105,247 research outputs found

    Quantitative Regular Expressions for Arrhythmia Detection Algorithms

    Full text link
    Motivated by the problem of verifying the correctness of arrhythmia-detection algorithms, we present a formalization of these algorithms in the language of Quantitative Regular Expressions. QREs are a flexible formal language for specifying complex numerical queries over data streams, with provable runtime and memory consumption guarantees. The medical-device algorithms of interest include peak detection (where a peak in a cardiac signal indicates a heartbeat) and various discriminators, each of which uses a feature of the cardiac signal to distinguish fatal from non-fatal arrhythmias. Expressing these algorithms' desired output in current temporal logics, and implementing them via monitor synthesis, is cumbersome, error-prone, computationally expensive, and sometimes infeasible. In contrast, we show that a range of peak detectors (in both the time and wavelet domains) and various discriminators at the heart of today's arrhythmia-detection devices are easily expressible in QREs. The fact that one formalism (QREs) is used to describe the desired end-to-end operation of an arrhythmia detector opens the way to formal analysis and rigorous testing of these detectors' correctness and performance. Such analysis could alleviate the regulatory burden on device developers when modifying their algorithms. The performance of the peak-detection QREs is demonstrated by running them on real patient data, on which they yield results on par with those provided by a cardiologist.Comment: CMSB 2017: 15th Conference on Computational Methods for Systems Biolog

    Monitoring-Oriented Programming: A Tool-Supported Methodology for Higher Quality Object-Oriented Software

    Get PDF
    This paper presents a tool-supported methodological paradigm for object-oriented software development, called monitoring-oriented programming and abbreviated MOP, in which runtime monitoring is a basic software design principle. The general idea underlying MOP is that software developers insert specifications in their code via annotations. Actual monitoring code is automatically synthesized from these annotations before compilation and integrated at appropriate places in the program, according to user-defined configuration attributes. This way, the specification is checked at runtime against the implementation. Moreover, violations and/or validations of specifications can trigger user-defined code at any points in the program, in particular recovery code, outputting or sending messages, or raising exceptions. The MOP paradigm does not promote or enforce any specific formalism to specify requirements: it allows the users to plug-in their favorite or domain-specific specification formalisms via logic plug-in modules. There are two major technical challenges that MOP supporting tools unavoidably face: monitor synthesis and monitor integration. The former is heavily dependent on the specification formalism and comes as part of the corresponding logic plug-in, while the latter is uniform for all specification formalisms and depends only on the target programming language. An experimental prototype tool, called Java-MOP, is also discussed, which currently supports most but not all of the desired MOP features. MOP aims at reducing the gap between formal specification and implementation, by integrating the two and allowing them together to form a system

    Specification-Driven Predictive Business Process Monitoring

    Full text link
    Predictive analysis in business process monitoring aims at forecasting the future information of a running business process. The prediction is typically made based on the model extracted from historical process execution logs (event logs). In practice, different business domains might require different kinds of predictions. Hence, it is important to have a means for properly specifying the desired prediction tasks, and a mechanism to deal with these various prediction tasks. Although there have been many studies in this area, they mostly focus on a specific prediction task. This work introduces a language for specifying the desired prediction tasks, and this language allows us to express various kinds of prediction tasks. This work also presents a mechanism for automatically creating the corresponding prediction model based on the given specification. Differently from previous studies, instead of focusing on a particular prediction task, we present an approach to deal with various prediction tasks based on the given specification of the desired prediction tasks. We also provide an implementation of the approach which is used to conduct experiments using real-life event logs.Comment: This article significantly extends the previous work in https://doi.org/10.1007/978-3-319-91704-7_7 which has a technical report in arXiv:1804.00617. This article and the previous work have a coauthor in commo

    HySIA: Tool for Simulating and Monitoring Hybrid Automata Based on Interval Analysis

    Full text link
    We present HySIA: a reliable runtime verification tool for nonlinear hybrid automata (HA) and signal temporal logic (STL) properties. HySIA simulates an HA with interval analysis techniques so that a trajectory is enclosed sharply within a set of intervals. Then, HySIA computes whether the simulated trajectory satisfies a given STL property; the computation is performed again with interval analysis to achieve reliability. Simulation and verification using HySIA are demonstrated through several example HA and STL formulas.Comment: Appeared in RV'17; the final publication is available at Springe

    MONAA: A Tool for Timed Pattern Matching with Automata-Based Acceleration

    Full text link
    We present monaa, a monitoring tool over a real-time property specified by either a timed automaton or a timed regular expression. It implements a timed pattern matching algorithm that combines 1) features suited for online monitoring, and 2) acceleration by automata-based skipping. Our experiments demonstrate monaa's performance advantage, especially in online usage.Comment: Published in: 2018 IEEE Workshop on Monitoring and Testing of Cyber-Physical Systems (MT-CPS
    • …
    corecore