549 research outputs found

    Initial Semantics for Reduction Rules

    Get PDF
    We give an algebraic characterization of the syntax and operational semantics of a class of simply-typed languages, such as the language PCF: we characterize simply-typed syntax with variable binding and equipped with reduction rules via a universal property, namely as the initial object of some category of models. For this purpose, we employ techniques developed in two previous works: in the first work we model syntactic translations between languages over different sets of types as initial morphisms in a category of models. In the second work we characterize untyped syntax with reduction rules as initial object in a category of models. In the present work, we combine the techniques used earlier in order to characterize simply-typed syntax with reduction rules as initial object in a category. The universal property yields an operator which allows to specify translations---that are semantically faithful by construction---between languages over possibly different sets of types. As an example, we upgrade a translation from PCF to the untyped lambda calculus, given in previous work, to account for reduction in the source and target. Specifically, we specify a reduction semantics in the source and target language through suitable rules. By equipping the untyped lambda calculus with the structure of a model of PCF, initiality yields a translation from PCF to the lambda calculus, that is faithful with respect to the reduction semantics specified by the rules. This paper is an extended version of an article published in the proceedings of WoLLIC 2012.Comment: Extended version of arXiv:1206.4547, proves a variant of a result of PhD thesis arXiv:1206.455

    Initial Semantics for Strengthened Signatures

    Get PDF
    We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax). Our strengthened arities admit colimits, which allows the treatment of the \lambda-calculus with explicit substitution.Comment: In Proceedings FICS 2012, arXiv:1202.317

    High-level signatures and initial semantics

    Get PDF
    We present a device for specifying and reasoning about syntax for datatypes, programming languages, and logic calculi. More precisely, we study a notion of signature for specifying syntactic constructions. In the spirit of Initial Semantics, we define the syntax generated by a signature to be the initial object---if it exists---in a suitable category of models. In our framework, the existence of an associated syntax to a signature is not automatically guaranteed. We identify, via the notion of presentation of a signature, a large class of signatures that do generate a syntax. Our (presentable) signatures subsume classical algebraic signatures (i.e., signatures for languages with variable binding, such as the pure lambda calculus) and extend them to include several other significant examples of syntactic constructions. One key feature of our notions of signature, syntax, and presentation is that they are highly compositional, in the sense that complex examples can be obtained by assembling simpler ones. Moreover, through the Initial Semantics approach, our framework provides, beyond the desired algebra of terms, a well-behaved substitution and the induction and recursion principles associated to the syntax. This paper builds upon ideas from a previous attempt by Hirschowitz-Maggesi, which, in turn, was directly inspired by some earlier work of Ghani-Uustalu-Hamana and Matthes-Uustalu. The main results presented in the paper are computer-checked within the UniMath system.Comment: v2: extended version of the article as published in CSL 2018 (http://dx.doi.org/10.4230/LIPIcs.CSL.2018.4); list of changes given in Section 1.5 of the paper; v3: small corrections throughout the paper, no major change

    Extended Initiality for Typed Abstract Syntax

    Full text link
    Initial Semantics aims at interpreting the syntax associated to a signature as the initial object of some category of 'models', yielding induction and recursion principles for abstract syntax. Zsid\'o proves an initiality result for simply-typed syntax: given a signature S, the abstract syntax associated to S constitutes the initial object in a category of models of S in monads. However, the iteration principle her theorem provides only accounts for translations between two languages over a fixed set of object types. We generalize Zsid\'o's notion of model such that object types may vary, yielding a larger category, while preserving initiality of the syntax therein. Thus we obtain an extended initiality theorem for typed abstract syntax, in which translations between terms over different types can be specified via the associated category-theoretic iteration operator as an initial morphism. Our definitions ensure that translations specified via initiality are type-safe, i.e. compatible with the typing in the source and target language in the obvious sense. Our main example is given via the propositions-as-types paradigm: we specify propositions and inference rules of classical and intuitionistic propositional logics through their respective typed signatures. Afterwards we use the category--theoretic iteration operator to specify a double negation translation from the former to the latter. A second example is given by the signature of PCF. For this particular case, we formalize the theorem in the proof assistant Coq. Afterwards we specify, via the category-theoretic iteration operator, translations from PCF to the untyped lambda calculus

    Modules over monads and operational semantics

    Full text link
    This paper is a contribution to the search for efficient and high-level mathematical tools to specify and reason about (abstract) programming languages or calculi. Generalising the reduction monads of Ahrens et al., we introduce transition monads, thus covering new applications such as lambda-bar-mu-calculus, pi-calculus, Positive GSOS specifications, differential lambda-calculus, and the big-step, simply-typed, call-by-value lambda-calculus. Moreover, we design a suitable notion of signature for transition monads

    An Introduction to Different Approaches to Initial Semantics

    Full text link
    Characterizing programming languages with variable binding as initial objects, was first achieved by Fiore, Plotkin, and Turi in their seminal paper published at LICS'99. To do so, in particular to prove initiality theorems, they developed a framework based on monoidal categories, functors with strengths, and ÎŁ\Sigma-monoids. An alternative approach using modules over monads was later introduced by Hirschowitz and Maggesi, for endofunctor categories, that is, for particular monoidal categories. This approach has the advantage of providing a more general and abstract definition of signatures and models; however, no general initiality result is known for this notion of signature. Furthermore, Matthes and Uustalu provided a categorical formalism for constructing (initial) monads via Mendler-style recursion, that can also be used for initial semantics. The different approaches have been developed further in several articles. However, in practice, the literature is difficult to access, and links between the different strands of work remain underexplored. In the present work, we give an introduction to initial semantics that encompasses the three different strands. We develop a suitable "pushout" of Hirschowitz and Maggesi's framework with Fiore's, and rely on Matthes and Uustalu's formalism to provide modular proofs. For this purpose, we generalize both Hirschowitz and Maggesi's framework, and Matthes and Uustalu's formalism to the general setting of monoidal categories studied by Fiore and collaborators. Moreover, we provide fully worked out presentation of some basic instances of the literature, and an extensive discussion of related work explaining the links between the different approaches

    Initiality for Typed Syntax and Semantics

    Full text link
    We give an algebraic characterization of the syntax and semantics of a class of simply-typed languages, such as the language PCF: we characterize simply-typed binding syntax equipped with reduction rules via a universal property, namely as the initial object of some category. For this purpose, we employ techniques developed in two previous works: in [2], we model syntactic translations between languages over different sets of types as initial morphisms in a category of models. In [1], we characterize untyped syntax with reduction rules as initial object in a category of models. In the present work, we show that those techniques are modular enough to be combined: we thus characterize simply-typed syntax with reduction rules as initial object in a category. The universal property yields an operator which allows to specify translations - that are semantically faithful by construction - between languages over possibly different sets of types. We specify a language by a 2-signature, that is, a signature on two levels: the syntactic level specifies the types and terms of the language, and associates a type to each term. The semantic level specifies, through inequations, reduction rules on the terms of the language. To any given 2-signature we associate a category of models. We prove that this category has an initial object, which integrates the types and terms freely generated by the 2-signature, and the reduction relation on those terms generated by the given inequations. We call this object the (programming) language generated by the 2-signature. [1] Ahrens, B.: Modules over relative monads for syntax and semantics (2011), arXiv:1107.5252, to be published in Math. Struct. in Comp. Science [2] Ahrens, B.: Extended Initiality for Typed Abstract Syntax. Logical Methods in Computer Science 8(2), 1-35 (2012)Comment: presented at WoLLIC 2012, 15 page

    Modules over Monads and Operational Semantics

    Get PDF
    This paper is a contribution to the search for efficient and high-level mathematical tools to specify and reason about (abstract) programming languages or calculi. Generalising the reduction monads of Ahrens et al., we introduce transition monads, thus covering new applications such as ???-calculus, ?-calculus, Positive GSOS specifications, differential ?-calculus, and the big-step, simply-typed, call-by-value ?-calculus. Finally, we design a suitable notion of signature for transition monads
    • …
    corecore