An open source patient simulator for design and evaluation of computer based multiple drug dosing control for anesthetic and hemodynamic variables

Abstract

We are witnessing a notable rise in the translational use of information technology and control systems engineering tools in clinical practice. This paper empowers the computer based drug dosing optimization of general anesthesia management by means of multiple variables for patient state stabilization. The patient simulator platform is designed through an interdisciplinary combination of medical, clinical practice and systems engineering expertise gathered in the last decades by our team. The result is an open source patient simulator in Matlab/Simulink from Mathworks(R). Simulator features include complex synergic and antagonistic interaction aspects between general anesthesia and hemodynamic stabilization variables. The anesthetic system includes the hypnosis, analgesia and neuromuscular blockade states, while the hemodynamic system includes the cardiac output and mean arterial pressure. Nociceptor stimulation is also described and acts as a disturbance together with predefined surgery profiles from a translation into signal form of most commonly encountered events in clinical practice. A broad population set of pharmacokinetic and pharmacodynamic (PKPD) variables are available for the user to describe both intra- and inter-patient variability. This simulator has some unique features, such as: i) additional bolus administration from anesthesiologist, ii) variable time-delays introduced by data window averaging when poor signal quality is detected, iii) drug trapping from heterogeneous tissue diffusion in high body mass index patients. We successfully reproduced the clinical expected effects of various drugs interacting among the anesthetic and hemodynamic states. Our work is uniquely defined in current state of the art and first of its kind for this application of dose management problem in anesthesia. This simulator provides the research community with accessible tools to allow a systematic design, evaluation and comparison of various control algorithms for multi-drug dosing optimization objectives in anesthesia

    Similar works