35,574 research outputs found

    Towards Real-Time Information Processing of Sensor Network Data using Computationally Efficient Multi-output Gaussian Processes

    No full text
    In this paper, we describe a novel, computationally efficient algorithm that facilitates the autonomous acquisition of readings from sensor networks (deciding when and which sensor to acquire readings from at any time), and which can, with minimal domain knowledge, perform a range of information processing tasks including modelling the accuracy of the sensor readings, predicting the value of missing sensor readings, and predicting how the monitored environmental variables will evolve into the future. Our motivating scenario is the need to provide situational awareness support to first responders at the scene of a large scale incident, and to this end, we describe a novel iterative formulation of a multi-output Gaussian process that can build and exploit a probabilistic model of the environmental variables being measured (including the correlations and delays that exist between them). We validate our approach using data collected from a network of weather sensors located on the south coast of England

    Some considerations on aggregate sample supports for soil inventory and monitoring

    Get PDF
    Soil monitoring and inventory require a sampling strategy. One component of this strategy is the support of the basic soil observation: the size and shape of the volume of material that is collected and then analysed to return a single soil datum. Many, but not all, soil sampling schemes use aggregate supports in which material from a set of more than one soil cores, arranged in a given configuration, is aggregated and thoroughly mixed prior to analysis. In this paper, it is shown how the spatial statistics of soil information, collected on an aggregate support, can be computed from the covariance function of the soil variable on a core support (treated as point support). This is done via what is called here the discrete regularization of the core-support function. It is shown how discrete regularization can be used to compute the variance of soil sample means and to quantify the consistency of estimates made by sampling then re-sampling a monitoring network, given uncertainty in the precision with which sample sites are relocated. These methods are illustrated using data on soil organic carbon content from a transect in central England. Two aggregate supports, both based on a 20 m 20 m square, are compared with core support. It is shown that both the precision and the consistency of data collected on an aggregate support are better than data on a core support. This has implications for the design of sampling schemes for soil inventory and monitoring
    corecore