i.e., pixel gray levels higher than 255 – 8 bits of resolution) for enhancing 

image contrast and therefore simplifying the image processing and analysis (Fig. 1b). 

Additionally, motion blur in the images during the exposure time when testing was prevented. 
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Table 1 Characteristics of the opto engineering telecentric lens TC 2336. 

Magnification 0.243 ± 3% 

Field of View (1/1.8”) 29.3 x 22.1 mm2 

Working Distance 103.5 ± 2 mm 

Working F-number 8 

Telecentricity < 0.08º 

Field Depth 11 mm 

 

FINITE ELEMENT ANALYSES 

In order to access the parameters of JC and KD models numerical simulations were performed 

in ANSYS 12.1
®

. Three-dimensional models were built using the 8-node isoparametric solid 

element SOLID185 (ANSYS, 2009). Taking into account the axisymmetry of the specimens 

geometries only 1/ 4  of the geometry was used and the respective boundary conditions were 

applied. The finite element model of smooth cylindrical specimen is represented in Fig 6. The 

total length of the specimen model corresponds to the gauge length between two consecutive 

circular marks of the periodic pattern. For the notched specimens, the mesh of finite elements 

was built considering the periodic pattern suitable for the image tracking method application, 

as illustrate in Figures 7 and 8. 

The finite element models include a plasticity model with isotropic hardening based on J2 

yield criteria, which was fitted from load-displacement experimental curves. The true stress-

strain curve introduced in finite element models is represented in Figure 9. 

 

 
Fig 6. Finite element mesh of smooth cylindrical specimen 
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Fig 7. Finite element mesh of cylindrical specimen with small notch: a) overall view; b) limits of geometric 

model in accordance with the periodic pattern; c) detail mesh view. 

 

 

 

 
Fig 8. Finite element mesh of the cylindrical specimen with small notch: a) overall view; b) limits of the 

geometric model in accordance with the periodic pattern; c) detailed mesh view. 
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Numerical simulations in ABAQUS 6.10
®

, were used to compute the parameters included in 

the porosity model proposed by Gurson, Tvergaard and Needleman. The geometries of the 

notched cylindrical specimens were also modelled in 3D three dimensions using the 8-node 

isoparametric solid element, C3D8R (ABAQUS, 2010). For the GTN model application the 

explicit analysis was used in ABAQUS
®

 6.10. Due to symmetry and axisymmetry conditions 

only 1/ 8  of a full scale model was used. To ensure the failure conditions of the specimens a 

remote displacement was applied. The finite element mesh of the notched specimens is 

illustrated in Figures 10 and 11. 

The Gurson plasticity model included in the ABAQUS
®

 library requires the definition of a 

hardening law. For this case the multilinear plasticity model with isotropic hardening fore 

mentioned was also used. 

 

 
Fig 10. Finite element mesh of cylindrical speciemen with small notch (CE) built in ABAQUS® 6.10 

 

 
Fig 11. Finite element mesh of cylindrical speciemen with large notch (CES) built in ABAQUS® 6.10 

 

RESULTS AND DISCUSSION 

In this section, the results obtained for the monotonic tensile tests of the cylindrical specimens 

are presented and discussed. The tracking method used in monotonic tensile allowed to 

determine the load-displacement experimental curves, which were correlated in order to 

calibrate the plasticity model with isotropic hardening used in the numerical simulations. 

Despite inability of the plasticity model to address the loss of strength at the failure instant, it 

allowed the characterization of the loss of load after the maximum force due to the non-linear 

behaviour compromised in the numerical analyses. 

The numerical and experimental results for the cylindrical smoothed specimens are depicted 

in Figure 12. The necking effect of the specimens occurred for just one specimen (CL04) in 

the region observed. Consequently, the behaviour of the specimen at fracture is described by 
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one curve. Taking into account that there is only a curve to describe the whole behaviour of 

the specimen and the compromise with another series of experimental results a satisfactory 

correlation was verified. The relative displacement was calculated based on the tracking the 

circular marks 2 and 3, Figure 12. 
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Fig 12. Experimental load-displacement curves with numerical response for cylindrical specimens. 

 

The same procedure was adopted for the notched cylindrical specimens in order to compute 

the experimental response. Due to notched influence, the specimens’ failure always occurred 

in region captured by the camera. The experimental load-displacements curves with numerical 

curve for the notched specimens are present in Figure 13 and 14. For both sets of specimens, 

CE and CES, the relative displacement was computed from two pairs of circular marks (1-4 

and 2-3). A very good agreement between the numerical and experimental results, 

independently of the marks used. 
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Fig 13. Experimental load-displacements curves and numerical response of cylindrical specimens with small 

notch, CE: a) measured displacement between circular marks 2 and 3; b) measured displacement between 

circular marks 1 and 4. 
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Fig 14. Experimental load-displacements curves and numerical response of cylindrical specimens with large 

notch, CES: a) measured displacement between circular marks 2 and 3; b) measured displacement between 

circular marks 1 and 4. 

 

The numerical simulations performed in ANSYS
®

 12.1 allowed computing the history of the 

parameters included in JC model for the critical region of the specimens. In addition to the 

tests described in this paper, test on Dog-bon and plate with circular hole specimens were also 

used in the derivation of the JC model parameters, as described by Pereira (2011) and Pereira 

et al. (2012). The equivalent plastic strain and stress triaxiality at fracture, for the specimens 

used in monotonic tensile tests, allowed the computation of the material constants, 1 0.85C  , 

2 2.44C   and 3 4.67C   , by method of least squares. The ductility/damage curve for S185 

structural steel is represented in Figure 15. 

To obtain the KD model to monotonic fracture, the critical

monotonicVGI  was computed for all sets of 

specimens, considering the constant suggested by the authors, 1 1.5C  . In order to minimize 

the coefficient of variation of critical

monotonicVGI  for each set of specimens, an enhanced 1 0.72C   

constant was obtained. For this procedure the results obtained by Pereira et al. (2012) using 

plane specimens were also taking into account (Table 2). 
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Fig 15. Ductility curve found for the S185 structural steel 
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Table 2. Critical monotonic void growth index: KD model and KD model modified 

Specimens 1
( 1.5)

critical

monotonic
VGI C   

1
( 0.72)

critical

monotonic
VGI C   

CL 2.2 1.7 

CES 4.6 2.0 

CE 3.8 1.5 

PFE 2.9 2.1 

LP 1.9 1.4 

Mean 3.11 1.77 

σ 1.01 0.27 

CoV [%] 32.48 15.28 

 

In relation to the calibration of the GTN model, numerical simulations of notched cylindrical 

specimens, CE and CES, were run explicit in ABAQUS
®

 6.1. The constants of GTN model 

were detemined using a fitting procedure between the numerical and experimental response. 

This plasticity model for monotonic fracture, allows to describe the monotonic behaviour of 

material included the loss of strength capacity at fracture, as we can see in the Figure 16, that 

represented the experimental and numerical load-displacement curves for CE and CES. The 

analysis of this figure confirms a good agreement between experimental and numerical results. 

The constants of GTN model for S185 structural steel are expressed in the Table 3. 

The modelling of monotonic fracture in ABAQUS® involves the introduction of a new constant 

related with the finite element mesh size. Therefore, for different mesh sizes, also distinct 

constants are obtained. This effect has considerable influence, mainly in the constants that define 

the fracture instant, in particular, in the critical and failure porosity. As such, the finite element 

models should be evaluated using the same mesh density in order to minimize this effect in the 

numerical results. 
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Figure 16. Experimental and numerical load-displacement curves: a) CE test series; b) CES test series. 

 

Table 3. Constants of the GTN model 

0
f  1E-05 N

f  0.001 

N
  0.45 C

f  0.11 

N
s  0.05 F

f  0.08 
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CONCLUSIONS 

A feature-tracking method was used in monotonic tensile tests performed in three series of 

cylindrical specimens. This image-based tracking method allowed to obtain the experimental 

load-displacement curves for the tests specimens with suitable accuracy. 

The experimental response was used to calibrate the plasticity model with isotropic hardening 

involved in the finite element models. A very good correlation was found between the 

numerical and experimental results. Hence, the history of stress triaxiality and equivalent 

plastic strain for the critical region was computed successfully. These results were used to 

calibrate the JC and KD models for monotonic fracture. In particular, for the KD model a new 

constant, 1 0.72C , which affects the stress triaxiality, was proposed to minimize the 

coefficient of variation for the critical

monotonicVGI  computed in each series of tested specimens. 

For the calibration of the GTN model, an explicit analysis was run in ABAQUS
®

. This 

analysis allowed to evaluate the influence of the mesh size in the finite element procedures. In 

fact, for different mesh sizes, distinct constants were obtained for the critical and failure 

porosity. Thus, the determination of the GTN parameters resulted in a compromise between 

the use of equal mesh density in the critical zones and the experimental results, and the 

correlation of both series of specimens. However, it was verified that the GTN model was 

able to describe satisfactorily the cylindrical notched specimens behaviour included the final 

degradation of the specimens. 
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