3 research outputs found

    A framework for fine-grain synthesis optimization of operational amplifiers

    Get PDF
    This thesis presents a cell-level framework for Operational Amplifiers Synthesis (OASYN) coupling both circuit design and layout. For circuit design, the tool applies a corner-driven optimization, accounting for on-chip performance variations. By exploring the process, voltage, and temperature variations space, the tool extracts design worst case solution. The tool undergoes sensitivity analysis along with Pareto-optimality to achieve required specifications. For layout phase, OASYN generates a DRC proved automated layout based on a sized circuit-level description. Morata et al. (1996) introduced an elegant representation of block placement called sequence pair for general floorplans (SP). Like TCG and BSG, but unlike O-tree, B*tree, and CBL, SP is P-admissible. Unlike SP, TCG supports incremental update during operation and keeps the information of the boundary modules as well as their relative positions in the representation. Block placement algorithms that are based on SP use heuristic optimization algorithms, e.g., simulated annealing where generation of large number of sequence pairs are required. Therefore a fast algorithm is needed to generate sequence pairs after each solution perturbation. The thesis presents a new simple and efficient O(n) runtime algorithm for fast realization of incremental update for cost evaluation. The algorithm integrates sequence pair and transitive closure graph advantages into TCG-S* a superior topology update scheme which facilitates the search for optimum desired floorplan. Experiments show that TCG-S* is better than existing works in terms of area utilization and convergence speed. Routing-aware placement is implemented in OASYN, handling symmetry constraints, e.g., interdigitization, common centroid, along with congestion elimination and the enhancement of placement routability

    Module placement with boundary constraints using the sequence-pair representation

    No full text
    [[abstract]]In VLSI module placement, it is very practical to consider placing some modules along the pre-specified boundaries of the chip so that the modules are easier to be connected to certain I/O pads. In this paper, we study the module placement problem where some modules have boundary constraints, and present a simulated annealing based algorithm that represents each placement topology by a sequence-pair. The major contribution of our algorithm is that a feasible placement is always obtainable. Our algorithm has been implemented, and its effectiveness is supported by the encouraging experimental results[[fileno]]2030229030039[[department]]資訊工程學

    Scalability and interconnection issues in floorplan design and floorplan representations.

    Get PDF
    Yuen Wing-seung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves [116]-[122]).Abstracts in English and Chinese.Abstract --- p.iAcknowledgments --- p.iiiList of Figures --- p.viiiList of Tables --- p.xiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivations and Aims --- p.1Chapter 1.2 --- Contributions --- p.3Chapter 1.3 --- Dissertation Overview --- p.4Chapter 2 --- Physical Design and Floorplanning in VLSI Circuits --- p.6Chapter 2.1 --- VLSI Design Flow --- p.6Chapter 2.2 --- Floorplan Design --- p.8Chapter 2.2.1 --- Problem Formulation --- p.9Chapter 2.2.2 --- Types of Floorplan --- p.10Chapter 3 --- Floorplanning Representations --- p.12Chapter 3.1 --- Polish Expression(PE) [WL86] --- p.12Chapter 3.2 --- Bounded-Sliceline-Grid(BSG) [NFMK96] --- p.14Chapter 3.3 --- Sequence Pair(SP) [MFNK95] --- p.17Chapter 3.4 --- O-tree(OT) [GCY99] --- p.19Chapter 3.5 --- B*-tree(BT) [CCWW00] --- p.21Chapter 3.6 --- Corner Block List(CBL) [HHC+00] --- p.22Chapter 4 --- Optimization Technique in Floorplan Design --- p.27Chapter 4.1 --- General Optimization Methods --- p.27Chapter 4.1.1 --- Simulated Annealing --- p.27Chapter 4.1.2 --- Genetic Algorithm --- p.29Chapter 4.1.3 --- Integer Programming Method --- p.31Chapter 4.2 --- Shape Optimization --- p.33Chapter 4.2.1 --- Shape Curve --- p.33Chapter 4.2.2 --- Lagrangian Relaxation --- p.34Chapter 5 --- Literature Review on Interconnect Driven Floorplanning --- p.37Chapter 5.1 --- Placement Constraint in Floorplan Design --- p.37Chapter 5.1.1 --- Boundary Constraints --- p.37Chapter 5.1.2 --- Pre-placed Constraints --- p.39Chapter 5.1.3 --- Range Constraints --- p.41Chapter 5.1.4 --- Symmetry Constraints --- p.42Chapter 5.2 --- Timing Analysis Method --- p.43Chapter 5.3 --- Buffer Block Planning and Congestion Control --- p.45Chapter 5.3.1 --- Buffer Block Planning --- p.45Chapter 5.3.2 --- Congestion Control --- p.50Chapter 6 --- Clustering Constraint in Floorplan Design --- p.53Chapter 6.1 --- Problem Definition --- p.53Chapter 6.2 --- Overview --- p.54Chapter 6.3 --- Locating Neighboring Modules --- p.56Chapter 6.4 --- Constraint Satisfaction --- p.62Chapter 6.5 --- Multi-clustering Extension --- p.64Chapter 6.6 --- Cost Function --- p.64Chapter 6.7 --- Experimental Results --- p.65Chapter 7 --- Interconnect Driven Multilevel Floorplanning Approach --- p.69Chapter 7.1 --- Multilevel Partitioning --- p.69Chapter 7.1.1 --- Coarsening Phase --- p.70Chapter 7.1.2 --- Refinement Phase --- p.70Chapter 7.2 --- Overview of Multilevel Floorplanner --- p.72Chapter 7.3 --- Clustering Phase --- p.73Chapter 7.3.1 --- Clustering Methods --- p.73Chapter 7.3.2 --- Area Ratio Constraints --- p.75Chapter 7.3.3 --- Clustering Velocity --- p.76Chapter 7.4 --- Refinement Phase --- p.77Chapter 7.4.1 --- Temperature Control --- p.79Chapter 7.4.2 --- Cost Function --- p.80Chapter 7.4.3 --- Handling Shape Flexibility --- p.80Chapter 7.5 --- Experimental Results --- p.81Chapter 7.5.1 --- Data Set Generation --- p.82Chapter 7.5.2 --- Temperature Control --- p.82Chapter 7.5.3 --- Packing Results --- p.83Chapter 8 --- Study of Non-slicing Floorplan Representations --- p.89Chapter 8.1 --- Analysis of Different Floorplan Representations --- p.89Chapter 8.1.1 --- Complexity --- p.90Chapter 8.1.2 --- Types of Floorplans --- p.92Chapter 8.2 --- T-junction Orientation Property --- p.97Chapter 8.3 --- Twin Binary Tree Representation for Mosaic Floorplan --- p.103Chapter 8.3.1 --- Previous work --- p.103Chapter 8.3.2 --- Twin Binary Tree Construction --- p.105Chapter 8.3.3 --- Floorplan Construction --- p.109Chapter 9 --- Conclusion --- p.114Chapter 9.1 --- Summary --- p.114Bibliography --- p.116Chapter A --- Clustering Constraint Data Set --- p.123Chapter A.1 --- ami33 --- p.123Chapter A.1.1 --- One cluster --- p.123Chapter A.1.2 --- Multi-cluster --- p.123Chapter A.2 --- ami49 --- p.124Chapter A.2.1 --- One cluster --- p.124Chapter A.2.2 --- Multi-cluster --- p.124Chapter A.3 --- playout --- p.124Chapter A.3.1 --- One cluster --- p.124Chapter A.3.2 --- Multi-cluster --- p.125Chapter B --- Multilevel Data Set --- p.126Chapter B.l --- data_100 --- p.126Chapter B.2 --- data_200 --- p.127Chapter B.3 --- data_300 --- p.129Chapter B.4 --- data_400 --- p.131Chapter B.5 --- data_500 --- p.13
    corecore