415,975 research outputs found

    Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq.

    Get PDF
    BackgroundThe robustness of ChIP-seq datasets is highly dependent upon the antibodies used. Currently, polyclonal antibodies are the standard despite several limitations: They are non-renewable, vary in performance between lots and need to be validated with each new lot. In contrast, monoclonal antibody lots are renewable and provide consistent performance. To increase ChIP-seq standardization, we investigated whether monoclonal antibodies could replace polyclonal antibodies. We compared monoclonal antibodies that target five key histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) to their polyclonal counterparts in both human and mouse cells.ResultsOverall performance was highly similar for four monoclonal/polyclonal pairs, including when we used two distinct lots of the same monoclonal antibody. In contrast, the binding patterns for H3K27ac differed substantially between polyclonal and monoclonal antibodies. However, this was most likely due to the distinct immunogen used rather than the clonality of the antibody.ConclusionsAltogether, we found that monoclonal antibodies as a class perform equivalently to polyclonal antibodies for the detection of histone post-translational modifications in both human and mouse. Accordingly, we recommend the use of monoclonal antibodies in ChIP-seq experiments

    Engineering Synthetic Antibody by Expanded Genetic Code

    Get PDF
    Antibodies are extensively used in research for diagnostic and therapeutic purposes because of their unrivaled specificity and biomarker binding strengths.1 Currently, monoclonal antibodies are most commonly used because of their production consistency and purity.1 However, there are significant ethical and economic challenges associated with producing monoclonal antibodies.1 Synthetic antibodies provide a promising alternative to monoclonal antibodies in both clinical and research applications.2 Our proposed synthetic antibody system incorporates 3,4-dihydroxy-l-phenylalanine (L-DOPA), an unnatural amino acid used to increase binding affinity, into a peptide sequence specific for the prostate specific antigen (PSA), a biomarker for prostate cancer. This addition is predicted to give the synthetic antibody binding affinity and PSA specificity comparable to existing monoclonal antibodies while avoiding their drawbacks.3 If successful, our system would replace monoclonal antibodies for PSA detection as well as be a promising model for developing countless other synthetic antibodies

    Clonal Composition of Human Adrenocortical Neoplasms

    Get PDF
    The mechanisms of tumorigenesis of adrenocortical neoplasms are still not understood. Tumor formation may be the result of spontaneous transformation of adrenocortical cells by somatic mutations. Another factor stimulating adrenocortical cell growth and potentially associated with formation of adrenal adenomas and, less frequently, carcinomas is the chronic elevation of proopiomelanocortin-derived peptides in diseases like ACTH-dependent Cushing's syndrome and congenital adrenal hyperplasia. To further investigate the pathogenesis of adrenocortical neoplasms, we studied the clonal composition of such tumors using X-chromosome inactivation analysis of the highly polymorphic region Xcen-Xp11.4 with the hybridization probe M27Ăź, which maps to a variable number of tandem repeats on the X-chromsome. In addition, polymerase chain reaction amplification of a phosphoglycerokinase gene polymorphism was performed. After DNA extraction from tumorous adrenal tissue and normal leukocytes in parallel, the active X-chromosome of each sample was digested with the methylation-sensitive restriction enzyme HpaII. A second digestion with an appropriate restriction enzyme revealed the polymorphism of the region Xcen-Xp11.4 and the phosphoglycerokinase locus. Whereas in normal polyclonal tissue both the paternal and maternal alleles are detected, a monoclonal tumor shows only one of the parental alleles. A total of 21 female patients with adrenal lesions were analyzed; 17 turned out to be heterozygous for at least one of the loci. Our results were as follows: diffuse (n = 4) and nodular (n = 1) adrenal hyperplasia in patients with ACTH-dependent Cushing's syndrome, polyclonal pattern; adrenocortical adenomas (n = 8), monoclonal (n = 7), as well as polyclonal (n = 1); adrenal carcinomas (n = 3), monoclonal pattern. One metastasis of an adrenocortical carcinoma showed a pattern most likely due to tumor-associated loss of methylation. In the special case of a patient with bilateral ACTH-independent macronodular hyperplasia, diffuse hyperplastic areas and a small nodule showed a polyclonal pattern, whereas a large nodule was monoclonal. We conclude that most adrenal adenomas and carcinomas are monoclonal, whereas diffuse and nodular adrenal hyperplasias are polyclonal. The clonal composition of ACTH-independent massive macronodular hyperplasia seems to be heterogeneous, consisting of polyclonal and monoclonal areas

    Evaluating pre-treatment methods in the isolation and purification of monoclonal IgG antibody

    Get PDF
    In this study, the effects of different sample preparation techniques on the separation of monoclonal antibody IgG I were inve st igated experimentally. Monoclonal IgG I was obtained from hybridoma cell line TB /C3 transfected with bcl-2 carrier plasmid. which was grown in serum-free medium. Three different pre-treatment techniques prior to Protein G affinity chromat ography have been used in order to concentrate and partial purify the monoclonal antibody . The pre-treatments researched in this paper are precipitation of the antibody by ammonium sulfate, dilution of the antibody in the binding buffer of affinity chromatography and ultra filtration through an Amicon Ultra- 15 filter with molecular weight cut-off at 100 kDa. Purification through direct application of the antibody onto the Protein G affinity column without pre-treatments was used as a control method. The results indicate that the ultra filtration through an Amicon filter was an effective method for both concentration and partial purification of the antibodies in laboratory scale

    Use of OKT3 with ciclosporin and steroids for reversal of acute kidney and liver allograft rejection

    Get PDF
    OKT3 monoclonal antibody therapy was added to preexisting baseline immunosuppressive treatment with ciclosporin and steroids to treat rejection in 52 recipients of cadaveric livers and 10 recipients of cadaveric kidneys. Rejection was controlled in 75% of patients treated, often after high-dose steroid therapy had failed. Rejection recurred during the 17-month follow-up period, after completion of OKT3, in only 25% of the patients who had responded. The safety and effectiveness of this monoclonal therapy, added to ciclosporin and steroids, has been established in this study

    Characterization of monoclonal and polyclonal antibodies to bovine enteric coronavirus: Establishment of an efficient ELISA for antigen detection in feces

    Get PDF
    Monoclonal antibodies to bovine enteric coronavirus (BEC) were produced. Additionally, polyclonal antibodies were made in rabbits and guinea pigs and extracted from the yolk of immunized hens. The antibodies were characterized by neutralization test, hemagglutination inhibition test, enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Neutralizing antibody titers of polyclonal antisera ranged from 1:1280 to 1:40 000. Only one out of 908 hybridoma colonies tested secreted antibodies with neutralizing activity. By ELISA, polyclonal sera exhibited high background reactions that could be significantly reduced by treatment with kaolin in the case of rabbit sera. Attempts to establish an ELISA for BEC antigen detection based on polyclonal sera failed due to low sensitivity and specificity. Optimal results were achieved when a mixture of two monoclonal antibodies was coated onto microplates for antigen capture, while rabbit hyperimmune serum served as detecting antibodies in an indirect assay. The combination of the two monoclonal antibodies did not increase sensitivity synergistically, but in a compensatory fashion, probably because of epitope differences between BEC field strain

    Clathrin structure characterized with monoclonal antibodies. I. Analysis of multiple antigenic sites.

    Get PDF
    Three monoclonal antibodies that react with previously undefined antigenic determinants on the clathrin molecule have been produced and characterized. They were isolated from a fusion between myeloma cells and popliteal lymphocytes from SJL mice that had received footpad injections of human brain clathrin. This protocol was chosen to favor the production of antibodies to poorly immunogenic proteins and thereby increase the repertoire of anti-clathrin monoclonal antibodies. One antibody (X16) reacts preferentially with the heavier of the two clathrin light chains (LCa) when it is not associated with heavy chain. This specificity is different from that of the anti-LCa antibody, CVC.6, which has preferential reactivity with heavy chain-associated LCa. In addition, X16 and CVC.6 bound simultaneously to LCa, confirming that they react with different sites. The other two antibodies produced, X19 and X22, react with two different determinants on the clathrin heavy chain, based on immunoprecipitation, Western blot, and binding studies. Competitive binding studies with anti-clathrin monoclonal antibodies showed that they define a total of five distinct antigenic determinants on bovine clathrin
    • …
    corecore