4 research outputs found

    Informational laws of genome structures

    Get PDF
    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k\u2009=\u2009lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined

    ImmunoLingo: Linguistics-based formalization of the antibody language

    Full text link
    Apparent parallels between natural language and biological sequence have led to a recent surge in the application of deep language models (LMs) to the analysis of antibody and other biological sequences. However, a lack of a rigorous linguistic formalization of biological sequence languages, which would define basic components, such as lexicon (i.e., the discrete units of the language) and grammar (i.e., the rules that link sequence well-formedness, structure, and meaning) has led to largely domain-unspecific applications of LMs, which do not take into account the underlying structure of the biological sequences studied. A linguistic formalization, on the other hand, establishes linguistically-informed and thus domain-adapted components for LM applications. It would facilitate a better understanding of how differences and similarities between natural language and biological sequences influence the quality of LMs, which is crucial for the design of interpretable models with extractable sequence-functions relationship rules, such as the ones underlying the antibody specificity prediction problem. Deciphering the rules of antibody specificity is crucial to accelerating rational and in silico biotherapeutic drug design. Here, we formalize the properties of the antibody language and thereby establish not only a foundation for the application of linguistic tools in adaptive immune receptor analysis but also for the systematic immunolinguistic studies of immune receptor specificity in general.Comment: 19 pages, 3 figure

    Approaches to Biosemiotics

    Get PDF
    Approaches to Biosemiotics is the first issue in the Biosocial World collection, and contains a series of articles on what biosemiotics does, how it does it and what its long-term objectives may be. As a more specialized discipline in the boundaries of linguistics, the biosociology, the philosophy of biology and the sciences, we hope to offer a point of entry into the world of biosemiotics through articles that deal with general topics from within the field. Our aim is, thus, to contribute to the biosemiotic landscape by opening a door to its recurring themes, problems and descriptions

    Molecules, Languages and Automata

    No full text
    corecore