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Abstract
This paper is a contribution to the search for efficient and high-level mathematical tools to specify
and reason about (abstract) programming languages or calculi. Generalising the reduction monads
of Ahrens et al., we introduce transition monads, thus covering new applications such as λµ-calculus,
π-calculus, Positive GSOS specifications, differential λ-calculus, and the big-step, simply-typed,
call-by-value λ-calculus. Finally, we design a suitable notion of signature for transition monads.
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1 Introduction

The search for a mathematical notion of programming language goes back at least to Turi and
Plotkin [25], who coined the name “Mathematical Operational Semantics”, and explained how
known classes of well-behaved rules for structural operational semantics, such as GSOS [7],
can be categorically understood and specified via distributive laws and bialgebras. Their
initial framework did not cover variable binding, and several authors have proposed variants
which do [14, 13, 24], treating examples like the π-calculus. However, none of these approaches
covers higher-order languages like the λ-calculus.

In recent work, following previous work on modules over monads for syntax with bind-
ing [18, 2] (see also [1]), Ahrens et al. [3] introduce reduction monads, and show how
they cover several standard variants of the λ-calculus. Furthermore, as expected in similar
contexts, they propose a mechanism for specifying reduction monads by suitable signatures.

Our starting point is the fact that already the call-by-value λ-calculus does not form
a reduction monad. Indeed, in this calculus, variables are placeholders for values but not
for λ-terms; in other words, reduction, although it involves general terms, is stable under
substitution by values only.

In the present work, we generalise reduction monads to what we call transition monads.
The main new ingredients of our generalisation are as follows.

We now have two kinds of terms, called placetakers and states: variables are place-
holders for our placetakers, while transitions relate states. Typically, in call-by-value,
small-step λ-calculus, placetakers are values, while states are general terms.
We also have a set of types for placetakers, and a possibly different set of types for states.
Typically, in call-by-value, simply-typed λ-calculus, both sets of types coincide and are
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12:2 Modules over Monads and Operational Semantics

given by simple types, while in λµ-calculus, we have two placetaker types, one for terms
and one for stacks, and one state type, for processes.
We in fact have two possibly different kinds of states, source states and target states, so
that a transition now relates a source state to a target state. Typically, in call-by-value,
big-step λ-calculus, source states are general terms, while target states are values.
The relationship between placetakers and states is governed by two functors S1 and S2,
as follows: given an object X (for variables), we have an object T (X) of placetakers
(“with free variables in X”), and the corresponding objects of source and target states
are respectively S1(T (X)) and S2(T (X)) (see §2.2).

Reduction monads correspond to the untyped case with S1 = S2 = IdSet. In §2.1, after
giving a “monadic” definition of transition monads in terms of relative monads [4], we
provide a “modular” definition (in terms of modules over monads), which we prove equi-
valent in Proposition 6. From the modular point of view, a transition monad consists of
a placetaker monad T , two state functors S1, S2, a transition T -module R, and two
T -module morphisms src : R→ S1T and tgt : R→ S2T . Such a triple (R, src, tgt) is thus
an object of the slice category of T -modules over S1T × S2T .

In §2.2, we present a series of examples of transition monads: λµ-calculus, simply-typed
λ-calculus (in its call-by-value, big-step variant), π-calculus (as an unlabelled transition
system), and differential λ-calculus.

Finally, in §2.3, we organise transition monads into categories. For the category of
transition monads over a fixed triple (T, S1, S2), we take the slice category of T -modules
alluded to above. Then, we wrap together these “little” slice categories into what we call a
record category of transition monads.

We then proceed to the main concern of this work: the specification of transition monads
via suitable signatures. For this, we start in §3 by proposing a new, abstract notion of
semantic signature over a category C. A semantic signature S = (E, U) over C consists
of a category E of algebras, together with a forgetful1 functor U : E→ C, such that E
has an initial object S~: we think of such a semantic signature as specifying the object
S∗ := U(S~) underlying the initial algebra. Abstracting over this generating procedure,
we introduce registers in §3. A register R for the category C consists of a class SigR of
signatures, together with a map associating to each signature S a semantic signature JSKR,
say US : S -alg→ C. Just as for semantic signatures, omitting J−KR for readability, we think
of a signature S as specifying the object S∗ = US(S~).

We may now state our achievement properly: we construct a register for transition
monads, containing signatures specifying the desired examples. Towards this goal, we start
in §4 by designing registers for monads and functors, relying on Ahrens et al. [2] and Fiore
and Hur [11]. This will allow us to efficiently specify the base components (T, S1, S2) of the
desired example transition monads, separately. We continue in §5 by presenting some general
constructions of registers, whose combination will yield a register for transition monads.
First, the product construction allows us to group the signatures of T , S1, and S2 into a
single signature for the triple (T, S1, S2). Then, we introduce in §5.2 a register for a slice
category of modules over a monad. This yields a register for transition monads over a fixed
triple (T, S1, S2), since these form such a slice category. Finally, in §5.3 we address the
task of grouping into a single signature the signatures for the triple (T, S1, S2) and for the
transition module (R, s, t) over it. For this, we propose a record construction for registers,
which binds together registers on the base and on fibres of a record category. Applying this

1 Here “algebra” and “forgetful” have no technical meaning and are chosen by analogy.
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to the previously constructed registers for our base product of three categories and our fibre
slice categories of modules, we give in Definition 63 our final register for the category of
transition monads (with fixed sets of types). This register covers all examples of transition
monads from §2.2, as we demonstrate in the appendix.

Related work
Beyond the already evoked related work [3, 25, 11], there is a solid body of work on
categorical approaches to rewriting with variable binding, which only covers transition
relations that are stable under arbitrary contexts, e.g., Hamana [16], T. Hirschowitz [19],
and Ahrens [1]. Regarding signatures, Fiore [12], Altenkirch et al. [5], and Garner [15] use
notions of signatures for languages with dependent types, which may provide an alternative
approach to the specification of operational semantics systems. Finally, let us mention that
a preliminary account of the present work appears in the third author’s PhD thesis [20,
Chapter 6].

Notations
In the following, Set denotes the category of sets, [SetP,SetQ]f denotes the locally small
category of finitary functors SetP → SetQ for any sets P and Q.

The category of finitary monads on C is denoted by Mndf (C), or sometimes just Mndf
when C is clear from context. Given a monad T on C, the category of D-valued (finitary)
T -modules is denoted by T -Modf (D), where we recall [18] that such a T -module consists of
a finitary functor M : C→ D equipped with a right T -action M ◦ T →M satisfying some
coherence conditions.

For any sequence p1, . . . , pn in a set P, for any monad T on SetP and D-valued T -
module M , we denote by M (p1,...,pn) the D-valued T -module defined by M (p1,...,pn)(X) =
M(X + yp1 + · · ·+ ypn), where y : P→ SetP is the embedding defined by yp(q) = 1 if p = q

and ∅ otherwise. If P is a singleton, we abbreviate this to M (n).

2 Transition monads

2.1 Definition of transition monads
In this section, we introduce the main new mathematical notion of the paper which was
already motivated by the case of the call-by-value, simply-typed, big-step λ-calculus in §1:
transition monads. We first describe the various components of a transition monad. Then
we give the monadic definition. And finally we give a modular description, which is better
suited for later use.

Placetakers and states. In standard λ-calculus, we have terms, variables are placeholders
for terms, and transitions relate a source term to a target term. In a general transition
monad we still have variables and transitions, but placetakers for variables and endpoints of
transitions can be of a different nature, which we phrase as follows: variables are placeholders
for placetakers, while transitions relate a source state with a target state.

The categories for placetakers and for states. In standard λ-calculi, we have a set T
of types for terms (and variables); for instance in the untyped version, T is a singleton.
Accordingly, terms form a monad on the category SetT.

FSCD 2020



12:4 Modules over Monads and Operational Semantics

Similarly, in a general transition monad we have a set P of placetaker types, and a set S
of state types. For example, for simply-typed λ-calculus, P = S is the set of simple types.

Placetakers form a monad on the category SetP.

The object of variables. In our (monadic) view of the untyped λ-calculus, there is a
(variable!) set of variables and everything is parametric in this “variable set”. Similarly,
in a general transition monad R, there is a “variable object” V in SetP and everything is
functorial in this variable object. In particular, we have a placetaker object TR(V ) in SetP
and a source (resp. target) state object in SetS, both depending upon the variable object.

The state functors S1 and S2. While in the λ-calculus, states are the same as placetakers,
in a general transition monad, they may differ, and more precisely both state objects are
derived from the placetaker object by applying the state functors S1, S2 : SetP → SetS.

The transitions. In standard λ-calculi, there is a (typed!) set of transitions, which yields
a graph on the set of terms. That is to say, if V is the variable object, and LC(V )
the term object, there is a transition object Trans(V ) equipped with two morphisms
srcV , trgV : Trans(V )→ LC(V ). Note that we consider “proof-relevant” transitions here, in
the sense that two different transitions may have the same source and target. (Appendix G
discusses how proof irrelevance can be recovered.)

In a general transition monad R, we still have a transition object TransR(V ) , which
now lives in SetS, together with state objects S1(TR(V )) and S2(TR(V )), so that srcV and
trgV form a span S1(TR(V ))← TransR(V )→ S2(TR(V )).

The S-graph of transitions. Now we rephrase the previous status of transitions in terms
of a graph-like notion which we call S-graph: here S := (S1, S2) is the pair of state functors.
In the untyped λ-calculus, Trans(V ) and the maps srcV and trgV turn the term object
LC(V ) into a graph (which depends functorially on the variable object V ). For an analogous
statement in a general transition monad, we will use the following.

I Definition 1. For any pair S = (S1, S2) of functors SetP → SetS, an S-graph over an
object V ∈ SetP consists of

an object E (of edges) in SetS, and
a span S1(V ) ← E → S2(V ), which we alternatively view as a morphism ∂ : E →
S1(V )× S2(V ).

An S-graph consists of an object V ∈ SetP and an S-graph over V .

Now we can say that in a general transition monad, transitions form an S-graph over the
placetaker object (the whole thing depending upon the variable object. . . ).

The category of S-graphs. A reduction monad (in particular the untyped λ-calculus) is
just a monad relative to the “discrete graph” functor from sets to graphs [3]. In order to
have a similar definition for transition monads, the last missing piece is the category of
S-graphs, which we now describe. A morphism G→ G′ of S-graphs consists of a morphism
for vertices f : VG → VG′ together with a morphism for edges g : EG → EG′ making the
following diagram commute.

EG EG′

S1(VG)× S2(VG) S1(VG′)× S2(VG′)

g

∂G

S1(f)×S2(f)

∂G′
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I Proposition 2. For any pair S = (S1, S2) of functors SetP → SetS, S-graphs form a
category S-Gph.

Monadic definition of transition monad. First of all, let us recall [4] that, given any functor
J : C→ D, a monad relative to J , or J-relative monad, consists of

an object mapping T : ob(C)→ ob(D), together with
morphisms ηX : J(X)→ T (X), and
for each morphism f : J(X)→ T (Y ), an extension f? : T (X)→ T (Y ),

satisfying coherence conditions. Any J-relative monad T has an underlying functor C→ D,
and is said finitary when this functor is.

We will consider monads relative to functors of the following form.

I Definition 3. For any functors S1, S2 : SetP → SetS, letting S = (S1, S2), the discrete
S-graph functor JS : SetP → SetS maps any V ∈ SetP to the S-graph on V with no edges.

Now we are ready to deliver a first, monadic definition of transition monad.

I Definition 4. A monadic transition monad over (P,S) consists of
two finitary functors S1, S2 : SetP → SetS, and
a finitary JS-relative monad, where S = (S1, S2).

Given any JS-relative monad T , we think of T (X) as having terms with free variables in
X as vertices, with all transitions between them as edges. A morphism σ : JS(X)→ T (Y )
amounts to a mapping from X to terms in T (Y ), i.e., a substitution, and its extension
T (X)→ T (Y ) models the action of σ both on terms and on transitions.

Modular definition of transition monad. The monadic definition just given does not
mention explicitly one crucial feature we had mentioned earlier: the monad of placetakers.
In order to clarify this point, we give an alternative “modular” definition.

I Definition 5. A transition monad over (P,S) consists of
two finitary functors S1, S2 : SetP → SetS,
a finitary monad T on SetP, called the placetaker monad,
a finitary T -module R : SetP → SetS, called the transition module,
a source T -module morphism src : R→ S1T ,
a target T -module morphism tgt : R→ S2T .

This is the definition that we use in the rest of the paper.

I Proposition 6. Modular and monadic transition monads are in one-to-one correspondence.

Proof. See Appendix F. J

2.2 Examples of transition monads

In this section, we introduce informally a few example transition monads, which will be more
rigorously defined in the appendix.

FSCD 2020



12:6 Modules over Monads and Operational Semantics

2.2.1 λµ-calculus
The λµ-calculus [17] is an example with two placetaker types. Its grammar is given by

Processes
c ::= 〈e|π〉

Programs
e ::= x | µα.c | λx.e

Stacks
π ::= α | e · π,

where x and α range over two disjoint sets of variables, called stack and program variables
respectively. Both constructions µ and λ bind their variable in the body. There are two
transition rules: 〈µα.c|π〉 → c[α 7→ π] 〈λx.e|e′ · π〉 → 〈e[x 7→ e′]|π〉.

Let us show how this calculus gives rise to a transition monad. First, there are two
placetaker types, for programs and stacks, so P = 2 = {p, s}. A variable object is an element
of SetP, that is, a pair of sets: the first one gives the available free program variables,
and the second one the available free stack variables. The syntax may be viewed as a
monad T : Set2 → Set2: given a variable object X = (Xp, Xs) ∈ Set2, the placetaker
object (T (X)p, T (X)s) ∈ Set2 consists of the sets of program and stack terms with free
variables in X, up to bound variable renaming. As usual, monad multiplication is given by
capture-avoiding substitution.

For transitions, source and target states are processes, so there is only one state type:
S = 1. Furthermore, processes are pairs of a program and a stack, so that, setting S1(A) =
S2(A) = Ap × As, we get Si(T (X)) = T (X)p × T (X)s for i = 1, 2 as desired. Finally,
transitions with free variables in X form a graph with vertices in T (X)p × T (X)s, which we
model as a map 〈srcX , tgtX〉 : Trans(X) → (T (X)p × T (X)s)2. This family is natural in
X and commutes with substitution, hence forms a T -module morphism. We thus have a
transition monad.

2.2.2 The π-calculus
For an example involving equations on placetakers, let us recall the following standard
presentation of π-calculus [23]. The syntax for processes is given by

P,Q ::= 0 | (P |Q) | νa.P | a〈b〉.P | a(b).P,

where a and b range over channel names, and b is bound in a(b).P and in νb.P . Processes
are identified when related by the smallest context-closed equivalence relation ≡ satisfying

0|P ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R (νa.P )|Q ≡ νa.(P |Q),

where in the last equation a should not occur free in Q. Transition is then given by the rules

a〈b〉.P |a(c).Q −→ P |(Q[c 7→ b])
P −→ Q

P |R −→ Q|R
P −→ Q

νa.P −→ νa.Q
.

The π-calculus gives rise to a transition monad as follows. Again, we consider two
placetaker types, one for channels and one for processes. Hence, P = 2 = {c,p}. Then,
the syntax may be viewed as a monad T : Set2 → Set2: given a variable object X =
(Xc, Xp) ∈ Set2, the placetaker object T (X) = (Xc, T (X)p) ∈ Set2 consists of the sets
of channels and processes with free variables in X (modulo ≡). Note that T (X)c = Xc
as there is no operation on channels. Transitions relate processes, so we take S = 1 and
S1(X) = S2(X) = Xp. Transitions are stable under substitution, hence form a transition
monad.
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2.2.3 Positive GSOS rules
An example involving labelled transitions (and S1 6= S2) is given by Positive GSOS rules [7].
They specify labelled transitions e a−→ f . For any set O of operations with arities in N,

Positive GSOS rules have the shape
xi

ai,j−−→ yi,j

op(x1, . . . , xn) c−→ e
, where the variables xi and yi,j are

all distinct, op ∈ O is an operation with arity n, and e is an expression potentially depending
on all the variables.

Each family of operations and rules yields a transition monad with P = 1, because
we are in an untyped setting, and S = 1 because states are terms. The syntax gives the
term monad T . For transitions, in order to take labels into account, we take S1(X) = X

and S2(X) = A ×X, where A denotes the set of labels. Transitions thus form a set over
X × (A×X) as desired.

2.2.4 Differential λ-calculus
The differential λ-calculus [9] provides a further example with S1 6= S2. Its syntax may [26,
§6] be defined by e, f ::= x | λx.e | e U | De · f (terms)

U, V ::= 〈e1, . . . , en〉 (multiterms),
where 〈e1, . . . , en〉

denotes a (possibly empty) multiset, i.e., the ordering is irrelevant. Terms induce a monad T
on Set, which we take as the placetaker monad (hence P = 1).

Transitions relate terms to multiterms, hence S = 1, S1 is the identity, and S2 = ! is the
functor mapping any set X to the set of (finite) multisets over X.

The definition of transition is based on two intermediate notions:
1. Unary multiterm substitution e[x 7→ U ] of a multiterm U for a variable x in a term

e, which returns a multiterm (not to be confused with unary monadic substitution, which
handles the particular case where U is just a singleton).

2. Partial derivative ∂e
∂x ·U of a term e w.r.t. a term variable x along a multiterm U . This

again returns a multiterm.
Both are defined by induction on e (see [26]) and induce T -module morphisms T (1)× ! ◦T →
! ◦ T .

Unary multiterm substitution and partial derivation are used to define the transition
relation as the smallest context-closed relation satisfying the rules below.

(λx.e) U → e[x 7→ U ] D(λx.e) · f → λx.

(
∂e

∂x
· f
)

The second rule relies on the abbreviation λx.〈e1, . . . , en〉 := 〈λx.e1, . . . , λx.en〉.
One can show that transitions are stable under substitution by terms, hence we again

have a transition monad.

2.2.5 Call-by-value, simply-typed λ-calculus, big-step style
Let us finally organise the simply-typed, call-by-value, big-step λ-calculus into a transition
monad. Most often, big-step semantics describes evaluation of closed terms. Our approach
requires to treat open terms as well, so we consider a variant describing the evaluation of
open terms [21]. In this setting, the main subtlety lies in the fact that variables are only
placeholders for values.

Because variables and values are indexed by (simple) types, we take P = S to be the
set of types (generated from some fixed set of type constants). The monad T over SetP is
then given by values: given a variable object X ∈ SetP, the placetaker object T (X) ∈ SetP
assigns to each type τ the set T (X)τ of values of type τ taking free (typed) variables in X.

FSCD 2020
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In big-step semantics, transition relates terms to values. Hence, we are seeking state
functors S1, S2 : SetP → SetP such that S1(T (X))τ is the set of λ-terms of type τ with free
variables in X, and S2(T (X))τ is the subset of values therein. For S2, we should clearly take
the identity functor. For S1, we first observe that λ-terms can be described as application
binary trees whose leaves are values (internal nodes being typed applications). Thus, we
define S1(X)τ to be the set of application binary trees of type τ with leaves in X.

Finally, transitions are stable under value substitution, so we obtain a transition monad.

2.3 Categories of transition monads
In the next sections, we show how to generate transition monads such as the examples of
the previous section from basic data. For this, we follow the recipe of initial semantics; this
requires as input a category of “models” equipped with a “forgetful” functor to the category
of transition monads, and it outputs the image of the initial model by this functor (of course,
the existence of an initial model is also required). In order to do this for transition monads,
we need to organise them into a category. We start with a particular case.

I Definition 7. For any sets P and S, finitary monad T over SetP, and finitary functors
S1, S2 : SetP→SetS, let TMndP,S(T, S1, S2) denote the slice category T -Modf (SetS)/S1T×
S2T .

This gives a first family of categories of transition monads, that we will integrate through
a simple construction2:

I Definition 8. A record category is a category of the form
∑
B∈ob(B) PB where B ranges

over the objects of a base category B, and each PB, called the fibre over B, is a category.
In other words, it is given by a (base) category B equipped with a map P : ob(B)→ CAT.

The relevant example for the present work is the following.

I Definition 9. Given two sets P and S, let TMndP,S denote the following record category
of transition monads with P and S as sets of types for placetakers and states:

its base category is the product Mndf (SetP)× [SetP,SetS]2f of the category of monads
on SetP with two copies of the functor category [SetP,SetS]f ;
the fibre over a triple (T, S1, S2) is the category TMndP,S(T, S1, S2) of Definition 7.

3 Signatures and registers

The rest of the paper is devoted to the specification of transition monads via suitable
signatures. More concretely, each of our example transition monads may be characterised as
underlying the initial object in the category of models associated to a suitable signature.

We start in §3.1 by introducing a general notion of semantic signature over a category.
In §3.2, we define registers: a register is just a family of semantic signatures. Our main goal
(achieved in Definition 63) is to propose a register for transition monads.

2 There is a more comprehensive construction, obtained by observing that the assignment (T, S1, S2) 7→
TMndP,S(T, S1, S2) forms a pseudofunctor and applying the so-called Grothendieck construction.
Signatures for the earlier definitions of transition monads presented in [3] and [20, Chapter 6] fully
acknowledge this fact, but here we choose to ignore it in order to make the development simpler.
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3.1 Semantic signatures
Our notion of semantic signature is an abstract counterpart of usual signatures.

I Definition 10. A semantic signature S over a given category C consists of
a category S -alg of models of S (or algebras), which admits an initial object, denoted
by S~, and
a forgetful functor Us : S -alg→ C.

I Remark 11. The term “forgetful functor” is merely the name of the corresponding component
of a semantic signature; it does not impose any further constraint on it.

I Terminology 12. Given a semantic signature S over a category C, we say that S is a
signature for S∗ := US(S~), or alternatively that S specifies S∗.
I Notation 13. When convenient, we introduce a semantic signature over C as u : E→ C,
to be understood as the semantic signature S with S -alg := E and US := u.

I Example 14. Any object c of any given category C is specified by the following signatures:
the functor 1→ C mapping the only object of the final category (with one object and
one morphism) to c;
the codomain functor c/C→ C from the coslice category.

I Example 15. Consider the standard endofunctor F : Set→ Set with F (X) = X + 1. We
define a semantic signature over Set for which the category of models is the category of
F -algebras, and the forgetful functor sends any F -algebra to its carrier. In order to complete
the definition of this example, we should prove that the category of F -algebras has an initial
object. This is well-known and the carrier of the initial model is N.

I Definition 16. We denote by URC the class of semantic signatures over the category C
(UR stands for “universal register”, as later justified by Definition 19, Section 3.2).

I Proposition 17. The assignment C 7→ URC extends to a functor CAT → SET. The
action of a functor F : C→ D, denoted by URF , is given by postcomposition.

3.2 Registers of signatures
In this section, we introduce registers of signatures for a category C, which are (possibly
large) families of semantic signatures over C. Roughly speaking, each register allows to write
down specific signatures, gives the recipe for the corresponding semantic signature, hence
yielding a notion of model together with the existence of an initial one.

I Definition 18. A register R for a given category C consists of
a class SigR (of signatures), and
a semantics map J−KR : SigR → URC.

We can now motivate the notation URC above:

I Definition 19. For a given category C, the universal register URC is defined as follows:
its signatures are semantic signatures for C, and
the map J−KURC is the identity (on URC).

I Notation 20. When convenient, we introduce a register as u : S → URC to be understood
as the register R with SigR := S and J−KR := u. Moreover, we sometimes implicitly identify
a signature s in a register with its associated semantic signature JsKR.
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We can now translate the slogan Endofunctors are signatures with a register, using a
well-known initiality result [22, p62].

I Definition 21. For a given cocomplete category C, the universal finitary endofunctorial
register UFEC is defined as the map [C,C]f → URC sending any finitary endofunctor F to
the forgetful functor F -alg→ C from its category of algebras.

Let us now define simple constructions of registers. Recalling Proposition 17, we have:

I Definition 22. For any register R for C and functor F : C → D, postcomposition with
URF induces a register F!(R) := (SigR,URF ◦ J−KR) for D.

I Definition 23. For any register R for C and map f : S→ SigR, precomposition with f
induces a register f∗(R) for C whose signatures are elements of S. We say that f∗(R) is a
subregister of R.

Here is an important application.

I Definition 24. We call endofunctorial all registers of the form f∗(UFEC), for some
map f : S→ SigUFEC .

A useful fact is that endofunctorial registers are closed under the family construction:

I Definition 25. For any endofunctorial register R, we denote by R∗ the endofunctorial
register whose signatures are families of signatures in SigR, and whose semantics maps any
family to the coproduct of associated endofunctors.

4 Basic registers

In this section, we construct registers for monads and functors. Both of our initiality proofs
follow from Fiore and Hur’s theory of equational systems [11].

4.1 A register for monads
In this section, we fix a set P and construct a register MndReg(P) for monads on SetP,
generalising [2] to the simply-typed setting (see also Fiore and Hur [10]).

Let us first construct a naive register MndReg0(P) which only allows us to specify
operations. We will then deal with equations.

4.1.1 A naive register for specifying operations
We first describe signatures for MndReg0(P). The basic idea for specifying operations is
that the arity of an operation is a pair of (Set-valued) parametric modules, in the sense of
modules that are definable for any monad on SetP.

I Definition 26. Given a category D, Let Mod(D) denote the category
whose objects are pairs (T,M) of a finitary monad T on SetP and a finitary T -module
M : SetP → D,
and whose morphisms (T,M)→ (U,N) are pairs (α, β) of a monad morphism α : T → U

and a natural transformation β : M → N commuting with action.
The first projection yields a forgetful functor p : Mod(D)→Mndf .

I Definition 27. A (D-valued) parametric module is a section of p, i.e., a functor s :
Mndf →Mod(D) such that p ◦ s = idMndf .
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I Terminology 28. In the following, parametric modules are implicitly Set-valued by default.

I Example 29. Let us start by a few basic constructions of parametric modules:
we denote by Θ the SetP-valued parametric module mapping a monad T to itself, as a
module over itself;
for any p1, . . . , pn ∈ P and D-valued parametric module M , let M (p1,...,pn) associ-
ate to each monad T the T -module M(T )(p1,...,pn) as in the notations of §1, i.e.,
M (p1,...,pn)(T )(X) = M(T )(X + yp1 + · · · + ypn); when P = 1, we merely count the
pi’s and write M (n);
for any finitary functor F : D→ E and D-valued parametric moduleM , the E-parametric
module F ◦M maps any monad T to the T -module F ◦M(T ); as particular cases:

the terminal Set-valued parametric module 1 = 1 ◦ Θ maps any monad T to the
constant T -module 1;
for any p ∈ P and SetP-valued parametric module M , we denote by Mp the Set-valued
parametric module mapping any monad T to the T -module X 7→M(X)p (see § 2.2.1);
given a finite family (Mi)i∈I of Set-valued parametric modules, I, let

∏
iMi associate

to any monad T the T -module
∏
iMi(T ).

I Example 30. An operation will be specified by two parametric modules, one for the source
and one for the target. Let us give the parametric modules for a few operations from our
examples.

Language Operation Source Target
Pure λµ Push Θp ×Θs Θs

Pure λµ Abstraction Θ(1)
p Θp

π-calculus Input a(b).P Θc ×Θ(c)
p Θp

Morally, a signature (without equations) should be a family of pairs of parametric modules.
However, in order to ensure existence of an initial model, we restrict this as follows.

I Definition 31. A signature of MndReg0(P) is a family of pairs (d, c) of parametric
modules, in which

c has the shape Θp for some p ∈ P, and
d is elementary, in the sense that it is a finite product of parametric modules of the
shape (F ◦Θ)(p1,...,pn) for some p1, . . . , pn ∈ P and finitary functor F : SetP → Set.

I Example 32. Typically, an elementary parametric module is a finite product of parametric
modules of the shape Θ(p1,...,pn)

p , for some p, p1, . . . , pn ∈ P.

I Definition 33. The category of models associated to a signature (di, ci)i∈I is defined by:
A model is a monad T equipped with module morphisms di(T )→ ci(T ) for all i ∈ I.
A model morphism is a monad morphism commuting with these morphisms.

I Lemma 34. Any such category of models admits an initial object.

With the obvious forgetful functor to the category of monads, this defines the semantic
signature associated to a signature of MndReg0(P), as a register for monads on SetP.

4.1.2 A register for specifying operations and equations
Let us now define our register MndReg(P), following Ahrens et al.’s approach to specifying
equations [2]. A signature of MndReg(P) will consist of a signature of MndReg0(P), plus
a family of “equations”. An equation is essentially a pair of “metaterms”, which may have
“metavariables”. The idea is that metavariables are given by a parametric module.
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I Example 35. Consider associativity of parallel composition in π-calculus, P |(Q|R) ≡
(P |Q)|R: the metavariables are P , Q, and R. The corresponding parametric module is Θ3

p.

Intuitively, a metaterm will be a parametric module morphism from metavariables to some
Θp. However, it should potentially rely on constructions from the considered signature Σ of
MndReg0(P), as in Example 35. We thus consider a modified notion of parametric module
morphism, which is parametric in models of Σ instead of mere monads.

I Definition 36. Given any signature Σ for MndReg0(P),
a Σ-module morphism M → N between parametric modules M and N is a natural fam-
ily of morphisms (αT : M(T ) −→ N(T ))T∈Σ -alg, such that αT is a T -module morphism,
for each Σ-model T ;
a Σ-equation consists of an elementary parametric module V , called the metavariable
module, and two parallel Σ-module morphisms V −→ θp, for some p ∈ P, called the
metaterms (of type p).

I Definition 37. A signature of MndReg(P) is a pair of a signature Σ of MndReg0(P)
and a family of Σ-equations.

I Definition 38. The category of models associated to a signature (Σ, E) is defined as follows.
A model is a model T of Σ such that for all equations (L,R) ∈ E, L(T ) = R(T ).
A morphism of models of (Σ, E) is a morphism of models of Σ.

The following generalises [2, Theorem 32]:

I Lemma 39. Any such category of models admits an initial object.

With the obvious forgetful functor to the category of monads, this defines the semantic
signature associated to a signature of MndReg(P), as a register for monads on SetP.

I Example 40. Let us revisit Example 35: the relevant signature Σ has in particular an
operation par : Θ2

p → Θp for parallel composition, which gives our two metaterms

Θ3
p

par×Θp−−−−−→ Θ2
p

par−−→ Θp and Θ3
p

Θp×par−−−−−→ Θ2
p

par−−→ Θp.

I Notation 41 (Format for equations). We have already started to write pairs (d, c) of
parametric modules as d → c. Given any signature Σ for MndReg0(P), we write any
Σ-equation V → Θ2

p

x 7→ (L,R)
as x : V ` L ≡ R : Θp, or just L ≡ R when the rest may be

inferred.

I Example 42. We write associativity from Example 40 as just par(P, par(Q,R)) ≡
par(par(P,Q), R). In this case, the argument x is the triple (P,Q,R).

4.2 A register for state functors
In this section, we sketch a register FunReg(P,S), which is an adaptation of MndReg(P)
to the case of state functors. Parametric modules are replaced with parametric premodules:

I Definition 43. A parametric premodule is a functor [SetP,SetS]f → [SetP,Set]f .

We introduce the following notations:
I Notation 44. We denote by Θ the identity endofunctor on [SetP,SetS]f , and by Γ :
[SetP,SetS]f → [SetP,SetP]f the constant functor mapping anything to the identity endo-
functor.
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The constructions
∏
iMi and M (p1,...,pn) carry over essentially verbatim.

I Example 45. We have seen in §2.2.5 that the source state functor S1 for call-by-value,
simply-typed λ-calculus is built with application binary trees. Intuitively, it has two (type-
indexed families of) operations: the first one injects values, thus maps Xt, into S1(X)t,
and the second one forms application binary trees, with components Xt → S1(X)t and
S1(X)t→t′ × S1(X)t → S1(X)t′ .
This yields a specification with two families of operations Γt → Θt and Θt→t′ ×Θt → Θt′ .

Operations, equations, and models are defined exactly as for monads, and a signature in
FunReg(P,S) again consists of families of operations and equations3. The only difference
lies in the notion of elementary parametric premodule, which becomes the following:

IDefinition 46. A parametric premodule is elementary iff it is a finite product of parametric
premodules of the shape (F ◦ 〈Γ,Θ〉)(p1,...,pn) for some p1, . . . , pn ∈ P and finitary functor
F : SetP × SetS → Set.

I Example 47. Typically, an elementary parametric premodule is a product of parametric
premodules of the shape Γ(p1,...,pn)

p or Θ(p1,...,pn)
σ , for some p, p1, . . . , pn ∈ P and σ ∈ S.

I Remark 48. Any finitary functor F admits a trivial signature consisting of the family
((Fσ ◦ Γ)→ Θσ)σ∈S of operations. Here are a few examples from §2.2:

Language State functor Specification
λµ S1(X) = S2(X) = Xp ×Xs 〈−|−〉 : Γp × Γs → Θ
π S1(X) = S2(X) = Xp Γp → Θ
Call-by-value, simply-typed λ S2(X) = X ηt : Γt → Θt (for all t)
Positive GSOS specifications S1(X) = X Γ→ Θ

S2(X) = A×X A× Γ→ Θ

I Notation 49. We adopt Notation 41 for state functors. E.g., Example 42 applies verbatim
for associativity of multiset union in the target state functor for differential λ-calculus.

5 Constructions of registers

In this section, we provide constructions of new registers out of existing ones.

5.1 Product registers
Let us start by considering products. We first describe the product of semantic signatures,
and then, based on that, we define product registers.

Given semantic signatures for some family of categories, we want to construct a semantic
signature for the product category. The application we have in mind is the product category
Mndf (SetP)× [SetP,SetS]2f (Definition 9), which is the base category of our record category
of transition monads (see below Example 53).

I Lemma 50. Given a set I and functors Ui : Ei → Ci for i ∈ I, if each Ei has an initial
object, then so does the product

∏
i Ei.

3 Existence of an initial object in the category of models relies on the theory of equational systems, as
mentioned above.
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I Definition 51. Given a family C := (Ci)i∈I of categories, and a corresponding family of
semantic signatures ui : Ei → Ci, the product

∏
i ui :

∏
i Ei →

∏
i Ci is a semantic signature.

This defines our (external) product of signatures
∏

C :
∏
i URCi

→ UR∏
i

Ci
.

Let us now define the product of a family of registers.

I Definition 52. The product of a family (ui : Si → URCi)i∈I of registers is obtained by
post-composing

∏
i ui with the product of semantic signatures:

∏
i

Si

∏
i
ui

−−−−→
∏
i

URCi

∏
C−−−→ UR∏

i
Ci
.

I Example 53. The product MndReg(P) × FunReg(P,S)2 of the register MndReg(P)
with two copies of the register FunReg(P,S).

5.2 Registers for slice module categories
In this section, we fix two sets P and S, a monad T on SetP, and a SetS-valued T -module M .
We then define an endofunctorial register Rule(T,M) for the category T -Modf (SetS)/M .
Later on, we will use the register Rule∗(T,M) (recalling Definition 25) withM := S1T×S2T ,
i.e., for the category of transition monads over (T, S1, S2).

5.2.1 The naive register Rule0

For expository purposes, we start by defining a naive endofunctorial register, Rule0(T,M).
A signature of Rule0(T,M) consists of

a metavariable Set-valued T -module V ,
a conclusion module morphism t : V →Mτ for some conclusion state type τ ∈ S, and
a list of premise module morphisms si : V →Mσi , for some premise state types σi ∈ S.

I Example 54. For the left application congruence rule of pure λ-calculus
e→ e′

e f → e′ f
, there

are three metavariables e, e′, and f , so the metavariable module V is T 3. The conclusion
and premise are respectively defined as the module morphisms

T 3 → T 2

(e, e′, f) 7→ (e f, e′ f) and T 3 → T 2

(e, e′, f) 7→ (e, e′).

Now, the endofunctor ΣS associated to any signature S := (τ, V, t, (σi, si)i∈n) is a
composite

T -Modf (Set)/
∏
iMσi T -Modf (Set)/V T -Modf (Set)/Mτ

T -Modf (SetS)/M T -Modf (SetS)/M ,

∏
i
(−)σi

∆〈si〉i
∑

t

(1)

of four functors, where∏
i(∂ : R→M)σi denotes

∏
i ∂σi :

∏
iRσi →

∏
iMσi ,

∆〈si〉i is defined by pullback along the tupling 〈si〉i : V →
∏
iMσi of all premises,∑

i is defined by postcomposition with the conclusion t : V →Mτ , and
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the last functor is the canonical embedding, which maps any R → Mτ to R · yτ → M ,
where R · yτ is defined for every X by (R · yτ )(X)τ = R(X) and (R · yτ )(X)σ = ∅ for
σ 6= τ .

I Remark 55. The embedding (−) · yτ is left adjoint to evaluation at τ : (−) · yτ a (−)τ .
Thus ΣS maps any ∂ : R→M to the transpose of the right-hand composite q below.

∏
iRσi P

∏
iMσi V Mτ

∏
i
∂σi

〈si〉i t

q (2)

By Lemma 59 below, each ΣS is finitary, which completes the definition of our register
Rule0(T,M) for T -Modf (SetS)/M .

I Example 56. Consider the endofunctor associated to the left application rule of Example 54.
Because S = 1, the functor (−) · yτ is the identity functor, so the endofunctor maps any
∂ : R→ T 2:

to the pullback P , where P (X) is the set of 4-tuples (r, e, e′, f) ∈ R(X) × T (X)3 such
that r is a transition e→ e′,
with projection to T 2 mapping any (r, e, e′, f) to (e f, e′ f).

An algebra is thus such a ∂ : R → T 2 which, to each such tuple (r, e, e′, f) associates a
transition over (e f, e′ f), as desired.

5.2.2 The register Rule

In this section, we define the endofunctorial register Rule(T,M), refining the naive register
Rule0(T,M) of the previous section. The motivation lies in rules whose premises have
additional free variables.

I Example 57. Consider the ξ rule of pure λ-calculus:
e→ f

λx.e→ λx.f
·

The metavariables and conclusion may remain the same; the problem is with the premise,
which cannot be a morphism V → T 2, but should rather have type V → T (1) × T (1). We
thus generalise Rule0(T,M) to let rules have premises of this shape:

I Definition 58. The endofunctorial register Rule(T,M) for T -Modf (SetS)/M is defined
by:

signatures are just as in Rule0(T,M), except that the premises now have the shape
s : V →M

(~p)
σ , for σ ∈ S and ~p a list of elements of P; and

the induced endofunctor is defined exactly as for naive rules, replacing
∏
iRi with

∏
iR

(~pi)
i .

This register is well defined thanks to the following lemma (proved in Appendix H):

I Lemma 59. Given a signature S, the endofunctor ΣS is finitary.

Using Definition 25, we obtain a register Rule∗(T,M) for T -Modf (SetS)/M , whose
signatures are families of signatures in Rule(T,M).
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5.2.3 A format for signatures in Rule and Rule∗

When M = S1T × S2T , we adopt the following notational conventions for signatures in
Rule(T,M):

for each premise or conclusion V → W

x 7→ (L,R)
of a rule, we write x : V ` L R : W ,

we organise the premises and conclusion as usual:

x : V ` L1  R1 : W1 . . . x : V ` Ln  Rn : Wn

x : V ` L R : W
,

or just
L1  R1 . . . Ln  Rn

L R
when the rest may be inferred from context.

I Remark 60. The module V is often a product and thus x is a tuple.

I Remark 61 ([3]). In practice, there are several choices for building the transition rule out
of such a schematic presentation, depending on the order of metavariables. This order is
irrelevant: all interpretations yield isomorphic semantics, in the obvious sense.

5.3 The record construction for registers
The registers introduced in the previous sections allow us to design registers for the various
components of our transition monad, separately: we may specify the underlying monad T
and state functors S1 and S2 using signatures from the registers for monads and functors
previously defined. We may even assemble these signatures into a single signature Σ for the
product register of Definition 52. Then, we may specify the desired transition monad as
an object of the fibre TMndP,S(T, S1, S2), using a signature R of the register Rule∗(T,M)
from Section 5.2.2, with M = S1T × S2T .

In this section, we show how to assemble Σ and R into a single signature of some
compound register for the record category TMndP,S. Our construction can be performed in
general for an arbitrary record category.

I Definition 62. Consider any record category K =
∑
B∈ob(B) P(B), with P : ob(B) →

CAT, together with
a base register Rb for B, and
for each signature S in SigRb , a fibre register Rf (S) for the fibre PS∗ over the initial
S-algebra.

The record register
∑

(Rb, Rf ) for the record category K is defined as follows.
Signatures are pairs (S, F ) with S ∈ SigRb and F ∈ SigRf (B).
The semantic signature associated to any (S, F ) is the composite F -alg UF−−→ PS∗ ↪→ K.

Our main example application is:

I Definition 63. Let TMndReg :=
∑

(Rb, Rf ), where
Rb is the product register MndReg(P)×FunReg(P,S)2 of Example 53 for monads and
state functors, and
for all signatures S of Rb, the register Rf (S) is defined as Rule∗(T, S1T × S2T ), where
(T, S1, S2) = S∗.

We provide signatures for all examples from §2.2 in the appendix.
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6 Conclusion and perspectives

We have introduced transition monads as a generalisation of reduction monads, and demon-
strated that they cover relevant new examples. We have introduced a register of signatures
for specifying them. In future work, we plan to investigate more general forms of state
modules. E.g., using an arbitrary module covers the subtle labelled transition system for
π-calculus. We also plan to generalise the Grothendieck construction to signatures/registers
along the line in [3]. In the longer term, we plan to refine our register in a way ensuring that
the generated transition system satisfies important properties like congruence of observational
equivalences, confluence, or type soundness. In this direction, a result on congruence of
applicative bisimilarity for a simpler register has recently been obtained by Borthelle et
al. [8]. Finally, quantitative (e.g., probabilistic [6]) operational semantics would be worth
investigating in our setting.
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A Specifying the call-by-value, simply-typed, big-step λ-calculus

In the setting of §2.2.5, let F : SetP → SetS be specified by two families of operations
appt,t′ : Θt→t′ ×Θt → Θt′ and valt : Γt → Θt. Our signature for call-by-value, simply-typed,
big-step λ-calculus is presented in the following table

Monad and
state functors

T S1 S2

λt,t′ : (Ft′ ◦Θ)(t) → Θt→t′ F Id

Rules
valt(v) v

e1  λt,t′(e3) e2  w e3[w] v

appt,t′(e1, e2) v

where
−[−] : (S1T )(t)

t′ × Tt → (S1T )t′ denotes the substitution morphism;
S1 = F and S2 = Id are specified by easy signatures as in Remark 48;
the rules should be understood as families of rules indexed by suitable types.

In a bit more detail, the first rule is indexed by the type t of v. The second one is indexed
by two types t and t′. There are five metavariables, e1, e2, e3, v, and w. We thus take
V := (S1T )t→t′ × (S1T )t × (S1T )(t)

t′ × Tt′ × Tt.

B Specifying the λµ-calculus

For λµ-calculus, the state functor has been specified in Remark 48. The monad is specified
by operations

µ : Θ(s)
p ×Θ(s)

s → Θp λ : Θ(p)
p → Θp · : Θp ×Θs → Θs,

with no equation.

http://dx.doi.org/10.1145/888251.888266
https://tel.archives-ouvertes.fr/tel-00382528
http://dx.doi.org/10.1007/3-540-44802-0_3
http://dx.doi.org/10.2168/LMCS-9(3:10)2013
https://arxiv.org/abs/1910.09162v2
http://dx.doi.org/10.1051/ita:1999130
http://dx.doi.org/10.1109/LICS.2008.43
http://dx.doi.org/10.1109/LICS.1997.614955
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The transition rules are almost as usual:

〈µ〈e|π′〉|π〉 → 〈e[π], π′[π]〉 〈λ(e)|e′ · π〉 → 〈e[e′]|π〉

The first rule has metavariable module V := T
(s)
p × T (s)

s × Ts, the argument being (e, π′, π).
The second rule has V := T

(p)
p × Tp × Ts.

C Specifying the π-calculus

For π-calculus, the state functor has been specified in Remark 48. The placetaker monad T
is specified by operations

0 : 1→ Θp | : Θp ×Θp → Θp ν : Θ(c)
p → Θp out : Θ2

c ×Θp → Θp in :
Θc ×Θ(c)

p → Θp
with equations 0|P ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R ν(P )|Q ≡ ν(P |wc(Q)),
almost copied verbatim from §2.2.2, where wc(Q) denotes the action of T (X)→ T (X + yc)
on Q. Finally, the transition rules are

out(a, b, P )|in(a,Q) −→ P |(Q[b])
P −→ Q

P |R −→ Q|R
P −→ Q

ν(P ) −→ ν(Q)
.

In particular, the third rule has as metavariable module V := (Θ(c)
p )2.

D The register GSOS+

In this section, we define a register GSOS+ for specifying positive GSOS systems [7]. This is
a subregister of our record register TMndReg, for untyped (P = S = 1) transition monads.
Let us recall that signatures in this register consist of pairs (B,F ) where B is a signature in
the product register of Example 53, and F is a signature in Rule∗(B).

In order to describe this subregister, we have to describe its class of signatures, and then
assign to each such signature a pair (B,F ) as above. Before performing this task we recall
the standard format of a GSOS+ rule:

. . . Vi
ai,j−−→ Vi,j . . .

op(V1, . . . , Vn) c−→ e
.

A signature of the register GSOS+ consist of
three sets O (for operations), A (for labels), and R (for rules),
for each element o of O, a number mo (the arity),
for each rule,

an operation o ∈ O (for the source of the conclusion),
a label c ∈ A (the label of the conclusion),
for each i ≤ mo,
∗ a number ni (the number of premises for this argument),
∗ for each j ≤ ni , an element aij of A (for the label of the premise),
∗ a term e in the syntax generated by O, potentially depending on mo +

∑
i ni

variables.

We now describe the pair (B,F ) associated to a signature as above:
the signatures for both state functors have been given in Remark 48;

FSCD 2020
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the signature for the underlying monad is
∑
o∈O Θmo → Θ (following §4.1).

These three signatures yield our base signature B. Finally, each Positive GSOS rule yields

a rule
. . . Vi  (ai,j , Vi,j) . . .

opo(V1, . . . , Vmo) (c, e)
in our fibre signature F (in the register Rule∗(T, S1T×

S2T )).

E Specifying the differential λ-calculus

In this section, we present in some detail the signature for differential λ-calculus, as a
transition monad with P = S = 1, introduced in §2.2.4. A signature in the register of
transition monads consists of two components: a (product) signature for the state functors
and monad, given in §E.1, and a signature for the β and ∂-transition rules. Both are
straightforwardly modelled by a signature over as explained in §5.2, but they first require us
to construct some intermediate operations −[x 7→ −] and ∂−

∂x · −. We tackle this task in §E.2.

E.1 State functors and monad of differential λ-calculus
The first state functor is the identity functor Id : Set→ Set, and thus is specified by the
arity Γ→ Θ. The second state functor is !, the multiset functor, and is specified by three
arities 1→ Θ (for the empty multiset), Γ→ Θ (for the singleton multiset), and Θ×Θ→ Θ
(for the union operation), subject to commutativity, associativity, and unitality.

Next, the monad of differential λ-calculus is specified by the arities Θ(1) → Θ, Θ×!Θ→ Θ,
and Θ×Θ→ Θ, modelling the operations λx.−, − −, and D − ·−. No equation is required.

E.2 Intermediate constructions for differential λ-calculus
Specifying the transition rules requires two intermediate constructions: unary multiterm
substitution −[x 7→ −], and partial derivation ∂−

∂x ·−, which we both model as T -module
morphisms T (1) × !T → !T , or equivalently T (1) → (!T )!T . 4

In [26, §6], the underlying maps are defined by induction. Here, we define them by
using a special induction principle for building module morphisms out of T (1), that we now
describe. Let us denote by Σ↑ the endofunctor on T -modules defined by the same formula
than the parametric module specifying the differential λ-calculus monad T (see Section E.1):
Σ↑(M) = M (1) + M × !M + M ×M . Note that T has a canonical Σ↑-algebra structure,
T (1) a canonical (Σ↑ + 1)-algebra structure, and the embedding T → T (1) is a Σ↑-algebra
morphism.

The following lemma induces a useful induction principle:

I Lemma 64. Given any (Σ↑ + 1)-algebra M and Σ↑-algebra morphism m : T →M , there
exists a unique (Σ↑ + 1)-algebra morphism i : T (1) → M making the following diagram
commute.

T T (1)

M

j

∀m ∃!i

4 The category of finitary Set-valued T -modules is equivalent to the category of presheaves on the full
subcategory of the Kleisli category of T consisting of finite sets. As such, it has exponentials.



A. Hirschowitz, T. Hirschowitz, and A. Lafont 12:21

Proof. By [11], T is the initial algebra of Σ↑ + Id, as a (finitary) endofunctor on [Set,Set]f .
By inspecting the colimit of the relevant initial chains, it can be shown that T (1) is the initial
algebra of Σ↑ + Id +1 . Given the data, M has (Σ↑ + Id +1)-algebra structure: the natural
transformation Id→M is merely the composite Id→ T →M with the unit of T .

By initiality, we have a unique (Σ↑ + Id +1)-algebra morphism i : T (1) →M as functors,
such that i◦ j = m. At this stage, we can already deduce uniqueness of the desired morphism.

It remains to show that i is a T -module morphism. We omit the proof for lack of
space. J

The lemma legitimates the following general recipe for constructing a T -module morphism
T (1) →M :
1. provide M with a (Σ↑ + 1)-algebra structure,
2. provide a T -module morphism T →M , and
3. check that this morphism is a Σ↑-algebra morphism.
Indeed, by the above adjunction, we get a (Σ↑ + 1)-algebra morphism T (1) →M , and thus
in particular a T -module morphism T (1) →M .

We now apply this recipe to define unary multiterm substitution (the case of partial
derivation is similar).

1. We first equip (!T )!T with (Σ↑ + 1)-algebra structure. This structure should reflect the
recursive equations in [26, Definition 6.3] defining unary multiterm substitution. In
fact, the recursive equations will follow from the fact that the constructed morphism
T (1) → (!T )!T is a (Σ↑ + 1)-algebra morphism.
By universal property of exponential and coproduct, a (Σ↑ + 1)-algebra structure on
(!T )!T decomposes into a 4-tuple of maps to !T , each one corresponding to a recursive
equation. We define these maps, recalling the corresponding recursive equation, in the
following table.

Inductive case Recursive equation T -module morphism

Abstraction (λx.t)[x 7→ U ] = λx.t[x 7→ U ]
((!T )!T )(1) × !T → !T

(t, U) 7→ λ.t(U)

Application ((s) V )[x 7→ U ] = (s[x 7→ U ]) V [x 7→ U ]
(!T )!T × !(!T )!T × !T → !T

(s, V, U) 7→ (s(U)) V (U)

Differential application (Ds · u)[x 7→ U ] = D(s[x 7→ U ]) · u[x 7→ U ]
(!T )!T × (!T )!T × !T → !T

(s, u, U) 7→ D(s(U)) · u(U)

Substituted variable x[x 7→ U ] = U
!T → !T
U 7→ U

This covers four out of five recursive equations. The missing one is y[x 7→ U ] = y when
x 6= y; it corresponds to the morphism T → (!T )!T , which more generally deals with any
term not depending on x.
Let us explain some cases, beginning with the last one. The morphism !T → !T corresponds
to the mapping U 7→ x[x 7→ U ], thus we choose the identity morphism.
Next, e.g., the morphism for application is a composite

(!T )!T × !(!T )!T × !T → !T × !!T → !(T × !T ) !app−−−→ !T,
where

the first morphism duplicates !T and evaluates both exponentials, and
the second follows from the well-known fact that ! is a commutative monad.

The other cases are similar, and require to lift the other operations to the level of
multiterms.
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2. Now, following our recipe, we need to give a T -module morphism from T to (!T )!T , or
equivalently, a T -module morphism m : T × !T → !T . This morphism corresponds to the
mapping (t, U) 7→ t[x 7→ U ], when t does not depend on x. Thus, we define mX(t, U) = t.
More formally, m is the composite T × !T π1−→ T

η!T−−→ !T .
3. It remains to check that the induced morphism T → (!T )!T is a Σ↑-algebra morphism,

that is, that this morphism is compatible with each operation, which is routine.

F Proof of Proposition 6

In this section, we show that the modular and the monadic definitions of transition monads
are equivalent. The proof consists merely in unfolding the definitions.

Consider the modular definition. We have:
a finitary monad T on SetP, that is:

an object mapping T : ob(SetP)→ ob(SetP), together with
morphisms X → T (X) for the variables, and
for each morphism f : X → T (Y ), an extension f? : T (X) → T (Y ), subject to the
usual equations;

a finitary T -module R : SetP → SetS, called the transition module, that is:
an object mapping R : ob(SetP)→ ob(SetS), together with
for each morphism f : X → T (Y ), an extension f? : R(X) → R(Y ) subject to the
usual equations;

two T -module morphisms si : R→ SiT , that is, families of morphisms R(X)→ Si(T (X))
commuting with T -substitution.

The monadic definition was already detailed after Definition 4. It is straightforward
to check that the assignement X 7→ (srcX , tgtX : R(X) → Si(T (X))) defines a monadic
transition monad. Conversely, given a monadic transition monad mapping X to some
(srcX , tgtX : R(X) → Si(T (X))), the assignement X 7→ T (X) defines a monad T , the
assignment X 7→ R(X) defines a T -module R, and src and tgt induce T -module morphisms
R→ S1T and R→ S2T , respectively. Hence we get a modular transition monad.

G Proof-irrelevant variant

I Proposition 65. Let ITMndP,S(T, S1, S2) denote the full subcategory of transition monads
〈src, tgt〉 : R→ S1T ×S2T such that 〈src, tgt〉 is a pointwise inclusion. Then, the embedding
U : ITMndP,S(T, S1, S2) ↪→ TMndP,S(T, S1, S2) is reflective.

Proof. The left adjoint L : TMndP,S(T, S1, S2)→ ITMndP,S(T, S1, S2) maps a transition
monad ∂ : R→ S1T ×S2T to the monomorphism R ↪→ S1T ×S2T obtained from the (strong
epi)-mono factorisation5 of ∂. Then, the natural bijection TMndP,S(T, S1, S2)(T1, UT2) ∼=
ITMndP,S(T, S1, S2)(LT1, T2) follows from the lifting property of strong epimorphisms. J

Thanks to Definition 22, we then get a register for proof-irrelevant transition monads
from the register TMndReg of Definition 63.

5 As mentioned before, the category of finitary Set-valued T -modules is a presheaf category, and thus
has (strong epi)-mono factorisations.
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H Proof of Lemma 59

In this section, we fix two sets P and S, a monad T on SetP, and a SetS-valued T -module
M . We then show that given any signature ρ in Rule(T,M), Σρ on T -Modf (SetS)/M is
finitary.

Now, Σρ is a composite of four functors as in (1) with
∏
i(−)σi replaced byDρ :=

∏
i(−)(~pi)

σi

as explain in §5.2.2. The last three of these functors are left adjoints (because we restrict to
finitary modules), hence readily finitary. It remains to show that the fourth factor, Dρ/M :
T -Modf (SetS)/M → T -Modf (Set)/Dρ(M), is finitary. Because the domain functors
T -Modf (SetS)/M → T -Modf (SetS) and T -Modf (Set)/Dρ(M)→ T -Modf (Set) create
colimits, this reduces to Dρ being finitary. But finitary functors are closed under finite
products, so, because colimits are pointwise in presheaf categories, this in turn reduces to
each (−)(p) being finitary, which follows from their being left adjoints. (They may be viewed
as precomposition with an endofunctor of Kl(T ), hence admit a right adjoint given by right
Kan extension.)
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