3 research outputs found

    Identification of the General Anesthesia Induced Loss of Consciousness by Cross Fuzzy Entropy-Based Brain Network.

    Full text link
    Although the spatiotemporal complexity and network connectivity are clarified to be disrupted during the general anesthesia (GA) induced unconsciousness, it remains to be difficult to exactly monitor the fluctuation of consciousness clinically. In this study, to track the loss of consciousness (LOC) induced by GA, we first developed the multi-channel cross fuzzy entropy method to construct the time-varying networks, whose temporal fluctuations were then explored and quantitatively evaluated. Thereafter, an algorithm was further proposed to detect the time onset at which patients lost their consciousness. The results clarified during the resting state, relatively stable fuzzy fluctuations in multi-channel network architectures and properties were found; by contrast, during the LOC period, the disrupted frontal-occipital connectivity occurred at the early stage, while at the later stage, the inner-frontal connectivity was identified. When specifically exploring the early LOC stage, the uphill of the clustering coefficients and the downhill of the characteristic path length were found, which might help resolve the propofol-induced consciousness fluctuation in patients. Moreover, the developed detection algorithm was validated to have great capacity in exactly capturing the time point (in seconds) at which patients lost consciousness. The findings demonstrated that the time-varying cross-fuzzy networks help decode the GA and are of great significance for developing anesthesia depth monitoring technology clinically

    An open source patient simulator for design and evaluation of computer based multiple drug dosing control for anesthetic and hemodynamic variables

    Get PDF
    We are witnessing a notable rise in the translational use of information technology and control systems engineering tools in clinical practice. This paper empowers the computer based drug dosing optimization of general anesthesia management by means of multiple variables for patient state stabilization. The patient simulator platform is designed through an interdisciplinary combination of medical, clinical practice and systems engineering expertise gathered in the last decades by our team. The result is an open source patient simulator in Matlab/Simulink from Mathworks(R). Simulator features include complex synergic and antagonistic interaction aspects between general anesthesia and hemodynamic stabilization variables. The anesthetic system includes the hypnosis, analgesia and neuromuscular blockade states, while the hemodynamic system includes the cardiac output and mean arterial pressure. Nociceptor stimulation is also described and acts as a disturbance together with predefined surgery profiles from a translation into signal form of most commonly encountered events in clinical practice. A broad population set of pharmacokinetic and pharmacodynamic (PKPD) variables are available for the user to describe both intra- and inter-patient variability. This simulator has some unique features, such as: i) additional bolus administration from anesthesiologist, ii) variable time-delays introduced by data window averaging when poor signal quality is detected, iii) drug trapping from heterogeneous tissue diffusion in high body mass index patients. We successfully reproduced the clinical expected effects of various drugs interacting among the anesthetic and hemodynamic states. Our work is uniquely defined in current state of the art and first of its kind for this application of dose management problem in anesthesia. This simulator provides the research community with accessible tools to allow a systematic design, evaluation and comparison of various control algorithms for multi-drug dosing optimization objectives in anesthesia
    corecore