32,780 research outputs found

    A Message Transfer Framework for Enhanced Reliability in Delay-and Disruption-Tolerant Networks

    Get PDF
    Many infrastructure-less networks require quick, ad hoc deployment and the ability to deliver messages even if no instantaneous end-to-end path can be found. Such networks include large-scale disaster recovery networks, mobile sensor networks for ecological monitoring, ocean sensor networks, people networks, vehicular networks and projects for connectivity in developing regions such as TIER (Technology and Infrastructure for Emerging Regions). These types of networks can be realized with delay-and disruption-tolerant network (DTN) technology. Generally, messages in DTNs are transferred hop-by-hop toward the destination in an overlay above the transport layer called the ''bundle layer''. Unlike mobile ad hoc networks (MANETs), DTNs can tolerate disruption on end-to-end paths by taking advantage of temporal links emerging between nodes as nodes move in the network. Intermediate nodes store messages before forwarding opportunities become available. A series of encounters (i.e., coming within mutual transmission range) among different nodes will eventually deliver the message to the desired destination. The message delivery performance (such as delivery ratio and delay) in a DTN highly depends on time elapsed between encounters (inter-contact time) and the time two nodes remain in each others communication range once a contact is established (contact-duration). As messages are forwarded opportunistically among nodes, it is important to have sufficient contact opportunities in the network for faster, more reliable delivery of messages. In this thesis, we propose a simple yet efficient method for increasing DTN performance by increasing the contact duration of encountered nodes (i.e., mobile devices). Our proposed sticky transfer framework and protocol enable nodes in DTNs to collect neighbors' information, evaluate their movement patterns and amounts of data to transfer in order to make decisions of whether to ''stick'' with a neighbor to complete the necessary data transfers. Nodes intelligently negotiate sticky transfer parameters such as stick duration, mobility speed and movement directions based on user preferences and collected information. The sticky transfer framework can be combined with any DTN routing protocol to improve its performance. Our simulation results show that the proposed framework can improve the message delivery ratio by up to 38% and the end-to-end message transfer delay by up to 36%

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    • …
    corecore