2 research outputs found

    Using normalised difference vegetation index in classification and agroecological zoning of spring row crops

    Get PDF
    Remote sensing is an important branch of modern science and technology with various applications in different branches of life sciences. Its application in agriculture is focused mainly on crop monitoring and yield prediction. However, the value of remote sensing in the systems of automated crop mapping and agroecological zoning of plant species is increasing. The main purpose of this study is to establish the possibility of using normalised difference vegetation index in the main spring row crops, namely maize, soybeans, sunflower, to precisely classify the fields with each crop, and to evaluate the best agroecological zones for their cultivation in rainfed conditions in Ukraine. The study was carried out using the data on the normalised difference vegetation index for the period May – November 2018 from 750 fields and experimental plots, randomly scattered over the territory of Ukraine with equal representation by every administrative district of the country. The index values were calculated using combined Landsat-8 and Sentinel-2 images, with further generalisation for every crop and region. Multiclass linear discriminant analysis and canonical discriminant analysis were applied to determine whether it is possible to distinguish between the studied crops using the values of the normalised difference vegetation index as the only input. As a result, it was established that the best zone for crop cultivation is the west of the country: NDVI values for the growing season averaged to 0.34 for sunflower, 0.36 for soybeans, and 0.36 for maize, respectively. The worst growing conditions, based on the lowest NDVI values, were observed in the east for sunflower (0.26) and maize (0.25), but the minimum NDVI for soybeans (0.27) was observed in the south. Regarding the classification problem, it was found that the highest importance for the classification of crops is attributed to the values of the normalised difference vegetation index, recorded in August. The supervised learning using canonical discriminant function resulted in mediocre predictive performance of the multiple linear function with general classification accuracy of 56.5%. The best accuracy of classification was achieved for sunflower (70.4%), while it is difficult to distinguish between maize and soybeans because these crops have quite similar intra-seasonal dynamics of the vegetation index (classification accuracy was 46.8% and 52.4%, respectively; the total number of incorrectly predicted samples in the “maize-soybeans” group was 134 or 26.8%). The main limitation of this study is its single year basis, notwithstanding the fact that the year of the study was characterized as a typical one for most territory of Ukraine in terms of meteorological conditions. Therefore, more studies are required to clarify the possibility of a classification between maize and soybeans based on remote sensing data

    Combinaison de donnĂ©es optique et radar pour l’estimation de l’humiditĂ© du sol en milieu agricole

    Get PDF
    L'humiditĂ© du sol est essentielle pour les surfaces agricoles. Des variations importantes d’'humiditĂ© du sol peuvent affecter grandement le rendement agricole. L'Ă©tat hydrique du sol devient donc un facteur important pour la croissance des cultures. Les changements climatiques affectent la disponibilitĂ© de l'eau dans les couches du sol. Pour une meilleure gestion du stress hydrique ou de l'asphyxie des plantes, dus respectivement Ă  un manque ou Ă  un excĂšs d'humiditĂ© du sol, la mise en Ɠuvre de mĂ©thodes de surveillance de l'humiditĂ© du sol est nĂ©cessaire. Or, l'humiditĂ© du sol est trĂšs variable dans le temps et l'espace en raison de sa dĂ©pendance Ă  plusieurs paramĂštres dont la texture du sol, les prĂ©cipitations et la topographie. Par consĂ©quent, la connaissance de la teneur en eau de surface du sol Ă  une Ă©chelle spatiale et temporelle Ă©levĂ©e prĂ©sente un grand dĂ©fi. Ainsi, l’objectif de cette Ă©tude est de contribuer Ă  l’amĂ©lioration de l’estimation de l’humiditĂ© du sol sur les zones agricoles, et ce, en combinant les donnĂ©es satellites radar et optiques Ă  l’aide d’une mĂ©thode de dĂ©tection des changements. L'Ă©tude repose sur la complĂ©mentaritĂ© des donnĂ©es optiques et radar et porte sur l'application d’un algorithme existant sur un site prĂ©sentant une variabilitĂ© suffisante en termes de types de cultures et de texture du sol. L’humiditĂ© du sol est estimĂ©e Ă  deux niveaux d’échelle : Ă  l’échelle du champ et Ă  l’échelle du pixel (30 m). En outre, une Ă©tude est menĂ©e pour analyser les limites de l'algorithme. La zone d'Ă©tude est le site de l'expĂ©rience terrain Soil Moisture Active and Passive (SMAP) tenue au Manitoba en 2016 (SMAPVEX16-MB) en vue de supporter les activitĂ©s de validation des produits du satellite SMAP. Au cours de cette campagne, les caractĂ©ristiques du sol (humiditĂ© du sol et rugositĂ©) et les donnĂ©es de vĂ©gĂ©tation (biomasse, LAI, etc.) ont Ă©tĂ© collectĂ©es dans 50 champs, d'environ 800 m x 800 m, chaque. De plus, l’étude bĂ©nĂ©ficie de donnĂ©es in situ issues de stations permanentes de mesures d’humiditĂ© du sol du rĂ©seau Realtime In-situ Soil Monitoring for Agriculture (RISMA) et de stations temporaires. La base de donnĂ©es satellitaires est constituĂ©e de donnĂ©es radar (Radarsat-2 et Sentinel-1) et de donnĂ©es optiques multi-sources (Sentinel-2, Landsat-8, Rapideye et, Planetscope) afin de garantir une frĂ©quence temporelle Ă©levĂ©e (environ sept jours). Les images radar ont Ă©tĂ© normalisĂ©es Ă  un angle d'incidence de 33° pour rĂ©duire la dĂ©pendance angulaire des coefficients de rĂ©trodiffusion, suivi d'une rĂ©duction du chatoiement. Les donnĂ©es optiques fournissent des informations sur la vĂ©gĂ©tation dont la prise en compte facilite l'estimation de l'humiditĂ© du sol Ă  partir des donnĂ©es radar. Le coefficient de rĂ©trodiffusion est extrait Ă  l'Ă©chelle du champ et du pixel en utilisant les images radar prĂ©alablement prĂ©traitĂ©es. Ensuite, la diffĂ©rence des coefficients de rĂ©trodiffusion est calculĂ©e entre deux acquisitions consĂ©cutives, pour une cellule donnĂ©e (i, j). L'indice de vĂ©gĂ©tation par diffĂ©rence normalisĂ©e (NDVI) calculĂ© Ă  partir des images optiques multi capteurs a Ă©tĂ© harmonisĂ© pour rĂ©duire l'effet des diffĂ©rents paramĂštres des capteurs, aux deux niveaux d'Ă©chelle. Cet indice est Ă©galement moyennĂ© entre deux acquisitions consĂ©cutives pour une cellule donnĂ©e (i, j). Pour la mĂ©thode de dĂ©tection des changements adoptĂ©e dans cette Ă©tude, nous avons reprĂ©sentĂ©, pour chaque niveau d'Ă©chelle, la diffĂ©rence des coefficients de rĂ©trodiffusion en fonction du NDVI moyennĂ© entre deux acquisitions consĂ©cutives. Enfin, la relation obtenue Ă  partir de cette reprĂ©sentation est utilisĂ©e dans une approche itĂ©rative pour dĂ©terminer l'humiditĂ© du sol, Ă  l’échelle du champ et Ă  l’échelle du pixel, pour la prochaine date d'acquisition. Pour effectuer l'itĂ©ration, l’algorithme considĂšre une valeur d'entrĂ©e d'humiditĂ© initiale du sol connue. À l'Ă©chelle du champ, pour l’ensemble des donnĂ©es, nous avons obtenu un RMSE = 0,07 m^3.m^(-3) et un coefficient de corrĂ©lation significatif R = 0,7 (p-value 0,6). Cependant, pour des conditions de faible vĂ©gĂ©tation (NDVI < 0,6), les rĂ©sultats sont meilleurs avec RMSE = 0,05 m3.m-3 et R = 0,83. À l'Ă©chelle du pixel, les rĂ©sultats sont mauvais, avec un RMSE de 0,13 m3/m3, un coefficient de corrĂ©lation faible et non significatif de 0,14 (valeur p < 0,38) pour les NDVI infĂ©rieurs Ă  0,6; et un RMSE de 0,14 m3/m3, un coefficient de corrĂ©lation trĂšs faible et non significatif de 0,069 (valeur p < 0,48) pour les NDVI supĂ©rieurs Ă  0,6.Abstract : Soil moisture is critical to agricultural land. Variations in soil moisture (low or high) can greatly affect crop yields. Soil moisture status becomes a limiting factor for crop growth. Climate change affects the availability of water in the soil layers. For a better management of water stress or plant asphyxia, due respectively to a lack or an excess of soil moisture, the implementation of soil moisture monitoring methods is necessary. Soil moisture is highly variable in time and space due to its dependence on several parameters including soil texture, precipitation and topography. Therefore, knowledge of soil surface water content at a high spatial and temporal scale presents a great challenge. Thus, the objective of this study is to contribute to the improvement of soil moisture estimation over agricultural areas by combining radar and optical satellite data using a change detection method. The study is based on the complementarity of optical and radar data and focuses on the application of an existing algorithm on a site with sufficient variability in terms of crop types and soil texture. Soil moisture is estimated at two scales: field scale and pixel scale (30 m). In addition, a study is conducted to analyze the limitations of the algorithm. The study area is the site from the 2016 Soil Moisture Active and Passive (SMAP) mission soil moisture validation experiment conducted in Manitoba, Canada (SMAPVEX16-MB). During this campaign, soil characteristics (soil moisture and roughness) and vegetation data (biomass, LAI, etc.) were collected from 50 fields, of approximately 800 m x 800 m, each. In addition, the study benefits from in-situ data from permanent soil moisture stations of the Realtime In-situ Soil Monitoring for Agriculture (RISMA) network and from temporary stations. The satellite database is composed of radar data (Radarsat-2 and Sentinel-1) and multi-source optical data (Sentinel-2, Landsat-8, Rapideye, and Planetscope) in order to ensure a high temporal frequency (about seven days). Radar images were normalized to an incidence angle of 33° to reduce the angular dependence of the backscatter coefficients, followed by speckle reduction. The optical data provide vegetation information that facilitates the estimation of soil moisture from the radar data. The backscatter coefficient is extracted at the field and pixel scales using the pre-processed radar images. Then, the difference in backscatter coefficients is calculated between two consecutive acquisitions, for a given cell (i, j). The normalized difference vegetation index (NDVI) calculated from the multi-sensor optical images was harmonized to reduce the effect of different sensor parameters, at both scale levels. This index is also averaged between two consecutive acquisitions for a given cell (i, j). For the change detection method adopted in this study, we plotted, for each scale level, the difference in backscatter coefficients as a function of NDVI averaged between two consecutive acquisitions. Finally, the relationship obtained from this representation is used in an iterative approach to determine the soil moisture, both at the field and pixel scales, for the next acquisition date. To perform the iteration, the algorithm considers a known initial soil moisture input value. At the field scale, for the entire data set, we obtained an RMSE = 0.07 m3.m−3 and a significant correlation coefficient R = 0.7 (p-value 0.6). However, for low vegetation conditions (NDVI < 0.6), the results are better with RMSE = 0.05 m3.m−3and R = 0.83. At the pixel scale, very poor results are obtained with an RMSE of 0.13 m3/m3, a low and insignificant correlation coefficient of 0.14 (p-value < 0.38) for NDVI below 0.6; and an RMSE of 0.14 m3/m3, a very low and insignificant correlation coefficient of 0.069 (p-value < 0.48) for NDVI above 0.6
    corecore