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Remote sensing is an important branch of modern science and technology with various applications in different branches of life 
sciences. Its application in agriculture is focused mainly on crop monitoring and yield prediction. However, the value of remote sensing in 
the systems of automated crop mapping and agroecological zoning of plant species is increasing. The main purpose of this study is to 
establish the possibility of using normalised difference vegetation index in the main spring row crops, namely maize, soybeans, sunflower, 
to precisely classify the fields with each crop, and to evaluate the best agroecological zones for their cultivation in rainfed conditions in 
Ukraine. The study was carried out using the data on the normalised difference vegetation index for the period May – November 2018 
from 750 fields and experimental plots, randomly scattered over the territory of Ukraine with equal representation by every administrative 
district of the country. The index values were calculated using combined Landsat-8 and Sentinel-2 images, with further generalisation for 
every crop and region. Multiclass linear discriminant analysis and canonical discriminant analysis were applied to determine whether it is 
possible to distinguish between the studied crops using the values of the normalised difference vegetation index as the only input. As a 
result, it was established that the best zone for crop cultivation is the west of the country: NDVI values for the growing season averaged to 
0.34 for sunflower, 0.36 for soybeans, and 0.36 for maize, respectively. The worst growing conditions, based on the lowest NDVI values, 
were observed in the east for sunflower (0.26) and maize (0.25), but the minimum NDVI for soybeans (0.27) was observed in the south. 
Regarding the classification problem, it was found that the highest importance for the classification of crops is attributed to the values of 
the normalised difference vegetation index, recorded in August. The supervised learning using canonical discriminant function resulted in 
mediocre predictive performance of the multiple linear function with general classification accuracy of 56.5%. The best accuracy of classi-
fication was achieved for sunflower (70.4%), while it is difficult to distinguish between maize and soybeans because these crops have 
quite similar intra-seasonal dynamics of the vegetation index (classification accuracy was 46.8% and 52.4%, respectively; the total number 
of incorrectly predicted samples in the “maize-soybeans” group was 134 or 26.8%). The main limitation of this study is its single year 
basis, notwithstanding the fact that the year of the study was characterized as a typical one for most territory of Ukraine in terms of meteo-
rological conditions. Therefore, more studies are required to clarify the possibility of a classification between maize and soybeans based on 
remote sensing data.  

Keywords: agrometeorology; crop mapping; maize; soybeans; sunflower; remote sensing.  

Introduction  
 

Remote sensing has a wide range of applications in agriculture and 
crop science, including horticulture, irrigation water management, precisi-
on agriculture, and plant health monitoring. Usha & Singh (2013) and 
Sishodia et al. (2020) both highlight the potential of remote sensing in 
these areas, while the first authors focus mainly on the use of sensors to 
collect information on crop management, and others discuss the potential 
of applying high resolution satellite imagery to crop monitoring, irrigation 
management, and yield prediction. Bastiaanssen et al. (2000) emphasizes 
great prospects for the implementation of remote sensing in irrigation 
water management. Weiss et al. (2020) provides a comprehensive over-
view of the current remote sensing techniques and their applications in 
agriculture, including such branches as crop breeding, land use monito-
ring, and crop yield forecasting. In addition, remote sensing data is applied 
to crop monitoring in terms of identifying growth and development pat-
terns. For most agricultural purposes, the normalised difference vegetation 
index (hereafter referred to as NDVI) is mainly used. The NDVI was 
introduced by Rouse et al. (1974) as a method for assessing and monito-
ring plant health and vegetation cover. In recent decades, it has been 
widely implemented in various studies on vegetation cover. Today, NDVI 
is the most widely used tool in agricultural purposes despite the fact that its 
use can be limited by some factors, including atmospheric effects, saturati-
on, and sensor factors, making its evaluation and accessibility sometimes 

questionable due to significant distortion (Huang et al., 2021). Studies on 
annual NDVI dynamics in different crops are crucial for understanding the 
impact of various biotic and abiotic factors on their development and yield 
formation. The annual dynamics of NDVI in crops are influenced by a 
range of factors, including cropping systems (Hangbin et al., 2011), 
meteorological conditions, soil moisture (Zhang et al., 2018), as well as 
climate features in general (Paruelo & Lauenroth, 1998). Tamás et al. 
(2023) found that NDVI dynamics can be used to evaluate the effects of 
nitrogen dose, soil tillage, and irrigation on maize hybrids, with a strong 
correlation between NDVI and grain yield. Lin & Perng (2011) further 
emphasised the importance of terrain factors, such as aspect and slope, in 
influencing NDVI dynamics in maize. Jiang et al. (2003) highlighted the 
potential of NDVI in monitoring crop growth and estimating yield, 
particularly in winter wheat.  

In addition, NDVI has been widely implemented in crop mapping 
due to its ability to reflect vegetation cover status and quantify its attributes 
(Huang et al., 2020). High-resolution satellite data provide a valuable tool 
for vegetation mapping and monitoring at regional and global scales 
(Justice et al., 1985). A range of studies have explored the use of the index 
for crop mapping. Multispectral remote sensing images are often used to 
map crops in extensive agricultural systems on a global and regional scale 
(Ouzemou et al., 2018). Lykhovyd (2021) found that each crop has a 
unique pattern of NDVI dynamics, with peak values occurring at different 
stages of growth. Bellone et al. (2009) used a historical NDVI time series 
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to identify long-term trends in vegetation dynamics, which could be rela-
ted to land degradation or improvement. Bukhovets et al. (2020) develo-
ped a dynamic model for NDVI winter wheat, which can estimate the 
optimal harvesting time for the crop. Chen et al. (2018) developed a new 
approach in the use of the MODIS time-series data to map croplands, 
cropping patterns, and crop types with high accuracy. Previously, Hao 
et al. (2016) used NDVI time series profiles to identify crop types, even in 
the years without data, describing the soil surface features. Li et al. (2019) 
proposed a method for monitoring the growth of winter wheat in real time 
using NDVI percentiles. All these studies demonstrate the potential of 
NDVI in crop mapping, especially when combined with other data sour-
ces and innovative approaches.  

Finally, NDVI could be applied for agroecological zoning of plants 
and crops. Seasonal variation in NDVI can be used to distinguish between 
different land cover transitions in the study region of Mexico (Neeti et al., 
2012). The use of NDVI for the agroecological zoning of some crops has 
been explored in several studies. Damian et al. (2020) found that NDVI 
can effectively replace or complement productivity data in delimiting ma-
nagement zones for annual cropping systems. Verhulst et al. (2008) used 
NDVI to assess the influence of agronomic management on within-plot 
spatial variability and factors limiting production, highlighting the impor-
tance of soil moisture. These studies justify the assumption that NDVI 
could be a prospective tool in agroecological zoning, particularly in asses-
sing crop performance and identifying limiting environmental factors.  

Currently, remote sensing has limited applications in Ukrainian agri-
culture. One of the main reasons for this is the low number of scientific 
studies and scientifically sound recommendations on practical application 
of remote sensing data. For example, there are a few studies devoted to the 
investigation of seasonal NDVI dynamics and phenology monitoring in 
crops, as well as agroecological zoning of plants using remote sensing data 
(Lykhovyd, 2021; Lykhovyd et al., 2022; Pichura et al., 2023). But they 
are limited to specific crops and areas, and there are almost no studies that 
cover the entire territory of Ukraine with its unique agroecological 
subdivision.  

The main purposes of this study were: i) to investigate the intra-
seasonal growth dynamics of the main spring row crops, namely maize, 
soybeans, and sunflower, to find out whether their NDVI patterns could 
be used in crop mapping and automated crop identification systems in 
Ukraine; ii) to establish the best zones of Ukraine for the cultivation of 
crops in non-irrigated conditions based on the average annual NDVI 
values for their growing season.  
 
Materials and methods  
 

The study was conducted using the data on historical NDVI, retrieved 
from the pre-processed images of the service Agromonitoring 
(https://agromonitoring.com). The NDVI was calculated based on the 
combined cloudless images of the satellites Landsat-8 and Sentinel-2 
using the services of the platform. The NDVI images, used in the study, 
had spatial resolution of 250 m and were free from atmospheric distortion. 
The average monthly values of the index were calculated for each month 
of the growing season, that is, for the period May – November. The study 
was conducted for the year 2018 in randomly selected polygons that 
represent one of the studied crops: maize, soybeans, or sunflower. 
We choose ten random non-irrigated polygons for every region of Ukrai-
ne to represent each crop. In total, there were ten random polygons per 
crop in each administrative region of the country, therefore, thirty poly-
gons of the studied crops were analysed in every region, and 250 polygons 
were analysed for each crop. The full dataset accounted for 750 polygons, 
the data were characterised with normal distribution of the inputs. Annual 
intra-seasonal dynamics of the NDVI values were used to establish the 
patterns of the index change in the course of the crop growth and 
development and determine its suitability for the implementation in the 
automated systems of crop mapping. The latter was evaluated using the 
procedure of multiclass linear discriminant analysis (MLDA) and canoni-
cal discriminant analysis (CDA), the algorithm of which was described by 
Li et al. (2006) and Cruz-Castillo et al. (1994). To ease the computations, 
BioStat v.7 package was applied for statistical data processing and 
evaluation. Canonical coefficients and constants were used to build cano-

nical discriminant functions for every crop. The functions were further 
analysed for their accuracy in identification of the studied crops. All statis-
tical calculations were performed at P < 0.05.  

The average values of the NDVI per growing season, generalised for 
every geographical region, were used to establish the best zones of 
Ukraine for the cultivation of crops in non-irrigated conditions. It should 
be noted that the general geographical zoning of Ukraine was assumed to 
be a basis for the agroecological zoning. In this case, five major zones are 
distinguished as follows: the south (Kherson, Mykolaiv, Odesa, Zaporizh-
zhia, Dnipropetrovsk regions and the Crimea); the centre (Kirovohrad, 
Poltava, Cherkasy, Vinnytsia regions); the east (Luhansk, Donetsk, Khar-
kiv regions); the north (Sumy, Chernihiv, Kyiv, Zhytomyr regions); the 
west (Zakarpattia, Lviv, Volyn, Rivne, Ternopil, Ivano-Frankivsk, 
Khmelnytskyi, Chernivtsi regions). It should be stressed that the meteoro-
logical conditions of Crimea were evaluated only for the steppe zone of 
the region, while the mountainous and coastal climatic zones were exclu-
ded from the evaluation as they are not representative of croplands. 
Meteorological data, including air temperature, precipitation amount, and 
potential evapotranspiration (assessed by the method of Holdridge), for 
each region were collected from regional hydrometeorological centres to 
establish the climatological typicalness of the year (Holdridge, 1959). 
Meteorological data were evaluated for the entire growing season (May – 
November 2018). The web-sites https://meteopost.com and 
www.meteoblue.com were used as additional sources of meteorological 
data to avoid mistakes and data gaps. The long-term meteorological 
norms were calculated based on the data of Galik & Basiuk (2014). 
The typicalness of the year was assessed by the discrepancy with the long-
term means in percents. The discrepancy of less than 15% is usually taken 
as low and very low (very typical year); between 15% and 30% – mode-
rately reasonable (typical or slightly different from typical); exceeding 
39% – high (not typical); exceeding 50% – extremely high (absolutely not 
typical).  
 
Results  
 

First of all, it is necessary to characterize meteorological conditions 
for the growing season of the year 2018 and compare them with the 
average long-term norms. Analysis of generalised meteorological data, 
combining every geographical zone in Ukraine, shows that the study year 
differed slightly from long-term norms in terms of natural moisture supply 
(the discrepancy in precipitation amounts fluctuated between the mini-
mum 2.1% for the centre and the maximum of 21.6% for the north of the 
country). The discrepancy in air temperature and potential evapotranspira-
tion had less fluctuation by regions (the least of 12.7% in the south and the 
highest of 20.1% in the east). The south of Ukraine is traditionally the 
driest zone of the country, while the west is characterised by the best 
natural moisture supply. Generally, there were no discepancies exceeding 
30%, therefore, meteorological conditions of the year 2018 are 
characterized as mildly-to-moderately different from the long-term norms, 
and the year could be assumed as typical enough (Everitt & Skrondal, 
2010) (Table 1). 

The dynamics of NDVI within the growing season of the crops 
studied are presented in Figures 1–3. Analyzing 250 input samples for 
each studied crop allowed us to establish that the peak values of the NDVI 
are reached in August for sunflower crops independently of the region of 
cultivation (average NDVI is 0.60); in August for maize crops (average 
NDVI for Ukraine on the whole is 0.56), but with some dependence on 
the region of cultivation (in the west and north the peak is reached in 
September); in September for soybean crops (average NDVI for Ukraine 
on the whole is 0.53), but with significant fluctuation by the regions of the 
country (the peak values are reached in July in the east, in August in the 
south and centre, and in September in the west and north). The greatest 
equality of the NDVI distribution within the growing season by country is 
observed in sunflower crops, while soybeans are characterised with the 
greatest difference depending on the cultivation region.  

As for the highest average seasonal value of the NDVI for each crop, 
it was 0.33–0.34 for sunflower, cultivated in the north and west; 0.35–0.36 
for maize and soybeans, which also were cultivated in the north and west 
of Ukraine. The lowest NDVI values were observed in the east for sunflo-
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wer (0.26) and maize (0.25), but the minimum NDVI for soybeans (0.27) 
was observed in the south. This is mainly due to the highest inequality 
between natural moisture supply and potential evapotranspiration in these 
regions. Therefore, it is unreasonable to cultivate the studied crops in the 

south and east of Ukraine in the rainfed conditions, while western and nor-
thern regions are the most favourable for the crops’ cultivation. The me-
thodological workflow for conducting agroecological zoning of plants 
species or vegetation type is proposed in Figure 4.  

Table 1  
Comparison of meteorological conditions during the growing season in the year of the study with the long-term norms by the agroecological zones of Ukraine  

Zone Air temperature, ºC Precipitation amounts, mm Potential evapotranspiration, mm 
2018 norm Δ Δ, % 2018 norm Δ Δ, % 2018 norm Δ Δ, % 

South 17.7 15.7 2.0 12.7 239.6 297.3 57.7 19.4 1044 926 118 12.7 
West 15.2 13.0 2.2 16.6 387.2 474.4 87.2 18.4   894 767 127 16.6 
East 17.3 14.4 2.9 20.1 282.0 325.7 43.6 13.4 1019 849 171 20.1 
North 15.2 12.9 2.3 17.4 324.2 413.3 89.1 21.6   893 760 133 17.4 
Centre 15.6 13.6 2.0 14.7 360.6 368.3   7.7   2.1   919 801 118 14.7 

 
 

  
Fig. 1. The characteristics of the NDVI dynamics within  

the growing season of sunflower depending on the cultivation zone  

  
Fig. 2. The characteristics of the NDVI dynamics within  

the growing season of maize depending on the cultivation zone  

  
Fig. 3. The characteristics of the NDVI dynamics within  

the growing season of soybeans depending on the cultivation zone  

Discriminant analysis of the generalised sample of 750 plots (Table 2) 
revealed major regularities in the NDVI dynamics within the growing 
season of the studied crops and the possibility of using NDVI in the 
systems of automated crop identification and mapping.  

The calculation of Wilk’s lambda (λ) with statistical approximation 
by Bartlett and Rao allowed to us decline the null hypothesis about the 
connection between the NDVI intra-seasonal pattern and crop characte-
ristics (Tables 3, 4).  

Analysis of the canonical coefficients (Table 5) allows us to conclude 
that the main role in the crops’ identification is played by the NDVI values 
in August (canonical function 1) and September (canonical function 2). 
Thus, the latest stages of the crops’ growth in the pre-harvesting period 
(mainly the stages, which embrace the period from the initiation of ripe-
ness until complete ripeness) are of great importance for successful distin-
guishing of the species. Analysis of the canonical variables, depicted in the 
Figure 5, testifies that the canonical function 1 is much more decisive than 
the canonical function 2. Thus, August values of the NDVI are the main 
predictor for automated distinguishing between sunflower, maize and 
soybeans, cultivated in the non- irrigated conditions of Ukraine.  

  
Fig. 4. The methodological workflow for agroecological zoning of plants and vegetation types using remote sensing NDVI  

The coefficients and constants for the discriminant classification func-
tions and the functions at the group centroids are presented in Tables 6 and 
7, while Table 8 presents the classification matrix, based on the results of 
MLDA and CDA. This matrix allows one to evaluate the accuracy of the 
prediction in classification analysis, using the stipulated inputs as a rule for 
distinguishing classes. The best classification precision is recorded for 

sunflower (70.4%), while the accuracy for soybeans (52.4%) and maize 
(46.8%) is poor. The general prediction accuracy for all the row crops 
studied was 56.5%. Maize has the lowest detection accuracy compared to 
soybeans and sunflowers (Fig. 6). It was established that maize is most 
often misrecognised as soybeans (in 26.4–27.2% of cases), while sun-
flower has the most unique NDVI pattern, which is strongly different from 
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soybeans (misrecognition just in 12.4% of cases) and maize (somewhat 
higher level of misrecognition – 17.2%). It was established that soybeans 
and maize, cultivated in the non-irrigated lands of Ukraine, have quite 
similar intra-seasonal dynamics in biomass accumulation and, conse-
quently, NDVI values. This fact makes identification of these two crops a 
difficult task, which requires additional deep investigation or the inclusion 
of additional inputs along with the values of the vegetation index.  

Table 2  
The probability of a priori classification for each group  
of the studied spring row crops depending on their individual  
NDVI patterns during the growing season  

Group N P 
Sunflower 250 0.33 
Maize 250 0.33 
Soybeans 250 0.33 
Total 750 1.00 

Table 3  
Wilk’s lambda (approximation by Bartlett) for the discriminant analysis  
of the groups of the studied spring row crops depending on their  
individual NDVI patterns during the growing season  

Canonical function Wilk’s λ χ2 df P 
Canonical function 1–2 0.7138 250.860 14 0 
Canonical function 2 0.9285   55.212   6 4.2011×10–10 

Table 4  
Wilk’s lambda (approximation by Rao) for the discriminant analysis  
of the groups of the studied spring row crops depending on their  
individual NDVI patterns during the growing season  

Statistical parameter Value 
Wilk’s λ   0.7138 
F (Fisher’s criterion) 19.4390 
P-value 0 
F critical   1.6984 
Null hypothesis Declined 

Table 5  
Canonical coefficients and completed canonical structure of the groups  
of the studied spring row crops depending on their individual  
NDVI patterns during the growing season  

Variables 

Canonical  
coefficients 

Standardised  
canonical coefficients 

Full canonical  
structure 

canonical 
function 1 

canonical 
function 2 

canonical 
function 1 

canonical 
function 2 

canonical 
function 1 

canonical 
function 2 

May -4.2620 4.5721 -0.2239 0.2402 -0.0436 0.5798 
June 1.1546 4.9345 0.0934 0.3991 0.0250 0.6755 
July -1.0560 1.8225 -0.1197 0.2067 -0.5038 0.2071 
August -6.5555 -1.9442 -0.9070 -0.2690 -0.4935 -0.1969 
September 4.0306 4.6711 0.7266 0.8421 0.5080 0.1872 
October 2.7626 -6.1681 0.3289 -0.7343 0.5321 0.0110 
November -7.9549 12.4817 -0.3823 0.5999 -0.1092 0.6068 

Table 6  
Functions at the studied spring row crops groups centroids  

Variable Canonical function 1 Canonical function 2 
Maize   0.2671 –0.3677 
Soybeans   0.4956   0.3009 
Sunflower –0.7627   0.0668 

Table 7 
Canonical discriminant functions for the studied spring row crops  
depending on their individual NDVI patterns during the growing season  

Group May June July August September October November Constant 
Maize 30.20 19.49 30.94 29.09 10.71 2.86 39.51 –23.06 
Soybeans 32.28 23.05 31.92 26.29 14.75 –0.64 46.04 –24.97 
Sunflower 36.58 20.44 32.82 34.99   8.59 –2.67 53.12 –27.77 

 

Based on the study outcomes, it is proposed to apply the developed 
canonical function 1 (as this function is decisive in the crop identification 
model with a share of 79.6% in the final result) for the automated identifi-
cation of the non-irrigated sunflower crops using the following workflow 
(Fig. 7).  

 
Fig. 5. The plot of the canonical independent variables, used for  

the identification of the studied spring row crops depending on their  
individual NDVI patterns during the growing season  

Table 8  
Classification matrix and the accuracy of the supervised prediction  
for the identification of the studied spring row crops  

Group/ 
prediction Maize Soybeans Sunflower Total Share of correct 

identification, % 
Maize 117   68   65 250 46.8 
Soybeans   66 131   53 250 52.4 
Sunflower   43   31 176 250 70.4 
Total 226 230 294 750 56.5 

 

  
Fig. 6. Percentage of misrecognition of the studied spring row crops  

using their NDVI patterns in the growing season  

It should be noted that the function presented in the study is relevant 
for the conditions in Ukraine. The coefficients and constant of the function 
will be different for other environmental conditions. However, the general 
methodological workflow for crop identification will be the same for any 
region of the world, but previous regional calibration is required. 
 
Discussion  
 

The results of our study revealed several important things about the 
application of NDVI in agriculture, namely the possibility of the imple-
mentation of the index in crop identification and its utilisation in the field 
of determination of the best zones for the cultivation of spring row crops in 
the rainfed conditions of Ukraine.  

First of all, it is necessary to mention the results of the most prominent 
studies related to spatial crop monitoring in terms of the purposes of our 
study. Research, previously conducted on annual NDVI patterns in maize, 
has revealed several key findings. Venancio et al. (2020) and Wang et al. 
(2016) both found that NDVI can be used to track the phenological stages 
of maize; additionally, Venancio et al. (2020) also claimed its potential to 
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detect biotic and abiotic stresses in the crop. Henik (2012) and Yin et al. 
(2010) both found that NDVI can be used to identify spatial variability in 
plant growth. Regarding the annual patterns of NDVI in sunflowers, it has 
been found that NDVI values increase during the growing season of the 
crop, reaching a peak at flowering and then decreasing during physiologi-
cal maturity until complete cessation of the plant (Herbei & Florin, 2015). 
These changes in NDVI are closely related to the variations in photosyn-
thetic activity and leaf area index of sunflower plants (Pinar & Erpul, 
2019). Successful crop mapping for maize and soybeans using NDVI 
values was performed by Shao et al. (2010) with the accuracy of 87% and 
82%, respectively. Remote sensing indices were also efficiently imple-

mented for soybeans and maize differential mapping (with the errors of 
6% and 11%, respectively) by de Souza et al. (2015). Both studies were 
carried out in Brazil, but it is obvious that their results correspond well to 
the results of our study with the only difference in the accuracy percen-
tage. Similar work with results that agree with ours and are mentioned 
above was carried out by Zhong et al. (2016). Another claim in support of 
our results is provided by the study of Wardlow & Egbert (2008), who 
conducted robust large-scale research on crop identification and mapping 
using MODIS NDVI images in the Central Great Plains, USA. The ave-
rage accuracy of crop mapping and classification reached 80%, which is 
much higher than in our study.  

  
Fig. 7. Methodological workflow for the application of canonical discriminant function 1 to identify sunflower crops in Ukraine  

At the same time, it should be emphasised that the current study pro-
vides novel insights into the methodological approach of applying mul-
tiple linear discriminant and canonical analysis for crop identification 
using remote sensing NDVI as the only input. One of the first studies to 
apply discriminant analysis was the study on agricultural land use predic-
tion using different input variables by Fotheringham & Reeds (1979). 
Further, this approach was implemented in various agricultural studies, but 
mainly for economic (Satish & Sahu, 2017) and ecological analysis (Mat-
thew et al., 1994). Another branch of application for this mathematical 
method is genetics and plant breeding (Chen et al., 2010). However, there 
are only a few scientific studies related to the subject of discriminant ana-
lysis application in NDVI-based crop identification. One of the first suc-
cessful works on this subject was conducted by Silleos et al. (1992), who 
applied discriminant analysis to classify between sugar beets, alfalfa and 
cotton crops based on different vegetation indices, including the NDVI. 
Another work, conducted on this subject, utilised the capacities of artificial 
neural networks (multilayer perceptron and radial basis function) and 
stepwise discriminant analysis, to classify between some irrigated crops 
and bare soil (López-Granados et al., 2010). The best accuracy was achie-
ved for the multilayer perceptron (89.8–96.4% of correct predictions 
depending on the crop), but the main drawback of the referred study is that 
it does not provide an applicable function for use in classification models, 
because neural networks are closed mathematical systems, and it is diffi-
cult to guess the way of achieving the results. In our case, full canonical 
structure, function coefficients and constants are clear, so that the canoni-
cal discriminant function could be applied in any independent system of 
machine learning for automated crop identification. Special attention 
should be paid to the study by Varmaghani & Eichinger (2016), who used 
Bayesian discriminant analysis to distinguish between maize and soy-
beans in Iowa state, USA. The study claims high precision of crop type 
prediction (88% for maize and 83% for soybeans, respectively), while our 
results showed the opposite. Zhang et al (2012) successfully applied dis-
criminant analysis to distinguish cotton plants from maize, sorghum, and 
soybeans using remote sensing reflectance data.  

The main feature of our study is that multiple linear canonical discri-
minant analysis was first applied to such a large scale geographical point-
of-view dataset, as most studies quoted above mainly refer to much smal-
ler experimental areas. Furthermore, it is established that the identification 
functions and patterns differ significantly under different environmental 
conditions, and the presented study is the first to investigate this subject in 
Ukraine. It should be noted that in the case of Iowa no difficulty was 
found in distinguishing between maize and soybeans, however, our results 

testify that these crops are hard to identify. This is because of difference 
not only in environmental conditions, but also agrotechnology and genetic 
characteristics of hybrids and varieties, sown in Ukraine and the USA.  

Considering the provided scientific evidence, it is possible to state that 
remote sensing is a reliable and promising tool for its implementation in 
the systems of automated crop identification and mapping. The major 
impact on the quality and accuracy of land cover mapping is attributed to 
the quality of spatial images and the algorithms for  identification, separa-
tion and mapping of crops. The patterns, described in the results section of 
this paper, could be used for automated identification of the studied crops, 
especially, sunflower, which is a strategic oil crop for Ukraine. The accu-
racy of 70.4% is good enough to provide crop identification. For maize 
and soybeans, the results are inconclusive, as these two crops have quite 
close NDVI patterns, and their identification precision is just about 50%, 
as mentioned above. This is mainly due to the relatively similar dynamics 
of the NDVI in these crops, therefore, further detailed investigation is 
required to finally conclude whether it is possible to distinguish between 
maize and soybean crops using NDVI as the only guidance or not. Besi-
des, an additional clue to resolving this problem could be provided by the 
implementation of the logistic regression approach in addition to discrimi-
nant analysis, because this mathematical technique is referred to as another 
powerful tool in classification problems, which sometimes outperforms 
traditional discriminant analysis (Green et al., 1998).  

Studies on agroecological zoning of crops using remote sensing data 
are not as widely conducted as other studies on remote sensing applica-
tions in agriculture. Agroecological zoning is a complex scientific prob-
lem, and in its traditional scheme it employs the combination of thermal, 
water, soil regime, land slope, elevation, vegetation biomass variability, 
etc. to derive the classification of the territory regarding its suitability for 
cultivation of certain crops (Patel, 2003). As far as current applications of 
remote sensing in general and NDVI in particular embrace almost all the 
mentioned features, it is possible to provide an approximate agroecologi-
cal zoning based on this vegetation index. For example, agroecological 
zoning of Zambia was successfully performed by Menenti et al. (1993) 
using NDVI time series images. Furthermore, NDVI was also integrated 
into some agroecological zoning systems as a predictor of vegetation 
biomass characteristics, as in the study by Bala et al. (2009). We went 
farther and used NDVI values as the parameter for determination of the 
best agroecological zones for concrete species of agricultural plants. Our 
assumption is that the highest average intra-seasonal NDVI value predicts 
the best biomass development, and the better the biomass accumulation, 
the more optimal are environmental conditions for a particular crop  in this 

Collect high-quality NDVI images 
during the period May -

November for the fields, which 
are subjected to classification

Calculate monthly means of 
NDVI for every field and 
generalise the input data

Apply canonical discriminant 
function 1 in the system of 

supervised machine learning to the 
built dataset to distinguish the 

fields with sunflower
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area. This hypothesis finds support in the study by Cabrera-Bosquet et al. 
(2011), who claimed that NDVI values are strongly correlated with such 
plant parameters as dry biomass, green canopy cover, and nitrogen content 
in the biomass. In this regard it is surprising that there are almost no scien-

tific studies devoted to the issue of agroecological zoning for different 
plant species, including agricultural ones, by the values of remote sensing 
NDVI, as this method is accurate, time-saving, and cost-effective for the 
conduction of large-scale studies.  

  
Fig. 8. The methodological workflow for agroecological zoning of plants and vegetation types using remote sensing NDVI  

Considering the agroecological zoning of the studied spring row 
crops, it was established that the west of Ukraine is the most suitable zone 
for their cultivation in non-irrigated conditions. This is mainly because of 
better natural water supply, which has dramatically diminished in recent 
years on most of the territory of the country in the course of climate 
change (Lykhovyd, 2021). Thus, rainfed spring row crops should be 
relocated to less traditional zones of their cultivation. Cultivation in the 
south and in the east of the country appears to be reasonable under irri-
gated conditions only.  
 
Conclusion  
 

The results of the study allowed us to define that sunflower has the 
most unique intra-seasonal NDVI pattern, while soybeans and maize are 
crops with quite similar vegetation index dynamics. Therefore, sunflower 
crops could be easily identified using NDVI as the only basis for crop 
classification, while the distinguishing between maize and soybeans re-
mains questionable.  

As for agroecological zoning of the studied crops, it was established 
that the west of Ukraine is the most favourable zone for the crop cultiva-
tion, while the south and the east of the country provide the poorest results 
because of significant lack of natural water supply and high potential 
evapotranspiration.  

Although this preliminary study has some limitations, mainly related 
to the number of years included into the study, it provides important in-
sights on the possibility of remote sensing application in the agriculture of 
Ukraine. More research is required to support the results of this study and 
clarify some inconclusive points in terms of soybean and maize classifica-
tion based on the NDVI images.  
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