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Abstract: 
Atom level computer simulations of the arabinan and cellulose interface were performed to better 

understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to 
improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction 
with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal 
with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 
10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule 
composed of 8 arabinose rings was added close to the cellulose's surface and equilibrated until fully 
adsorbed. A straightening force was applied to the arabinan during adsorption so the arabinan would lay 
flat on the {200} plane of the cellulose. A simulated AFM pull was performed to measure the force needed 
to desorb the arabinan from the cellulose. Due to computational resource limits, the pull speed was much 
faster than physical experiments, 500 m/s and 50 m/s. In general, the force needed for desorption increased 
with increasing water content with the force plateauing at 8wt% water. This increase in strength is probably 
due to water forming bridging hydrogen bonds between the relatively flat cellulose and crimped arabinan. 
Without water, fewer hydrogen bonds would form between cellulose and arabinan. This is an effect that 
will probably only be seen at high strain rates. Pull speeds of slower than 0.5 m/s must be performed to get 
accurate results. 
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1 Background 

1.1 Plastics 

Plastic production is a $2.5 trillion per year industry1 and bioplastics are a 

growing part of the industry. Bioplastics are important because they are not reliant on 

petroleum supplies, are environmentally neutral over their lifecycle, and most are 

biodegradable. 

Traditional plastics in the U.S. are made from liquid petroleum gases (LPG) and 

natural gas liquids (NGL), which are byproducts of petroleum and natural gas refining. 

Plastic production takes a significant amount of resources on a national scale. In 2010, 

2.7% of petroleum, 1.7% of natural gas, and 1.7% of electricity consumption in the U.S. 

was used to make plastics2. Cost of production for traditional plastics relies on the cost 

and availability of petroleum. The world has a finite oil supply. Humanity will burn 

through the 1.3 trillion barrels left in the major oil fields in about 40-50 years3. Even with 

the discovery of new oil fields, a new source of plastics must be found to maintain the 

world's current standard of living. 

 Bioplastics are derived from agricultural products. In 2012, the global 

production of bioplastics was 1.4 million tonnes while global production of traditional 

plastics was around 300 million tonnes4. Despite bioplastics being almost 1% of the 

global plastic industry, the land used to make that plastic only accounted for 0.01% of 

global agricultural area. The bioplastics industry is growing at an incredible rate and is 

becoming a larger part of the market share, while being low impact on global food 

production. Additionally, because bioplastics are made from biological material, most 

can be composted or will decompose in landfill faster than petroleum-based plastics. 

1.2 Arabinan Cellulose Composite (ArCC) 

1.2.1 A Composite Inspired By Cactus Spines 

Cactus spines are a strong natural composite that have attracted the interest of 

researchers in recent years. There has been specific interest in the spines of the Opuntia 

ficus‐indica (OFI) cactus. OFI spines are a fiber-matrix composite made of a 50/50 bled 
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of arabinan and cellulose where the arabinan acts as a binder for aligned cellulose fibers. 

Previous research at Cal Poly San Luis Obispo has focused on creating a composite made 

from arabinan and cellulose5 with the hopes of duplicating OFI's fiber-matrix structure 

and achieving high strengths and stiffness's6. The ArCC made at Cal Poly San Luis 

Obispo had a stiffness of 6 GPA, which is higher than PET, a commonly used plastic in 

packaging. There is hope that with further research, commercially viable biocomposites 

can be manufactured. In order to achieve a better product, more must be learned of the 

nature of the bond between the components in ArCC. 

1.2.2 Arabinan 

Pectins are one of the components in cell walls that hold cellulose fibers together. 

Arabinan is a polysaccharide that exists as a side chain on pectins. There is evidence that 

arabinan side chains have the strongest interaction with cellulose out of all 

polysaccharides in pectin7. The adsorbing ends of arabinan are made of arabinose, which 

is a 5 sided sugar ring. Arabinan is found in large quantities in agricultural products like 

apples and sugar beets. Chemical arabinan derived from sugar beets is about $20 per 

gram8, making it too expensive for making plastics outside of a research setting.  

However, because arabinan is common in agricultural products, large-scale production 

could drive down cost if there is demand. The actual structure that chemical arabinan 

takes when purified from sugar beets varies. The arabinose forms straight or branched 

chains involving 3 to 8 arabinose units (Figure 1)9.  
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Figure 1- Arabinan is composed of branching chains of the arabinose 5-sided sugar ring. A) Rendering of 
the arabinose unit cell. B) The arabinan chain used in this study is 8 arabinose monomers long. 
 

1.2.3 Cellulose 

Cellulose is the most common natural material in the world with the global 

biosphere producing 1010 – 1012 tons per year10. Cellulose is a polymer of glucose where 

each glucose unit is rotated 180º with respect to its neighbor. The cellulose unit is called 

cellobiose, which is a dimer of the glucose unit (Figure 2)11. Cellulose can have a degree 

of polymerization (DP) of anywhere from a handful of cellobiose units to 20,000.  

B) 

A) 



 

Figure 2- Cellobiose is well understood. The angle between the two glucose molecules is preferentially lies 
at one of three orientations called gt, tg,
 

Cellulose is of interest because of its high specific strength and renewable 

nature12. While amorphous cellulose has been studied because it is easier to process

crystalline cellulose is much stronger. 

crystalline nanocellulose (CN) in an amorphous cellulose matrix

CN are also called cellulose whiskers, cellulose nanofiber (CNF), mirco

cellulose (MFC), nanocrystalline cellulose (NCC), 

20 nm in length depending on how 

crystalline regions separated by amorphous cellulose. The amorphous cell

etched away, leaving behind CN. 

4 

Cellobiose is well understood. The angle between the two glucose molecules is preferentially lies 
at one of three orientations called gt, tg, or gg. Cellobiose is the repeating unit that forms cellulose.

Cellulose is of interest because of its high specific strength and renewable 

While amorphous cellulose has been studied because it is easier to process

crystalline cellulose is much stronger. Natural cellulose itself is a composite consisting of 

crystalline nanocellulose (CN) in an amorphous cellulose matrix. It should be noted that 

CN are also called cellulose whiskers, cellulose nanofiber (CNF), mircofibrillated 

cellulose (MFC), nanocrystalline cellulose (NCC), and nanocellulose. CN is 

depending on how it is are processed14. Cellulose naturally exists as 

crystalline regions separated by amorphous cellulose. The amorphous cellulose can be 

leaving behind CN.  
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1.3 Molecular Dynamics (MD) 

1.3.1 History 

Alder and Wainwright conceived molecular Dynamics (MD) in the 1950s by 

calculating the interactions between hard spheres, which represented atoms15. The first 

MD simulations were in liquid systems. MD has come a long way since then, and has 

branched out into several similar fields due to larger scale simulations becoming possible 

through increased computational power. There are modeling methods that are more 

precise and others that are less precise than MD. The most accurate method is called 

Quantum Mechanics (QM), but is much more computationally intensive. There are many 

types of modeling for larger scales, but they cannot capture the phenomena that 

researchers are looking for in MD. MD is at the right level of accuracy and computational 

efficiency to help solve problems in fracture mechanics, shock physics, dislocations, and 

environments that are hard to study, such as high temperature systems. 

1.3.2 Basics of MD 

Molecular dynamics is a way to use computers to simulate material systems. MD 

is an all-atoms (AA) simulation method where the atoms are explicitly defined and there 

is a set of potentials, also called force fields, which describe the interactions between the 

atoms. Just to clarify, force fields and potentials are the same thing. Potentials are a set of 

equations that determine the forces that atoms exert on each other. Forces are calculated 

at each time step, which can be as small as tenths of femtoseconds. Once potentials 

determine the forces, the atoms are subjected to the Newtonian laws of motions based on 

those forces. Over the course of the simulation, the atoms form bonds, break bonds, and 

move around. Depending on the potential used, Van der Waals bonds can be explicitly 

defined and tracked or are emergent behavior. Explicitly defined secondary bonds are 

less accurate but take less computing power. 

MD simulations can have a few dozen to a few million atoms, and run anywhere 

from femtoseconds to a microsecond. The main limitation for MD is that simulations 

longer than a microsecond are too computationally intensive for our current technology16. 

While computing power is always increasing, it will be a long time before large time 

scale simulation of macro-sized systems is possible. There are coarse-grained (CG) 
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modeling systems that approximate groups of atoms, which are able to more 

economically model large system17. Also, there is software like finite element analysis 

(FEA) that only looks at the macro scale. However, this paper will only be looking at AA 

MD simulations. 

1.3.3 MD Software 

To run an MD simulation, MD software, a force field, initial atom coordinates, 

and initial environmental conditions are needed. First, there is the MD software, like 

LAMMPS, AMBER, GROMACS, GROMOS, and CHARMM. The MD software is what 

the force fields, initial conditions, and actual atoms coordinates are inputted into. Each 

MD package is different, but many of them can do the same things, and some are better at 

some things than others.  

Next, there are the potentials. Potentials are made specifically for the materials 

and environmental conditions that are going to be modeled. For example, a model for 

water at room temperature may be unable to accurately reproduce water at temperatures 

close to its boiling point. Potentials are calibrated using empirical data18,19,20 ensuring that 

the models closely represent reality. Creating a force field is outside of the scope of this 

paper, so a force field will be selected from the existing library of MD software. The 

ReaxFF potential is ideal for this study because the secondary bonds are emergent 

behavior of the potential and therefore more accurate, and ReaxFF is calibrated for just 

the atoms in arabinan, cellulose, and water. 

The last two elements needed to run a simulation are the initial conditions of the 

system and the starting locations of all of the atoms. A bulk material is generated by 

populating the materials repeating unit cell with atoms. Many MD software packages 

have crystal unit cells built in, like FCC, BCC, HCP, etc. Giving LAMMPS the x-y-z 

coordinates of each atom can generate a non-uniform polymer. Variables like 

temperature, boundary conditions, and time can be controlled through the software. The 

temperature is controlled by an algorithm, like the Nose-Hoover thermostat21,22,23,24. 

1.3.4 LAMMPS 

For this study the MD software Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) was selected because it is free, constantly updated, compatible 
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with organic polymers, and can easily take advantage of multiple computer processors. 

LAMMPS was developed by Sandia National Lab25. LAMMPS is most commonly used 

to model metal systems, but is just as well equipped to model organic polymers26. 

LAMMPS is compatible with common force fields designed for organic systems like 

ReaxFF and GLYCAM. LAMMPS makes use of multiple processors by breaking up the 

simulation into 3D sections for each processor. LAMMPS can also output the data 

needed to study adhesion strength, such as pulling forces on groups of atoms. 

The three main bonds present are hydrogen bonds, Columbic interactions, and 

Van der Waals interactions. These forces are described by the potential and manifest as 

emergent behavior so they are all considered in the simulation. In MD, a hydrogen bond 

can be geometrically defined with a cutoff distance of 2 - 3 Å and a bond angle of 90º - 

120º. The value of this cutoff distance and angle can greatly affect the number of 

hydrogen bonds recorded.27-32.28, 29, 30, 31, 32. However, since hydrogen bonds are not explicitly 

described in ReaxFF, LAMMPS cannot output the number of hydrogen bonds. Other data 

is needed to quantify adhesion strength in systems. 

A visualization software called OVITO is used to generate images and movies of 

the simulations.33 

1.3.5 Experiments using MD 

There are three steps for mechanically testing a material using MD: minimization, 

equilibration, and testing. Energy minimization is a process where the MD software 

moves atoms around to find to lowest local energy state for the atoms. Minimization 

ensures that atoms are not too close or far from each other at the start of the simulation. 

Equilibration is the process of running a simulation with no external forces until a stable 

configuration is reached. Equilibration ensures that the system is in a natural state before 

mechanical testing. For this study, a simulated Atomic Force Microscope (AFM) pull will 

be used for mechanical testing. This involves attaching a virtual spring to a single atom or 

a group of atoms and moving the other end of the spring away from the attached atoms.  
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2 MD and Biopolymers 

2.1 MD Studies with Cellulose 

Cellulose is a well-studied molecule in the MD field. These studies range from 

confirming the crystal structure of cellulose34, finding the strength of adsorption of a 

cellulose strand on crystalline cellulose35, to the structural changes due to temperature in 

certain cellulose systems36.  

All of these studies agree that cellulose forms a crystal bundle (Figure 3)37. 

Natural cellulose forms into Iα or Iß configuration, with Iß being more common for 

higher order plants. Processing the cellulose will change the crystalline cellulose into a 

different crystal structure. The most stable cellulose is cellulose II38, but this study is only 

going to focus on cellulose Iß because that is what is found in nature.  If a cellulose 

bundle is large enough, a slight twist is seen along the length of the CN39. 

 
Figure 3- Cellulose Iα is similar, but the similar crystal faces are labeled differently. (110) in Iα = (200) in 
Iß. A) Cellulose Iß crystal cross-section with labeled crystal faces30. B) Side view of cellulose Iß with a 
visible twist. This twist depends on the temperature of the system32. 

While most of these articles have no direct application, a few articles modeled 

real-world composites. The first was a study on the cellulose lignin system40. This study 

concluded that the lignin closest to the cellulose would align well, but adding more lignin 

would result in a disordered structure. Also, some of the crystal faces did not promote a 

good bond, resulting in more disorder. The mix of a disorder and order in the simulations 

might explain confusing experimental results where some characterization methods, like 

B) 

A)
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X-ray diffraction, show disorder, and others, like photoconductimetry, suggest order. 

This is an excellent example of how MD can be used to inform and explain physical 

experiments. 

Another article models a polyethylene-vinyl acetate (EVA) – CN composite41. 

The article states that composites are not fully understood because of lack of knowledge 

of the atomic interactions between the matrix and filler. The estimated strength of the 

EVA-CN composite was stronger than the measured strength, probably due to the actual 

materials having rougher surfaces than the idealized particles in the model. Because it is 

difficult to model natural defects, most strengths in modeling are overestimated. 

2.2 MD Studies with Arabinan 

Arabinan has been modeled since at least the 1990s42, but it is not nearly as 

studied as cellulose. The literature on modeling of arabinan only goes as far as measuring 

bond angle in energy minimized arabinan. The type of arabinan that is most commonly 

modeled is α-L-arabinofuranose, which is the same arabinan found in sugar beets. Most 

of the literature on arabinan is biological studies. In my research, I did not find any 

articles that did a MD study of the arabinan-cellulose system. 

3 Research Question 

The objective of this study is to analyze the cellulose arabinan interface in a man-

made composite. The simulations will reveal the nature of the bond between cellulose 

and arabinan. Another area of interest is the effect of different amounts of water on the 

strength of bonding. Hydrogen bonds are sensitive to residual water in the system, and 

quantifying the effect water has on strength will inform the experimentalists who will be 

processing and testing ArCC. 

4 Experimental Procedure 

4.1 Produce an MD model of Arabinan, Crystalline Cellulose, and Water 

The monomer units of arabinan and cellulose were generated in an online 

application that can be exported into a .xyz data format that can be used in OVITO and 

LAMMPS43. These monomers were manipulated in OVITO to generate the polymers by 
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repeating the monomers along the x, y, and z axis. The cellulose was placed into the 

cellulose Iß configuration because that is the most common natural cellulose crystal. 

OVITO exported the polymer configurations into a .xyz file, which is then 

manually converted into a data.filename.txt file according to the charge LAMMPS data 

type. Once the data.filename.txt file had been created, the polymers were simulated in 

LAMMPS. Each polymer was minimized and equilibrated for about 15,000 femtoseconds 

to ensure that LAMMPS with ReaxFF can accurately model these materials. 

To ensure that ReaxFF could accurately model cellulose, 2 layers of cellulose 

chains 3 wide and 5 cellobiose units long were modeled with periodic boundaries, 

simulating an infinite sheet 2 layers thick. After the cellulose was minimized and 

equilibrated, the lattice parameters of the cellulose matched the expected values for 

cellulose Iß, 3.9 Å between sheets, 8.2 Å between chains in a sheet, and with the 

cellobiose units being 10.3 Å long (Figure 4). This process was repeated with water 

present near the cellulose so the water would be equilibrated on the cellulose surface. 

Water was added in increments of 35 water molecules up to 175 water molecules and a 

percent weight of the whole system was calculated.  

 
Figure 4- The crystal structure of cellulose is well understood. However, since cellulose is organic, the 
crystal structure is not as neat as it is in metals. The lattice parameters are averages, but can change slightly 
from time step to time step. This figure represents pre-equilibrated cellulose. 

8.2 Å 

3.9 Å 
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While arabinan has not been well studied with ReaxFF, because cellulose and 

arabinan have the same atoms: oxygen, hydrogen, and carbon, ReaxFF should work just 

as well for arabinan. Potentials are designed to correctly model a narrow set of 

interactions, like the pairwise interactions between the atoms. Since there are no new 

atoms or interactions in arabinan, the same potential should work for cellulose and 

arabinan. To verify that arabinan was being correctly modeled a simulation of just 

arabinan with a small straightening force was performed and the structure of the atoms 

was monitored throughout. The 5-sided ring structure of the arabinan persisted as 

expected, and the bond lengths between atoms remained consistent. 

To verify water was correctly modeled, 27 waters were simulated until they 

formed a sphere and the approximate density of the waters was determined to be what the 

density of water should be (Figure 5). 

 

 

 
Figure 5- 27 water molecules forming a rough sphere after being minimized and equilibrated. 

∼8 Å 
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4.2 Adsorption of Arabinan onto Cellulose 

After arabinan and cellulose were independently verified to be physically 

accurate, pre-minimized and pre-equilibrated arabinan and cellulose were placed in the 

same simulation. The arabinan was placed 5 – 8 Å above the cellulose, aligned in the 

same direction as the cellulose chains. The system was equilibrated for 10,000 – 17,500 

femtoseconds. The system was equilibrated for different times so there would be different 

results during the pull phase. A small straightening force was applied along the axis of 

the arabinan so it would not bunch up on itself, but rather adsorb onto the cellulose, 

parallel to the cellulose. The process was repeated for each cellulose system with water 

present. 

4.3 Measuring Arabinan-Cellulose Adhesion Strength 

To measure the strength of the arabinan-cellulose bond, an AFM pull was 

performed by attaching a virtual spring to the arabinan on one side and a fixed-point 

hydrogen atom on the other side (Figure 6). This hydrogen’s position was controlled in 

such a way that it moved 0.005 and 0.0005 Å per femtosecond, which is equivalent to 

500 and 50 m/s. The simulations were run until the arabinan had fully desorbed from the 

cellulose. The pull speeds were selected due to computational resource limits for this 

project. At these speeds, there is a clear effect due to strain rate, which can be eliminated 

if the pulls are completed slower than 0.5 m/s44. 

 

Point moving 
at fixed speed 

Virtual Spring 

Arabinan on 
cellulose 

 

Simulated AFM Pull 
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Figure 6- In an AFM pull, the probe tip is used to exert a force on the target atoms. In and MD simulated 
pull, the probe tip is replaced with a spring fixed to a point. Using this method the pull rate, spring constant, 
and spring equilibrium distance can be controlled. 

LAMMPS exported a dump.filename.xyz file, which contains the xyz data for 

each atom per time step, and an output.filename.txt file, which contains the various data 

as defined by the code. For this study, the important output information is the total force 

the spring exerts on the arabinan at each time step. This simulation was repeated for each 

variation of water content with 4 – 6 runs at 500 m/s and 50m/s. 

5 Results 

5.1 Organizing Data 

The maximum force during desorption was used to quantify the adhesion strength 

between the cellulose and arabinan. As the fixed point on the other side of the spring is 

moved, the force the spring exerts on the arabinan increases, until there is a rapid 

decrease in force. This corresponds to the breaking of several hydrogen bonds at once. 

The force was converted into an approximate stress and plotted as a function of time 

(Figure 7). The max pull stresses ranged from 1 to 3 GPa, which is an acceptable range. 

However, since the simulations pulled so fast, actual assumptions of the actual strength of 

the arabinan cellulose interface cannot be made. 



 

Figure 7- The force exerted on the arabinan increases until the hydrogen bonds break and the force 
decreases. The maximum force before the bonds break gives

5.2 Effect of adding water to ArCC

Adding water to the simulation increased the stress needed to desorb the arabinan. 

This is probably a strain rate effect. Water forms bridging hydrogen bonds between the 

cellulose and arabinan. Since the arabina

not have time to equilibrate and break once they are past their stretching limit

The effects of stain rat

the strain rate lowered the force

Simulate

30	

Angstroms	

• Cellulose	

• Arabinan	

• Water	
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The force exerted on the arabinan increases until the hydrogen bonds break and the force 
force before the bonds break gives an idea of the adhesion strength.

adding water to ArCC and Strain Rate Effects 

Adding water to the simulation increased the stress needed to desorb the arabinan. 

This is probably a strain rate effect. Water forms bridging hydrogen bonds between the 

cellulose and arabinan. Since the arabinan is being pulled so fast, the hydrogen bonds do 

not have time to equilibrate and break once they are past their stretching limit

effects of stain rate are apparent in the numerical data (Figure 9). Lowering 

the strain rate lowered the force needed for desorption. 
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Adding water to the simulation increased the stress needed to desorb the arabinan. 

This is probably a strain rate effect. Water forms bridging hydrogen bonds between the 

n is being pulled so fast, the hydrogen bonds do 

not have time to equilibrate and break once they are past their stretching limit (Figure 8).  
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Figure 8- Renderings of one of the simulated AFM pulls. The water is clearly creating bridging bonds 
between the cellulose and arabinan. At the third step, water is the only thing connecting the arabinan and 
cellulose. This strange behavior of water is probably a high strain rate effect. 

5.3 Future Research 

These simulations should be run at pulls of 0.5 m/s and slower, to determine the 

effect of water on adhesion without strain rate effects. Other things that could be changed 

in the simulations are the geometry of adsorbed arabinan on cellulose, the difference in 

adhesion on different cellulose crystal faces, the effect of arabinan chain length, branched 

arabinan, and different simulation sizes. The best way to test the effect of water would be 

to run the simulation with a non-polar solvent instead of water. This would help 

determine the effect the hydrogen's bond with water has on the strength of the system. 
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Figure 9- Graphs showing the maximum stress needed to desorb arabinan from cellulose. At 50 m/s 12wt% 
water data was not obtained due to time constraints. 

6 Conclusion 

Cellulose, arabinan, and water were successfully modeled using the ReaxFF 

potential with LAMMPS. Arabinan was adsorbed onto the cellulose in the absence and 

presence of water. A simulated AFM pull determined that water increases the adhesion 

strength between cellulose and arabinan at high strain rates. However, there was also 

more scatter at high strain rate with high amounts of water. More testing needs to be done 

to determine the effect of water on the cellulose arabinan interface at realistic pull speeds. 
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8 Appendix 

8.1 Example Code 

The code in grey boxes comes from the file “in.5%.run1.slowpull.mac.txt ” that was used 

to run one of the pull tests. This lines with “#” at the front are comments. 

 

 

Title at the top of code is always a good idea for later use. 

 

 Comment to remind user what to run in the command terminal to run this code in lammps 

 

 Variable is a command to store a string of text to be called later in the program. These lines save the name of 

the data file to be used for the initial atom geometry and what to call the output files. The rest of the grey boxes should be 

well explained by their in-line comments. 

 

 

### Setup ### 

# This section contains the setup needed for any lammps reax/c simulation. 

 clear 

 # makes run more efficient 

 units  real 

 processors 3 2 1 

# tells lammps to divide the simulation into 6 parts, one for each process, 3 parts / 

#in the x-direction, 2 parts in the y-direction, and none in the z direction. This / 

#allocation minimized atom bonds across processor boundaries and makes sure / 

#there are no blank processors. 

 boundary p p p 

  # periodic boundaries in all direcitons 

 atom_style charge 

 log  log.${simname}.txt 

  # created log file with name defiend earlier 

 read_data ${fname} 

  # read initial geometry file 

 pair_style reax/c lmp_control 

  # sets reaxff/c potential and calls control file in current directory 

## Name of Data File saved to /Simulations 

variable fname index data.5%.run2.txt 

## Name associated with the dump and output files 

variable simname index 5wt.slowpull.run1 

## Run this command in lammps: 

# mpiexec.exe -np 6 lmp_mpi.exe -in in.5%.run1.slowpull.mac.txt # 

####### Equilibriating and pulling arabinan from cellulose with 5% water####### 

#### By Luke Thornley #### 

#### Purpose: adsorb arabinan and pull arabinan to get data. 
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 pair_coeff * * ffield.reax.cho H C O 

  # calls the ReaxFF file and sets atoms types 1 2 3 to their respective atoms 

 neighbor 2 bin 

 neigh_modify every 100 delay 0 check no 

 timestep 0.25 

  # 1 timestep = 0.25 femtoseconds 

 

### Defining Groups ### 

# Define the groups used later in simulation 

 region base block  -25.76 26.14 -12.9885 20.303 -5 0  

 group base region base 

  # regions to later be used to hold down cellulose during pull 

 group hydrogen type 1 

 group carbon type 2 

 group oxygen type 3 

group A id 1890:2000 

  #group defining arabinan 

 group C id 1:1680 

  #group defining cellulose 

 group F id 2001 

  #group for fix point 

 group H2O id 1681:1889 

 group pullA id 1895 

  #pull point to flatten arabinan on negative x side 

 group pullB id 1989 

  # pull point to flatten arabinan on positive x side 

 

 

### Computes ### 

## For dumping info later 

 compute Acom A com     

  # computes center of mass for arabinan and gives output by c_Acom[i] where i=1,2,3 / 

gives x,y,z coords in angstroms 

 compute Ccom C com 

  # center of mass for cellulose 

 compute peratom all pe/atom  

  # potential energy per atom 

 

### Set up the Pull ### 

## The tether point is 0 angstroms away from the pull atom,  the springs equilibrium length is 0 

 ## MUST COME BEFORE TEMP FIXES 

 fix fixpoint F move linear 0.0 0.0 0.0 

  #last number is the pull rate in angstroms per femtosecond 

 fix pullA pullA spring tether 1 -17 5 8 0  

  #springs equilibrium is 5 short of fully equilibriated system 

 fix pullB pullB spring tether 1 19 5 8 0 

  # both these fixes are sued to straighten the arabinan during equilibriation 
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### Specific Run Conditions ### 

 fix  1 all nve 

 fix  2 all qeq/reax 1 0.0 10.0 1e-6 param.qeq 

 fix  3 all temp/berendsen 300.0 300.0 100.0 

  # these are temperature fixes. Fix 3 sets the temp to 300 K  

 thermo 500 

  # dumps info about the system to the screen every 500 steps. 

 

### Data Dump ### 

 dump  1 all custom 100 dump.${simname}.ovi id type q x y z 

  # Dumps the xyz file for ovito 

 variable p1 equal "step" 

 variable p2 equal "f_pull"  

 # energy as 1/2*K*r^2 where r is the difference between original COM and current position. 

 variable p3 equal "f_pull[1]" # x force magnitude 

 variable p4 equal "f_pull[2]" # y force magnitude 

 variable p5 equal "f_pull[3]" # z force magnitude 

 variable p6 equal "f_pull[4]" # total force magnitude  

 variable p10 equal "pe" # does not include spring energy 

 variable p11 equal "c_Ccom[3]" # center of mas of cellulose 

 variable p12 equal "c_Acom[3]" # center of mass of arabinan 

  # all of these variables will be called later and can be used for post-simulation analysis 

 

## Run the simulation 

 run 60000 

  # adsorbs the arabinan and equilibriates they system 

 unfix 3 

  # gets rid of berendsen algorithm so system is not limited to a set atomic motion 

 unfix pullA 

 unfix pullB 

  #gets rid of straightening factor on arabinan 

 fix fixpoint F move linear 0 0 0.00005 

  # last number is the pull rate in angstroms per femtosecond 

  # sets rate at which arabinan is pulled  

 fix base base recenter INIT INIT INIT 

  #keeps cellulose from being pulled up 

 fix pull A spring couple F 4.0 0.0 0.0 0.0 22 

  # creates virtual spring 

 fix printme all print 1000 "${p1} ${p2} ${p3} ${p4} ${p5} ${p6} ${p10} ${p11} ${p12}"  / 

file output.${simname}.txt screen no  

  # dumps output data for force vs distance graph 

 run 3000000 

  # runs with settings to pull arabinan 
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8.2 Using OVITO 

OVITO is a free atom visualization software useful for visualizing atom position 

data. OVITO is updated constantly so things may change after this short guide is written. 

OVITO can read many data file types such as .xyz, .cfg, and LAMMPs dump files. 

OVITO should automatically load up the dump file after it is opened from the "Load 

File" option. Select the checkbox to note that the file contains multiple time steps and 

then use the slide bar to look at the data. 

 


