1,406 research outputs found

    Intramolecular hydrogen-bonding in aqueous carbohydrates as a cause or consequence of conformational preferences: a molecular dynamics study of cellobiose stereoisomers

    Get PDF
    It is often assumed that intramolecular hydrogen-bonding (H-bonding) exerts a significant influence on the conformational properties of aqueous (bio-)polymers. To discuss this statement, one should, however, distinguish between solvent-exposed and buried H-bonds, and between their respective roles in promoting stability (i.e., as a driving force) and specificity (for which the term steering force is introduced here). In this study, the role of solvent-exposed H-bonding in carbohydrates as a driving or steering force is probed using explicit-solvent molecular dynamics simulations with local elevation umbrella sampling in the simple context of cellobiose stereoisomers. More specifically, four β(1→4)-linked d-aldohexopyranose disaccharides are considered, which present a different stereochemisty of the potentially H-bonding groups neighboring the glycosidic linkage. Although the epimerization may largely alter the intramolecular trans-glycosidic H-bonding pattern, it is found to have only very limited influence on the Ramachandran free-energy map of the disaccharide, a loss of intramolecular H-bonding being merely compensated for by an enhancement of the interaction with the solvent molecules. This finding suggests that solvent-exposed trans-glycosidic H-bonding (and in particular the HO3\hbox{HO}_3^{\prime} →O5 H-bond) is not the cause of the 21-helical secondary structure characteristic of cellooligosaccharides, but rather the opportunistic consequence of a sterically and stereoelectronically dictated conformational preference. In other words, for these compounds, solvent-exposed H-bonding appears to represent a minor (possibly adverse) conformational driving as well as steering forc

    Rational design of freeze-drying formulations: a molecular dynamics approach

    Get PDF
    The freezing step plays a fundamental role in the freeze drying process, as it determines product morphology and overall efficiency. The current approach to the selection of freezing conditions is however non-systematic, resulting in poor process control. Here we show how mathematical models, and a design space approach, can guide the selection of the optimal freezing protocol, focusing on both process performance and protein stability

    Ab Initio Study of Molecular Interactions in Cellulose Iα

    Get PDF
    Biomass recalcitrance, the resistance of cellulosic biomass to degradation, is due in part to the stability of the hydrogen bond network and stacking forces between the polysaccharide chains in cellulose microfibers. The fragment molecular orbital (FMO) method at the correlated Møller-Plesset second order perturbation level of theory was used on a model of the crystalline cellulose Iα core with a total of 144 glucose units. These computations show that the intersheet chain interactions are stronger than the intrasheet chain interactions for the crystalline structure, while they are more similar to each other for a relaxed structure. An FMO chain pair interaction energy decomposition analysis for both the crystal and relaxed structures reveals an intricate interplay between electrostatic, dispersion, charge transfer, and exchange repulsion effects. The role of the primary alcohol groups in stabilizing the interchain hydrogen bond network in the inner sheet of the crystal and relaxed structures of cellulose Iα, where edge effects are absent, was analyzed. The maximum attractive intrasheet interaction is observed for the GT-TG residue pair with one intrasheet hydrogen bond, suggesting that the relative orientation of the residues is as important as the hydrogen bond network in strengthening the interaction between the residues

    Hydrolysis of Cellulose in Supercritical Water: Quantum Simulation

    Get PDF
    Cellulose nanofiber (CNF) is a high-strength nanomaterial made from cellulose fibers. Among several fabrication processes of CNF, we focus on the hydrolysis of cellulose in supercritical water and analyze the reaction mechanism by numerical simulation. In order to deal with the detailed chemical reaction, a series of quantum molecular dynamics simulations were performed based on the density functional theory coupled with the tight binding model. After locating the vapor-liquid critical point with a 100 water molecule system, we explored the hydrolysis reaction of cellulose using a simplified system consisting of a single cellobiose surrounded by 100 water molecules. We observed a cleavage of the 1, 4--glycosidic bond in some cases. Electric charge analysis suggests that the carbon atom at the cleavage site gives the electron to a water molecule approaching to the bond with sufficiently large velocity

    Molecular Dynamics Investigation of the Arabinan-Cellulose Interface for Cellulose Nanocomposite Applications

    Get PDF
    Atom level computer simulations of the arabinan and cellulose interface were performed to better understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule composed of 8 arabinose rings was added close to the cellulose\u27s surface and equilibrated until fully adsorbed. A straightening force was applied to the arabinan during adsorption so the arabinan would lay flat on the {200} plane of the cellulose. A simulated AFM pull was performed to measure the force needed to desorb the arabinan from the cellulose. Due to computational resource limits, the pull speed was much faster than physical experiments, 500 m/s and 50 m/s. In general, the force needed for desorption increased with increasing water content with the force plateauing at 8wt% water. This increase in strength is probably due to water forming bridging hydrogen bonds between the relatively flat cellulose and crimped arabinan. Without water, fewer hydrogen bonds would form between cellulose and arabinan. This is an effect that will probably only be seen at high strain rates. Pull speeds of slower than 0.5 m/s must be performed to get accurate results

    Correlation of Structure, Function and Protein Dynamics in GH7 Cellobiohydrolases from \u3cem\u3eTrichoderma atroviride\u3c/em\u3e, \u3cem\u3eT. reesei\u3c/em\u3e and \u3cem\u3eT. harzianum\u3c/em\u3e

    Get PDF
    Background: The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) TreCel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride (TatCel7A) and Trichoderma harzianum (ThaCel7A) show high sequence identity with TreCel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate. Results: The TatCel7A, ThaCel7A, and TreCel7A enzymes were characterized for comparison of function. The catalytic domain of TatCel7A was crystallized, and two structures were determined: without ligand and with thio-cellotriose in the active site. Initial hydrolysis of bacterial cellulose was faster with TatCel7A than either ThaCel7A or TreCel7A. In synergistic saccharification of pretreated corn stover, both TatCel7A and ThaCel7A were more efficient than TreCel7A, although TatCel7A was more sensitive to thermal inactivation. Structural analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. Conclusions: We hypothesize that the combination of loop motifs is the main determinant for the observed differences in Cel7A activity on cellulosic substrates. Fine-tuning of the loop flexibility appears to be an important evolutionary target in Trichoderma spp., a conclusion supported by the RCA data. Our results indicate that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering

    Structure, computational and biochemical analysis of PcCel45A endoglucanase from <i>Phanerochaete chrysosporium </i>and catalytic mechanisms of GH45 subfamily C members

    Get PDF
    Abstract The glycoside hydrolase family 45 (GH45) of carbohydrate modifying enzymes is mostly comprised of β-1,4-endoglucanases. Significant diversity between the GH45 members has prompted the division of this family into three subfamilies: A, B and C, which may differ in terms of the mechanism, general architecture, substrate binding and cleavage. Here, we use a combination of X-ray crystallography, bioinformatics, enzymatic assays, molecular dynamics simulations and site-directed mutagenesis experiments to characterize the structure, substrate binding and enzymatic specificity of the GH45 subfamily C endoglucanase from Phanerochaete chrysosporium (PcCel45A). We investigated the role played by different residues in the binding of the enzyme to cellulose oligomers of different lengths and examined the structural characteristics and dynamics of PcCel45A that make subfamily C so dissimilar to other members of the GH45 family. Due to the structural similarity shared between PcCel45A and domain I of expansins, comparative analysis of their substrate binding was also carried out. Our bioinformatics sequence analyses revealed that the hydrolysis mechanisms in GH45 subfamily C is not restricted to use of the imidic asparagine as a general base in the “Newton’s cradle” catalytic mechanism recently proposed for this subfamily
    corecore